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1. Overview and Organization

We will present detailed proofs of all our results. In this section we present an overview of the proof structure
and the organization of our results.

1. In Section 2 we present relevant lower and upper bounds on hitting time for Markov chains on an one-
dimensional grid. The results of this section are technical and the basis for the results of the following
sections. However, a reader does not need to understand the technical proofs of this section for the
following sections. We will only use the results of Lemma S3 and Lemma S4 (and their consequence
Corollary S1); and Lemma S5 (and its implication) in the following subsections. We present the results
in the most general form for Markov chains, and they might possibly be used in other contexts as well;
and then present simple applications of the general results of Markov chains for the discovery time of
evolutionary processes.

2. In Section 3 we introduce evolutionary processes and for simplicity we introduce them for evolution-
ary adaptation of bit strings. Also for mathematically elegant proofs we first introduce the Fermi
evolutionary process in this section, and later consider the Moran process.

3. In Section 4 we present our results for the Fermi evolutionary process with neutral fitness landscapes
and a broad peak of targets.

4. In Section 5 we present our results for constant selection in the Fermi evolutionary process with a
broad peak of targets.

5. In Section 6 we show how the results of Section 4 and Section 5 imply all the desired results for the
Moran evolutionary process.

6. In Section 7 we show how the results of Section 4, Section 5, and Section 6, extend from bit strings to
strings over alphabet of any size (and obtain the results for four letter alphabet as a special case).

7. In Section 8 we present the results for multiple independent searches; and in Section 9 we discuss some
cases of distributed targets.

8. In Section 10 we discuss the results for a mechanism to enable evolution to work in polynomial time.
Finally, in Section 11 we present details of some numerical calculations used in the main article.

9. In Section 12 we discuss and compare our results with relevant related work, and end with additional
simulation results in Section 13.

While for simplicity in the main article we only present our results for neutral fitness landscapes, Sec-
tions 5, 6 and 7 deal with the more general case of selection acting on multiplicative fitness landscapes.
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2. Bounds on hitting times of Markov chains on a line

In this section we will present our basic lower and upper bounds on hitting times of Markov chains on a line.
The results of this section will be used repeatedly in the later sections to provide lower and upper bounds
on the discovery time for several evolutionary processes. We start with the definition of Markov chains, and
then define the special case of Markov chains on a line.

Definition S1 (Markov chains). A finite-state Markov chain MCL = (S, δ) consists of a finite set S of
states, with S = {0, 1, . . . L} (i.e., the set of states is a finite subset of the natural numbers starting from
0), and a stochastic transition matrix δ that specifies the transition probabilities, i.e., δ(i, j) denotes the
probability of transition from state i to state j (in other words, for all 0 ≤ i, j ≤ L we have 0 ≤ δ(i, j) ≤ 1

and for all 0 ≤ i ≤ L we have
∑L
j=0 δ(i, j) = 1).

We now introduce Markov chains on a line. Intuitively a Markov chain on a line is defined as a special
case of Markov chains, for which in every state, the allowed transitions are either self-loops, or to the left,
or to the right. The formal definition is as follows.

Definition S2 (Markov chains on a line). A Markov chain on a line, denoted as ML, is a finite-state Markov
chain (S, δ) where S = {0, 1, . . . L} and for all 0 ≤ i, j ≤ L, if δ(i, j) > 0, then |i−j| ≤ 1, i.e., the transitions
allowed are only self-loops, to the left, and to the right (see Supplementary Figure 1).
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Supplementary Figure 1: Markov chain on a line. Pictorial illustration of Markov chain on a line.

We now define the notion of hitting times for Markov chains on a line.

Definition S3 (Hitting time). Given a Markov chain on a line ML, and two states n1 and n2 (i.e., 0 ≤
n1, n2 ≤ L), we denote by H(n1, n2) the expected hitting time from the starting state n2 to the target state
n1, i.e., the expected number of transitions required to reach the target state n1 starting from the state n2.

