
Figure S1 Functional analysis of genes for which RNAi produced a synthetic lethal phenotype with prdx-2 (Table S1) 
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Figure S2. Genes required for intestinal gcs-1p::gfp expression in prdx-2 

mutants represent a broad range of functional groups. Pie chart depicting how the 

genes targeted by the 355 RNAi clones that ablated the increased intestinal gcs-

1p::gfp expression in the prdx-2 mutant (Table S3) are distributed between different 

functional groups. Genes were manually assigned to particular functional groups using 

GO terms, phenotypic analysis and homology information provided by WormBase 

(http://www.wormbase.org). 
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Figure S3 The role of candidate genes identified by screen in the regulation of gst-4p::gfp expression in prdx-2 mutant animals. The effect of selected RNAi clones, 

targeting 25 candidate regulators (Table 1 and Table S3), on intestinal GFP levels in prdx-2 (gk169) mutants carrying the gst-4p::gfp reporter gene. [A] There is substantially 

more intestinal expression of gst-4p::gfp in prdx-2 mutant than wild-type worms (compare wt (N2) gst-4p::gfp and  prdx-2 (gk169) gst-4p::gfp maintained on vector control). 

However, 8 out of 14 candidates identified in each of 4 repeat screens (Table S3; upper panel) and 6 out of 10 less robust candidates, identified in only1 of 4 screens (Table S3; 

lower panel) significantly reduced the levels of intestinal GFP in prdx-2 (gk169) animals compared with vector control *indicates p≤0.05, ** indicates p≤0.01 and *** indicates 

p≤0.001(chi2 test). Each graph represents data acquired in 3 separate experiments. [B] Representative images of GFP expression in L3 larval stage wild type (N2) and prdx-2 

(gk169) mutant animals containing the gst-4p::gfp reporter gene, illustrate that; (i) gst-4p::gfp is expressed at significant levels in the hypodermis and at low levels in the intestine 

of wild type (N2) worms, that (ii) loss of PRDX-2 dramatically increases intestinal gst-4p::gfp expression but (iii) that this was abolished by treatment with cand-1 RNAi. Images 

were obtained under 10x objective lens using Zeiss Axioskop fluorescent microscope.  



Figure  S4 The effect of selected candidate RNAi (Table 1 and Fig. 2B-C) on the arsenite 

resistance of wild-type  animals. Monitoring the survival of wild-type (N2) animals treated with 

the indicated RNAi or vector control  on plates containing 7.5mM sodium arsenite revealed that 

only a subset of the genes required for arsenite-induced expression of gcs-1  (Table 1, Fig. 2B) 

were also required for arsenite tolerance. Each group contained 30-40 animals. Data from 2 

representative experiments are shown (for clarity, data  collected in a single experiment is shown 

over 2 separate graphs in [A]) but experiments were repeated multiple times. To account for 

variations in the rate at which control (vector) animals died in different experiments, % changes in 

mean survival time compared with control (vector) were calculated for each experiment and mean 

values determined (see Fig. 2C). 
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Figure S5. Effect of csn-2, csn-4 and csn-5 RNAi on intestinal expression of gst-4p::gfp in wild-type animals under normal growth 

conditions. Results of statistical analysis of data are shown * p<0.05, ** p<0.01 and ***p<0.001 and below (chi2 test). 
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Figure S6 UFD-2 is not required for arsenite-induced PMK-1 phosphorylation. Western blot analysis revealing that basal levels 

of phosphorylated PMK-1 in wild type (N2) and ufd-2 (tm1380) mutant worms  are similar and that the increase in phospho-PMK-1 

induced by 5min exposure to 5mM arsenite (As3+) is not inhibited by loss of UFD-2 in ufd-2 (tm1380) mutant animals. The levels of 

PMK-1 phosphorylation, normalised to tubulin levels, are indicated beneath each lane, relative to those in the wild-type untreated 

animals. 
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