Figure S1.

SCORE=60	
BAD AVG GOOD	
Mm AKAP7 Rn AKAP7 Hs AKAP7 MHV ns2	: 67 : 65 : 64 : 49
HCoV-OC43 ns2 RVA-SA11 VP3 RVA-Wa VP3 cons	: 52 : 58 : 59 : 60
Mm_AKAP7 Rn_AKAP7	1MPFAAV 6 1MERPAAGEIDANKCDHLSRGEEGTGDLETSPVGSLADLFFAAV 43
Hs_AKAP7 MHV ns2	1MERPEAGGINSNECENVSRKKKMSEEFEANTMDSLVDMPFATV 1 0
HCoV-OC43 ns2 RVA-SA11 VP3	1 595 NNNFNLIGTNIENSVSGHVYNALIYYRYNYSFDLKRWIYLHSIDKVDIEGGKYYEHAPIELIYACR 660
RVA-Wa_VP3	595 NNNFNLIGTNVENSVSGHVYNALIYYRYNYAFDLKRWIYLHSIGKVAVEGGRYYEHAPIELIYACR 660
cons	595 660
Mm_AKAP7	7 DIQDDCGSPDVPQANPKRSKEEEEDRGDKNDHVKKKKKAKKDYQPNYFLSIPITN-KKITT 66
Rn AKAP7 Hs AKAP7 MHV ns2	44 DIQDDCGLPDVPQGNVPQGNPKRSKENRGDRNDHVKKRKKAKKDYQPNYFLSIPITN-KKITA 105 44 DIQDDCGITDEPQINIKRSQENEWVKSDQVKKRKKKKDYQPNYFLSIPITN-KEIIK 100 1
HCoV-OC43 ns2 RVA-SA11 VP3	1MAVAYADKPNHFINFPLTHFQGFVL 25 661 SAKEFATLQDDLTVLRYSNEIENYINTVYSITYADDPNYFI 701
RVA-Wa_VP3	661 <mark>SAKEFAILQDDLTVLRY</mark> <mark>ANEIE</mark> <mark>GYINKVYSITYADDPNYFI</mark> 701
cons	661 .**:*: 726
Mm_AKAP7	67 GIKVLQNSILQQDKRLTKAMVGDGSFHITLLVMQLLNEDEVNIGTDALLELKPFVEEILEGKHL 130
Rn TAKAP7 Hs TAKAP 7	106 GIKVLQNSILRQDNRLTKAMVGDGSFHITLLVMQLLNEDEVNIGTDALLELKPFVEEILEGKHL 101 GIKILQNAIIQQDERLAKAMVSDGSFHITLLVMQLLNEDEVNIGIDALLELKPFIEELLQGKHL 164
MHV ns2 HCoV-OC43 ns2	24 KYLKLQSQLVEMGLDCKLQKAPHVSITLLDIKADQYKQVEFAIQEIIDDLAAYEG- 78 26 NYKGLQFQILDEGVDCKIQTAPHISLTMLDIQPEDYKSVDVAIQEVIDDMHWGDGF 81
RVA-SA11 VP3 RVA-Wa_VP3	702 GIQ-FRNIPYKYDVKIPHLT FGVLHISDNMVPDVIDILKIMKNELFKMDI- 750 702 GIK-FNSIPYEYDVKIPHLT LGVLFISDNMIHDVITVLKKMKTELFKMEI- 750
cons	727 :. *:: *:: :: .: :: .: .: .: 792
Mm_AKAP7	131 ALPFQGIGTFQGQVGFVKLADGDHVSALLEIAETAKRTFREKGILAGESRTFKEHLT FMKLSKAPM 196
Rn_AKAP7 Hs_AKAP7	170 TLPFHGIGTFQGQVGFVKLADGDHVSALLEIAETAKRTFQEKGILAGESRTFKFHLTFMKLSKAPM 235 165 TLPFQGIGTFGNQVGFVKLAEGDHVNSLLEIAETANRTFQEKGILVGESRSFKFHLTFMKLSKSPW 230
MHV ns2 HCoV-OC43_ns2	79 DIVFDNPHMLGRCLVLDVRGFEELHEDIVEILRRRGCTADQSRHWIFHCTVAQFDEER- 136 82 QIKFENPHILGRCIVLDVKGVEELHDDLVNYIRDKGCVADQSRKWIGHCTIAQLTDAAL 140
RVA-SA11 VP3 RVA-Wa_VP3	751 -TTSYTYMLSDGIYVANVSGVLSTYFKIYNVFYKNQITFGQSRMFIFHITLSFNNMRTV 808 751 - <mark>STSYTYMLSDNTYVA</mark> NASGVLSTYFKLYNMFYRNHITFGQSRMFIF <mark>HITL</mark> SFSNKQTV 808
cons	793
Mm_AKAP7	197 IRKKGVRKIEPGLYEQFIDHRFGEELLYQIDLCSMLKKKQSNGYYHCESSIVIGEKDRREPED 259
Rn AKAP7 Hs AKAP7	236 LWKKGVRKIEPGLYEQFIDHRFGEEILYQIDLCSMLKKKQSNGYYHCESSIVIGEKDRKEPED 298 231 LRKNGVKKIDPDLYEKFISHRFGEEILYRIDLCSMLKKKQSNGYYHCESSIVIGEKNGGEPDD 293
MHV ns2 HCoV-OC43 ns2	137ETKGMQFYHKEPFYLKHNNLLTDAGLELVKIGSSK-IDGFYCSELSVWCGERLCYKPPT 194 141 SIKENVDFINSMQFNYKITINPSSPARLEIVKLGAEK-KDGFYETIVSHWMGIRFEYTSPT 200
RVA-SA11 VP3 RVA-Wa_VP3	809 <mark>RIETTKLQIKSIYLRKI</mark> 835 809 <mark>RIESTK</mark> <mark>LRINSIYLRKI</mark> 835
cons	859
Mm AKAP7	260 AELVRLSKRLVENAVLKAVQQYLEETQNKKQPGEGNSTKAEEGDRNGDGSDNNRK 314
Rn_AKAP7	299 AELVRLSKRLVENAVLKAVQQYLEETQNKKQPGEGNSVKAEEGDRNGDGSDNNRK 353
Hs_AKAP7 MHV_ns2	195 PKFSDIFGYCCIDKIRGDLEIGDLPQDDEEAWAELSYHYQRNTYF 239
HCoV-OC43 ns2 RVA-SA11 VP3	201 DKLAMIMGYCCLDVVRKEL 245 836 836 836 835 836 836
RVA-Wa_VP3	
cons	925 990
Mm_AKAP7 Rn_AKAP7	315 314 354 353
Hs_AKAP7	349 348
MHV ns2 HCoV-OC43 ns2	240 FRHVHDNSIYFRTVCRMKGCMC 261 246 FRHVYRKSFHFRKACQNLDCNCLGFYESSVEEY 278
RVA-SA11 VP3 RVA-Wa_VP3	836 835 836 835
cons	991 1023