The recurrence relation for hitting time. Given a Markov chain on a line ML = (S, δ), and a state n1 (i.e.,
0 ≤ n1 ≤ L), the following recurrence relation holds:

1. H(n1, n1) = 0,

2. H(n1, i) = 1 + δ(i, i+ 1) ·H(n1, i+ 1) + δ(i, i− 1) ·H(n1, i− 1) + δ(i, i) ·H(n1, i), for all n1 < i < L,
and

3. H(n1, L) = 1 + δ(L,L− 1) ·H(n1, L− 1) + δ(L,L) ·H(L,L).

The argument is as follows: (a) Case 1 is trivial. (b) For case 2, since i 6= n1, at least one transition needs to
be taken to a neighbor state j of i, from which the hitting time is H(n1, j). With probability δ(i, i+ 1) the
neighbor j is state i+ 1, while with probability δ(i, i− 1) the neighbor j is state i− 1. On the other hand,
with probability δ(i, i) the self-loop transition is taken, and the expected hitting time remains the same.
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(c) Case 3 is a degenerate version of case 2, where the only possible transitions from the state L are either to
the state L− 1, which is taken with probability δ(L,L− 1), or the self-loop, which is taken with probability
δ(L,L). Also note that in Case 3 we have δ(L,L − 1) = 1 − δ(L,L). In the following lemma we show that
using the recurrence relation, the hitting time can be expressed as the sum of a sequence of numbers.

Lemma S1. Consider a Markov chain on a line ML, with a target state n1, such that for all n1 < i ≤ L
we have δ(i, i − 1) > 0. For all n1 < i ≤ L we have that H(n1, i) =

∑L−n1−1
j=L−i bj, where bj is the sequence

defined as:

(1) b0 =
1

δ(L,L− 1)
; (2) bj =

1 + δ(L− j, L− j + 1) · bj−1
δ(L− j, L− j − 1)

for j > 0.

Proof. We consider the recurrence relation for the hitting time and first show that for all 0 ≤ i < L− n1 we
can write H(n1, L− i) as

H(n1, L− i) = bi +H(n1, L− i− 1)

for the desired sequence bi.

(Base case). For i = 0 we have

H(n1, L) = 1 + δ(L,L− 1) ·H(n1, L− 1) + δ(L,L) ·H(n1, L)

= 1 + δ(L,L− 1) ·H(n1, L− 1) + (1− δ(L,L− 1)) ·H(n1, L)

=
1

δ(L,L− 1)
+H(n1, L− 1),

thus the statement holds with b0 = 1
δ(L,L−1) .

(Inductive case). Assume that the statement holds for some i − 1 (inductive hypothesis) and we will show
that it also holds for i. Let y = δ(L − i, L − i + 1) and x = δ(L − i, L − i − 1). We establish the following
equality:

H(n1, L− i) = 1 + y ·H(n1, L− i+ 1) + x ·H(n1, L− i− 1) + (1− x− y) ·H(n1, L− i)

= 1 + y ·
(
bi−1 +H(n1, L− i)

)
+ x ·H(n1, L− i− 1) + (1− x− y) ·H(n1, L− i)

=
1 + y · bi−1

x
+H(n1, L− i− 1).

The first equality follows from the recurrence relation (case 2) by substituting i with L − i; the second
equality follows by substitution and the inductive hypothesis; the third equality is simple re-writing, since
x 6= 0. Thus we have H(n1, L− i) = bi +H(n1, L− i− 1), where

(1) b0 =
1

δ(L,L− 1)
; (2) bj =

1 + δ(L− j, L− j + 1) · bj−1
δ(L− j, L− j − 1)

for j > 0.

Hence we have H(n1, L − i) =
∑L−n1−1
j=i bj and by substituting back i ← L − i we obtain H(n1, i) =∑L−n1−1

j=L−i bj . The desired result follows.

Definition S4. For positive real-valued constants A and B, we define the sequence ai(A,B) as follows:

(1) a0(A,B) =
1

B
(2) ai(A,B) =

1 +A · ai−1(A,B)

B
for i > 0.

Lemma S2. For positive real-valued constants A and B, the following assertions hold for the sequence
ai(A,B):
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• If A > B and B ≤ 1, then ai(A,B) ≥
(
A
B

)i
, with A

B > 1.

