SUPPORTING INFORMATION FOR:

Gangliosides are Ligands for Human Noroviruses

Ling Han, Ming Tan, Ming Xia, Elena N. Kitova, Xi Jiang and John S. Klassen

Table S1. Intrinsic association constants ($K_{a,int}$) for the NoV VA387 P dimer and the histo-blood group type 3 oligosaccharides (H3, A3 and B3) in an aqueous ammonium acetate solution (200 mM) at pH 7 and 25 °C measured using the direct ESI-MS assay performed in negative ion mode.^a

Ligand	$K_{a,int} (M^{-1})$	$K_{a,int} \left(M^{\text{-}1} \right)^{b}$
Н3	720 ± 80	650 ± 65
A3	760 ± 60	800 ± 50
B3	1500 ± 230	1500 ± 150

a. The reported errors are one standard deviation. b. Values taken from reference S1.

Table S2. Summary of results from screening of ganglioside oligosaccharide against the	Р
particle of human NoV VA387 in an aqueous ammonium acetate solution (200 mM) at pH 7 ar	nd
25 °C using the CaR-ESI-MS assay.	

Oligosaccharide	Binder (+) / Non-binder (-)
GM3	+
GM2	+
GM1a	+
GM1b	+
GD3	+
GD2	+
GD1a	-
GD1b	-
GT3	-
GT2	-
GT1a	-
GT1c	-
fucosyl-GM1	+
asialo-GM1	-
asialo-GM2	_

GM3 MW 633.21 Da α-D-Neu5Ac-(2,3)-β-D-Gal-(1,4)-D-Glc

MW 836.29 Da β-D-GalNAc-(1,4)-[α-D-Neu5Ac-(2,3)]-β-D-Gal-(1,4)-D-Glc

GM1a

MW 998.34 Da

 $\beta\text{-D-Gal-}(1,3)\text{-}\beta\text{-}D\text{-}GalNAc\text{-}(1,4)\text{-}[\alpha\text{-}D\text{-}Neu5Ac\text{-}(2,3)]\text{-}\beta\text{-}D\text{-}Gal\text{-}(1,4)\text{-}D\text{-}Glc$

GM1b

MW 998.34 Da α-D-Neu5Ac-(2,3)-β-D-Gal-(1,3)-β-D-GalNAc-(1,4)-β-D-Gal-(1,4)-D-Glc

MW 924.31 Da

 α -D-Neu5Ac-(2,8)- α -D-Neu5Ac-(2,3)- β -D-Gal-(1,4)-D-Glc

MW 1127.39 Da

 $\beta\text{-D-GalNAc-}(1,4)-[\alpha\text{-D-Neu5Ac-}(2,8)-\alpha\text{-D-Neu5Ac-}(2,3)]-\beta\text{-D-Gal-}(1,4)-\text{D-Glc}$

GD1a

MW 1289.44 Da

 α -D-Neu5Ac-(2,3)-β-D-Gal-(1,3)-β-D-GalNAc-(1,4)-[α-D-Neu5Ac-(2,3)]β-D-Gal-(1,4)-D-Glc

GD1b

MW 1289.44 Da

 $\beta\text{-D-Gal-}(1,3)-\beta\text{-D-GalNAc-}(1,4)-[\alpha\text{-D-Neu5Ac-}(2,8)-\alpha\text{-D-Neu5Ac-}(2,3)]-\beta\text{-D-Gal-}(1,4)-\text{D-Glc}$

GT3 MW 1215.40 Da

 $\alpha\text{-}D\text{-}Neu5Ac\text{-}(2,8)\text{-}\alpha\text{-}D\text{-}Neu5Ac\text{-}(2,3)\text{-}\beta\text{-}D\text{-}Gal\text{-}(1,4)\text{-}D\text{-}Glc$

GT2

MW 1418.48 Da

 $\label{eq:based} \begin{array}{l} \beta\text{-D-GalNAc-(1,4)-[α-D-Neu5Ac-(2,8)-α-D-Neu5Ac-(2,3)]-}\\ \beta\text{-D-Gal-(1,4)-D-Glc} \end{array}$

GT1a

MW 1580.53 Da

 α -D-Neu5Ac-(2,8)- α -D-Neu5Ac-(2,3)- β -D-Gal-(1,3)- β -D-GalNAc-(1,4)-[α -D-Neu5Ac-(2,3)]- β -D-Gal-(1,4)-D-Glc