Figure S1. Conservation of 2',5'-phosphodiesterases among distantly related taxa. Selected mammalian AKAP7 (mouse NP_061217.3, rat NP_001001801.1, human NP_057461.2), coronavirus ns2 (mouse MHV P19738.1, human HCoV-OC43 AAT84352.1) and group A rotavirus VP3 C-terminal domain (simian RVA-SA11 AFK09591.1, human RVA-Wa AFR77808.1) proteins. Alignment was performed with the Constraint-based Multiple Alignment Tool (COBALT) (1) set on default parameters and subsequently evaluated with T-Coffee Core to assess local reliability of the alignment by pairwise methods utilizing multiple algorithms (Mfast_pair, Mmafft_msa and Mmuscle_msa) (2, 3). To convey confidence in the alignment, scores indicate the percent agreement between all MSA algorithms utilized in the analysis for each protein and for the consensus sequence. Additionally, color-coding indicates positional confidence of each aligned residue based on agreement between MSA algorithms with blue indicating the least and red indicating the greatest confidence in the alignment. Conservation of sequence is indicated by Clustal MSA symbols in the consensus line (cons) with "*" indicating fully conserved, ":" strong conservation of properties and "." weak conservation of properties. Catalytic HxT motifs highlighted (blue boxes).

- 1. **Papadopoulos JS, Agarwala R.** 2007. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics **23**:1073-1079.
- 2. **Notredame C, Higgins DG, Heringa J.** 2000. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol **302**:205-217.
- 3. **Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, Taly JF, Notredame C.** 2011. T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res **39:**W13-17.