• If A ≤ B, then ai(A,B) = O( iB ).

Proof. The result is as follows:

• Case A > B: Then we have

ai(A,B) =
1 +A · ai−1(A,B)

B
>
A

B
· ai−1(A,B) ≥

(
A

B

)i
· a0(A,B) =

(
A

B

)i
· 1

B
≥
(
A

B

)i
(by just ignoring the term 1 in the numerator and since B ≤ 1).

• Case A ≤ B: Then A
B ≤ 1 and ai(A,B) = 1+A·ai−1(A,B)

B ≤ 1
B + ai−1(A,B) ≤ i

B + 1
B = O( iB ).

The desired result follows.

Exponential lower bound. We will use the following standard convention in this paper: a function t(L) is
lower bounded by an exponential function, if there exist constants c > 1, ` > 0 and L0 ∈ N such that for all
L ≥ L0 we have t(L) ≥ c`·L = 2c

∗·`·L, where c∗ = log c > 0, i.e., it is lower bounded by a linear function in
the exponent.

Exponential lower bound on hitting times for Markov chains on a line. In the following lemma we will show
an exponential lower bound on the hitting time. We consider a Markov chain on a line ML, such that there
exist two states x and y = x+ k, for k > 0, such that in the whole contiguous segment between x and y the
ratio of the probability to drift towards the right as compared to the left is at least 1 + A, for a constant
A > 0 (strictly bounded away from 1). Then the expected hitting time from any starting point right of x to
a target to the left of x is at least (1 +A)k−1.

Lemma S3 (Lower bound). Consider a Markov chain on a line ML. If there exist two states x, y ≤ L with

y = x+ k, for k > 0, and a constant A > 0 such that for all x < i < y we have δ(i,i+1)
δ(i,i−1) ≥ 1 +A, then for all

n1, n2 ≤ L such that n1 ≤ x < n2 we have H(n1, n2) ≥ (1 +A)k−1.

Proof. From Lemma S1 we have that H(n1, n2) =
∑L−n1−1
j=L−n2

bj :

H(n1, n2) =

L−n1−1∑
j=L−n2

bj ≥
L−(x+1)∑
j=L−(x+1)

bj = bL−x−1.

We have δ(i,i+1)
δ(i,i−1) ≥ 1 +A by the given condition of the lemma. We show by induction that for all j between

L− y and L− x− 1 (i.e., L− y ≤ j ≤ L− x− 1) we have bj ≥ aj−L+y(1 +A, 1).

1. (Base case). We have bL−y ≥ 1 = a0(1 +A, 1), since bj is non-decreasing and b0 = 1
δ(L,L−1) ≥ 1.

2. (Inductive case). By inductive hypothesis on j − 1 we have bj−1 ≥ aj−1−L+y(1 + A, 1), and then we
have

bj =
1 + δ(L− j, L− j + 1) · bj−1

δ(L− j, L− j − 1)
≥ 1 + (1 +A) · aj−1−L+y(1 +A, 1) = aj−L+y(1 +A, 1)

since δ(L−j,L−j+1)
δ(L−j,L−j−1) ≥ 1 +A and δ(L− j, L− j − 1) ≤ 1. Thus we have bj ≥ aj−L+y(1 +A, 1).

Thus for all L − y ≤ j ≤ L − x − 1 we have bj ≥ aj−L+y(1 + A, 1). Hence H(n1, n2) ≥ bL−x−1 ≥
ay−x−1(1 +A, 1) = ak−1(1 +A, 1) ≥ (1 +A)k−1 (from Lemma S2, since 1 +A > 1).
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Lemma S4 (Upper bound). Given a Markov chain on a line ML and 0 ≤ n1 < n2 ≤ L, if for all n1 < i < L

we have δ(i, i− 1) ≥ δ(i, i+ 1), then H(n1, n2) = O( L
2

B∗ ), where B∗ = minn1<i≤L(1− δ(i, i)).