GT1c

MW 1580.53 Da

 $\begin{array}{l} \beta\text{-D-Gal-}(1,3)-\beta\text{-D-GalNAc-}(1,4)-[\alpha\text{-D-Neu5Ac-}(2,8)-\alpha\text{-D-Neu5Ac-}(2,8)-\alpha\text{-D-Neu5Ac-}(2,3)]-\beta\text{-D-Gal-}(1,4)-\text{D-Glc} \end{array}$

asialo-GM2 MW 545.20 Da β-D-GalNAc-(1,4)-β-D-Gal-(1,4)-D-Glc

asialo-GM1 MW 707.25 Da β -D-Gal-(1,3)- β -D-GalNAc-(1,4)- β -D-Gal-(1,4)-D-Glc

Gb3 MW 545.20 Da α-D-Gal-(1,4)-β-D-Gal-(1,4)-D-Glc

Gb4

MW 707.25 Da β-D-GalNAc-(1,3)-α-D-Gal-(1,4)-β-D-Gal-(1,4)-D-Glc

fucosyl-GM1 (Fuc-GM1) MW 1144.40 Da α -L-Fuc-(1,2)- β -D-Gal-(1,3)- β -D-GalNAc-(1,4)-[α -D-Neu5Ac-(2,3)]- β -D-Gal-(1,4)-D-Glc

A type 3 tetrasaccharide (A3) MW 842.39 Da α -D-GalNAc-(1,3)-[α -L-Fuc-(1,2)]- β -D-Gal-(1,3)- α -D-GalNAc-O(CH₂)₆CH=CH₂

H type 3 trisaccharide (H3) MW 639.31 Da α -L-Fuc-(1,2)- β -D-Gal-(1,3)- α -D-GalNAc-O(CH₂)₆CH=CH₂

B type 3 tetrasaccharide (B3) MW 801.36 Da α-D-Gal-(1,3)-[α-L-Fuc-(1,2)]-β-D-Gal-(1,3)-α-D-GalNAc-O(CH₂)₆CH=CH₂

Neu5Ac-PAA α-D-Neu5Ac-2-PAA

6'-sialylacNAc-PAA α-D-Neu5Ac-(2,6)-β-D-Gal-(1,4)-β-D-GlcNAc-PAA

GM3-PAA α-D-Neu5Ac-(2,3)-β-D-Gal-(1,4)-β-D-Glc-PAA

Figure S1. Structures of the twenty-component carbohydrate library consisting of the oligosaccharides of gangliosides, globosides and HBGAs and the structures of polyacrylamide (PAA)-conjugated sialic acid-containing oligosaccharides used for the ELISA binding measurements.

Figure S2. CID mass spectrum acquired in negative ion mode for an aqueous ammonium acetate solution (200 mM, pH 7 and 25 °C) of P particle (3 μ M) and a twenty-component (10 μ M each) carbohydrate library (GM1a, GM1b, GM2, GM3, GD1a, GD1b, GD2, GD3, GT1a, GT1c, GT2, GT3, Fuc-GM1, asialo-GM1, asialo-GM2, Gb3 and Gb4, as well as the H3, B3 and A3 oligosaccharides) using a broad (200 *m/z*) quadrupole isolation window centered at *m/z* 13,900. A Trap voltage of 200 V was used.

Figure S3. (a) Arrival time distributions measured for the (a) deprotonated ions of GM1a/GM1b (m/z 997.3) following release from the P particle (post-release) and the deprotonated GM1a and GM1b ions obtained directly from solution (reference) and (b) double deprotonated GD1a/GD1b ions (m/z 644.1) following release from the P particle (post-release) and the GD1a and GD1b ions obtained directly from solution (reference).

Figure S4. CID mass spectra acquired in negative ion mode for an aqueous ammonium acetate solutions (200 mM, pH 7 and 25 °C) of P particle (3 μ M) and 10 μ M of (a) GD1a and (b) GD1b using a broad (200 *m/z*) quadrupole isolation window centered at *m/z* 14,350. A Trap voltage of 200 V was used.

Figure S5. (a) Representative ESI mass spectrum measured in positive ion mode for aqueous ammonium acetate solution (160 mM, pH 7 and 25 °C) of P_{proxy} (Galectin-3, 3.0 μ M), P_{ref} (ubiquitin, 1.0 μ M), GM3 trisaccharide (40 μ M) and NoV P particle (6.0 μ M, 24-mer). Inset corresponds to normalized distribution of GM3 bound to P_{proxy} after correction for nonspecific ligand binding. (b) Plot of abundance ratio of GM3 trisaccharide-bound P_{proxy} to free P_{proxy} (R_{proxy}) versus P particle concentration. The solution conditions for each measurement were the same as in (a), but with the addition of P particle. The curve represents the best fit of eq 5 to the experimental data.

References

S1. Han, L.; Kitov, P. I.; Kitova, E. N.; Tan, M.; Wang, L.; Xia, M.; Jiang, X.; Klassen, J. S.
Glycobiology 2013, 23, 276.