

Figure S1, related to Figures 2, 6 and 7. Silencing of RIG-I, Mda5, TBK1, IKKε, GADD34, and I-1 in human primary DCs by RNA interference

(**A-F**) Silencing of indicated proteins using specific SMARTpools and non-targeting siRNA as a control. Silencing was confirmed by real-time PCR (left panels) or flow cytometry (right panels; FI, fluorescence intensity). During real-time PCR analysis, mRNA expression was normalized to GAPDH and set at 1 in control-silenced cells. Antibodies used for staining are anti-RIG-I (3743; Cell Signaling) (**A**), anti-Mda5 (4109; Cell Signaling) (**B**), anti-TBK1 (3504; Cell Signaling) (**C**), anti-IKKε (2905; Cell Signaling) (**D**), anti-GADD34 (ab131402; Abcam)

(E), and anti-I-1 (ab40877; Abcam) (F). Data are presented as mean \pm SD (real-time PCR). *P < 0.05, **P < 0.01, ***, P < 0.001. Data are representative of at least three independent experiments.

Figure S2, related to Figure 4. MV inhibits dephosphorylation of RIG-I and Mda5 via Raf-1

Mda5 phosphorylation at Ser88, and RIG-I phosphorylation at Ser8 or Thr170 in whole cell lysates of DCs 8 h after infection with rMV^{KS}EGFP(3), in the absence or presence of Raf inhibitor GW5074, determined by immunoblotting. β -actin (lower panel) served as a loading control.

Data are representative of two independent experiments.

Figure S3, related to Figure 3. Infection and type I IFN responses in DCs in response to rMV^{IC323}EGFP(1)

(A) Infection of DCs 24 h after infection with rMV^{IC323}EGFP(1) in the absence (*black bar*) or presence of blocking DC-SIGN (*grey bar*) or CD150 (*white bar*) antibodies, determined by flow cytometry by measuring % of EGFP⁺ cells. Data are presented as mean \pm SD. (B) IFN- β and MxA mRNA expression by DCs 2, 10, and 24 h after infection with rMV^{IC323}, measured by real-time PCR and normalized to GAPDH. Data are presented as mean \pm SD.

Data are representative of at least three (A) or four (B) independent donors.

Gene product	Forward primer	Reverse primer
MV-N ¹	GACATTGACACTGCATC	GATTCCTGCCATGGCTTGCAGCC
IFN-β (Homo sapiens)	ACAGACTTACAGGTTACCTCCGAAAC	CATCTGCTGGTTGAAGAATGCTT
IFN-β (Macaca fascicularis)	ACAAACTTACAGGTTACCTCCGAAAC	CATCTGCCGGTTGAAGAATGCTT
MxA	TTCAGCACCTGATGGCCTATC	GTACGTCTGGAGCATGAAGAACTG
ISG15	TTTGCCAGTACAGGAGCTTGTG	GGGTGATCTGCGCCTTCA
RIG-I	CCAAGCCAAAGCAGTTTTCAAG	CATGGATTCCCCAGTCATGG
Mda5	TGAGAGCCCTGTGGACAACC	CGCTGCCCACTTAGAGAAGC
TBK1	TTACAGGAAAGCCTTCTGGTGC	TCCACTCCAGTCAATTGGTCC
ΙΚΚε	TTGGAGTGACCTTGTACCATGC	CATGATCTCCTTGTTCCGCC
Raf-1	GGTGATAGTGGAGTCCCAGCA	TCAGATGAGGGACTGGAGGTG
GADD34	GATGATGGCATGTATGGTGAGC	CCATCTGCAAATTGACTTCCC
I-1	CTGAAGCATGTGGTACAGAGGC	GGCTCATAGTAGCTGCATGGC
GAPDH	CCATGTTCGTCATGGGTGTG	GGTGCTAAGCAGTTGGTGGTG

Table S1, related to Experimental Procedures. Primer sequences

¹ Druelle, J., Sellin, C.I., Waku-Kouomou, D., Horvat, B., and Wild, F.T. (2008). Wild type measles virus attenuation independent of type I IFN. *Virol. J.* 5, 22.

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Cells, stimuli, inhibitors and RNA interference. Peripheral blood mononuclear cells were isolated from buffy coats of healthy donors (Sanquin) by a Lymphoprep (Axis-shield) gradient step, and monocytes were subsequently isolated by a Percoll (Amersham biosciences) gradient step. Immature monocyte-derived DCs were cultured for 6–7 days from monocytes obtained from buffy coats of healthy donors (Sanquin) in the presence of IL-4 and GM-CSF (500 and 800 U/ml, respectively; Biosource/Invitrogen). DCs were cultured in RPMI supplemented with 10% FCS, pen/strep (10 U/ml and 10 µg/ml, respectively; Invitrogen) and 2 mM L-glutamine (Lonza).