Proof. From Lemma S1 we have that H(n1, n2) =
∑L−n1−1
j=L−n2

bj . Let B = minn1<i≤L δ(i, i− 1). We show by
induction that for all 0 ≤ j ≤ L− n1 − 1 we have bj ≤ aj(1, B).

1. (Base case). We have b0 = 1
δ(L,L−1) ≤

1
B = a0(A,B) (because of our choice of B we have B ≤

δ(L,L− 1)).

2. (Inductive case). By inductive hypothesis on j − 1 we have bj−1 ≤ aj−1(1, B). Then

bj =
1 + δ(L− j, L− j + 1) · bj−1

δ(L− j, L− j − 1)
≤ 1

δ(L− j, L− j − 1)
+
δ(L− j, L− j + 1) · aj−1(1, B)

δ(L− j, L− j − 1)

≤ 1

B
+ aj−1(1, B) ≤ 1 + aj−1(1, B)

B
= aj(1, B).

since 1
δ(L−j,L−j−1) ≤

1
B , δ(L−j,L−j+1)

δ(L−j,L−j−1) ≤ 1, and 1
B ≥ 1. Thus bj ≤ aj(1, B).

It follows that for all L−n2 ≤ j ≤ L−n1−1 we have bj ≤ aj(1, B) and thus bj = O( jB ) from Lemma S2.

ThenH(n1, n2) =
∑L−n1−1
j=L−n2

bj = O
(
(n2 − n1) · (L− n1 − 1) · 1

B

)
= O(L

2

B ). Let j = arg minn1<i≤L δ(i, i−1).
We have

B = δ(j, j − 1) ≥ 1

2
· (δ(j, j − 1) + δ(j, j + 1)) =

1

2
· (1− δ(j, j)) ≥ 1

2
·B∗

because δ(j, j − 1) ≥ δ(j, j + 1) and 1− δ(j, j) ≥ B∗. We conclude that H(n1, n2) = O( L
2

B∗ ).

Markov chains on a line without self-loops. A special case of the above lemma is obtained for Markov
chains on a line with no self-loops in states other than state 0, i.e., for all 0 < i ≤ L we have 1 − δ(i, i) =
1 = B∗. We consider a Markov chain on a line without self-loops ML, such that there exist two states x and
y = x + k, for k > 0, such that in the whole contiguous segment between x and y the probability to drift
towards the right is at least a constant A > 1

2 (strictly bounded away from 1
2 ). We also assume A < 1, since

otherwise transitions to the left are never taken. Then the expected hitting time from any starting point
right of x to a target to the left of x is at least ck−1A , where cA = A

1−A > 1 (see Supplementary Figure 2).

Corollary S1. Given a Markov chain on a line ML such that for all 0 < i ≤ L we have δ(i, i) = 0, the
following assertions hold:

1. Lower bound: If there exist two states x, y ≤ L with y = x+ k, for k > 0, and a constant A > 1
2 such

that for all x ≤ i < y we have δ(i, i + 1) ≥ A > 1
2 , then for all n1, n2 ≤ L such that n1 ≤ x < n2 we

have H(n1, n2) ≥ ck−1A for cA = A
1−A > 1.

2. Upper bound: For 0 ≤ n1 < n2 ≤ L, if for all n1 < i < L we have δ(i, i − 1) ≥ 1
2 , then H(n1, n2) =

O(L2).

Proof. Since δ(i, i) = 0, we have that δ(i, i + 1) ≥ A implies that δ(i,i+1)
δ(i,i−1) ≥

A
1−A , and then the first item is

an easy consequence of Lemma S3. For item (2), we have δ(i, i− 1) ≥ 1
2 implies δ(i, i− 1) ≥ δ(i, i+ 1) and

hence the result follows from Lemma S4 with B∗ = 1 since δ(j, j) = 0 for all n1 < j < L.

Unloop variant of Markov chains on a line. We will now show how given a Markov chain on a line
with self-loops we can create a variant without self-loops and establish a relation on the hitting time of the
original Markov chain and its variant without self-loops.