Cells were stimulated with poly(I:C)-LyoVec (LMW) (1 µg/ml; Invivogen), while DC-SIGN crosslinking was performed by coating 10 µg/ml goat-anti-mouse (Jackson), followed by 20 µg/ml anti-DC-SIGN (AZN-D1; Geijtenbeek et al., 2000) or IgG1 isotype control, before addition of cells. Cells were preincubated with inhibitors for 2 h or blocking antibodies for 30 min with Raf inhibitor GW5074 (Lackey et al., 2000) (1 µM; Sigma), guanabenz acetate salt (Tsaytler et al., 2011) (5-50 nM; Sigma), anti-DC-SIGN (20 µg/ml; AZN-D1), or anti-CD150 (20 µg/ml; MCA2251XZ; SBD Serotec). Cells were cocultured with Z-D-Phe-Phe-Gly-OH fusion inhibitory peptide (FIP) (0.2 mM; Bachem) or recombinant neutralizing soluble IFNAR (Vaccinia Virus-Encoded Neutralizing Type I Interferon Receptor B18R; eBioscience).

DCs were transfected with 25 nM siRNA using transfection reagens DF4 (Dharmacon) as described (Gringhuis et al., 2009). SMARTpool siRNAs used were: RIG-I (M-012511-01), Mda5 (M-013041-00), TBK1 (M-003788-02), IKKε (M-003723-02), Raf-1 (M-003601-02), GADD34 (M-004442-01), I-1 (M-017092-01), and non-targeting siRNA (D-001206-13) as a control (Dharmacon).

RIG-I, Mda5, TBK1, IKK and **Raf-1 phosphorylation.** For flow cytometry analysis, cells were first fixed in 3% *para*-formaldehyde for 10 min and permeabilized in 90% methanol at 4°C for 30 min. Primary antibody incubation with phospho-RIG-I(S8) (PAB15905; Abnova), phospho-RIG-I(T170) (PAB15906; Abnova), phospho-Mda5(S88) (generated by M.E.D. and M.U.G (Wies et al., 2013)), phospho-c-raf(Ser338) (9427S; Cell Signaling), c-raf(pTyr340/341) (553009; Calbiochem), phospho-TBK1/NAK(Ser172) (5483S; Cell Signaling) and phospho-IKK-epsilon(Ser172) (06-1340; Millipore) was followed by incubation with PE-conjugated anti-rabbit (711-116-152; Jackson Immunoresearch). Phosphorylation was analyzed on a FACS Calibur (BD).

For detection by immunoblotting, whole cell extracts were prepared using RIPA lysis buffer (Cell Signaling), proteins resolved by SDS-PAGE and detected by immunoblotting with phospho-RIG-I(S8), phospho-RIG-I(T170) and phospho-Mda5(S88). Membranes were also probed with anti-RNAPII (clone CTD4H8; Millipore) or anti-β-actin (sc-81178; Santa Cruz) to

ensure equal protein loading. Primary antibody incubation was followed by incubation with HRP-conjugated secondary antibody (rabbit: 21230; Pierce, or mouse: P0161, DAKO) and ECL detection (Pierce).

Cellular localization of IRF3. Nuclear and cytoplasmic extracts were resolved by SDS-PAGE, and detected by immunoblotting with anti-IRF3 (sc-9082; Santa Cruz). Membranes were also probed with anti-RNAPII (clone CTD4H8; Millipore) or anti- β -actin (sc-81178; Santa Cruz) to ensure equal protein loading among cytoplasmic and nuclear extracts, respectively. Detection was done as described above.

I-1 phosphorylation and association with PP1. I-1 immunocomplexes were resolved by SDS-PAGE and phosphorylation of I-1 or I-1-associated proteins were detected by immunoblotting with anti-phosphoserine (ab9332; Abcam), anti-phosphothreonine (9381; Cell Signaling), anti-PP1alpha (2582; Cell Signaling) or anti-PP1Cgamma (ab169976; Abcam). Detection was done as described above.

PP1 phosphatase activity. PP1 activity in lysates was measured using ProFluor Ser/Thr PPase assay (Promega), in the presence of 4 μ M okadaic acid to block PP2 activity. GADD34-PP1 specific activity in lysates was measured after capturing GADD34 in anti-GADD34 (ab131402; Abcam)-coated black-walled high-binding 96-wells plates. The detected R110 fluorescence is a measure for PP1 activity.

References

Geijtenbeek, T.B.H., Kwon, D.S., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C.F., Middel, J., Cornelissen, I.L.M.H., Nottet, H.S.L.M., KewalRamani, V.N., Littman, D.R. *et al.* (2000). DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell *100*, 587-597.

Gringhuis, S.I., den Dunnen, J., Litjens, M., van der Vlist, M., Wevers, B., Bruijns, S.C.M., and Geijtenbeek, T.B.H. (2009). Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-[kappa]B activation through Raf-1 and Syk. Nat. Immunol. *10*, 203-213.

Lackey, K., Cory, M., Davis, R., Frye, S.V., Harris, P.A., Hunter, R.N., Jung, D.K., McDonald, O.B., McNutt, R.W., Peel, M.R., *et al.* (2000). The discovery of potent cRaf1 kinase inhibitors. Bioorg. Med. Chem. Lett. *10*, 223-226.

Tsaytler, P., Harding, H.P., Ron, D., and Bertolotti, A. (2011). Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science *332*, 91-94.