Definition S5 (Unloop variant of Markov chain on a line). Given a Markov chain on a line ML = (S, δ),
we call its unloop variant a Markov chain on a line ML = (S, δ), with the following properties:
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Supplementary Figure 2: Lower and upper bound on hitting times for Markov chain on a
line. Figure (a) shows a Markov chain on a line without self-loops, where for a length k between x and y
the transition probabilities to the right are at least a constant A > 1

2 , and then the hitting time from any
starting point n2 to the right of x to a target n1 to the left of x is at least exponential in the length k;
figure (b) shows a Markov chain on a line without self-loops where all the transition probabilities to the left
upto the target n1 are at least 1

2 , and then the hitting time for any start point to the right of the target
n1 to the target is at most O(L2); the graph (c) shows the exponential lower bound (red) and polynomial
upper bound (green) on the hitting times H(n1, n2) in the log-scale.
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• δ(0, 1) = 1;

• For all 0 < i < L, we have δ(i, i − 1) = δ(i,i−1)
δ(i,i−1)+δ(i,i+1) and δ(i, i + 1) = δ(i,i+1)

δ(i,i−1)+δ(i,i+1) , i.e., the

probabilities of transitions to right and left are normalized so that they sum to 1; and

• δ(L,L− 1) = 1.

We now show the following: (1) the hitting time of the original Markov chain on a line ML is always at
least the hitting time of the unloop variant; and (2) the hitting time of the original Markov chain is at most
z∗ times the hitting time of the unloop variant, where z∗ is the maximum of the inverse of the 1 minus the
self-loop transition probabilities.

Lemma S5. Consider a Markov chain on a line ML = (S, δ) and its unloop variant ML = (S, δ). Let
0 < n1, n2 ≤ L and n1 < n2, and let H(n1, n2) denote the hitting time to state n1 from state n2 in ML, and
H(n1, n2) denote the corresponding hitting time in ML. The following assertions hold:

(i) H(n1, n2) ≤ H(n1, n2).

(ii) H(n1, n2) ≤ z∗ ·H(n1, n2), where z∗ = max0<i≤L
1

1−δ(i,i) .

Proof. From Lemma S1 we have that for all 0 < i ≤ L, we can write H(n1, i) =
∑L−n1−1
j=L−i bj and H(n1, i) =∑L−n1−1

j=L−i bj where bj and bj are the sequences defined as:

(1) b0 =
1

δ(L,L− 1)
; (2) bj =

1 + δ(L− j, L− j + 1) · bj−1
δ(L− j, L− j − 1)

for j > 0.

and

(1) b0 = 1; (2) bj =
1 + δ(L− j, L− j + 1) · bj−1

δ(L− j, L− j − 1)
for j > 0.

(i) We prove inductively that for all 0 < j < L− 1, we have bj ≤ bj .

1. (Base case). b0 = 1 ≤ 1
δ(L,L−1) = b0.

2. (Inductive Step). The inductive hypothesis guarantees that bj−1 ≤ bj−1. Observe that δ(L−j,L−j+1)

δ(L−j,L−j−1) =

δ(L−j,L−j+1)
δ(L−j,L−j−1) = R. Then

bj =
1 + δ(L− j, L− j + 1) · bj−1

δ(L− j, L− j − 1)
=

1

δ(L− j, L− j − 1)
+R · bj−1

≤ 1

δ(L− j, L− j − 1)
+R · bj−1 =

1 + δ(L− j, L− j + 1) · bj−1
δ(L− j, L− j − 1)

= bj

because of the inductive hypothesis and δ(L− j, L− j − 1) ≥ δ(L− j, L− j − 1).

Thus for all such j, we have bj ≤ bj , and H(n1, n2) =
∑L−n1−1
j=L−n2

bj ≤
∑L−n1−1
j=L−n2

bj = H(n1, n2).

(ii) We prove inductively that for all 0 < j < L− 1, we have bj ≤ z∗ · bj .

1. (Base case). b0 = 1
δ(L,L−1) = 1

1−δ(L,L) ≤ z
∗ = z∗ · b0.

2. (Inductive Step). The inductive hypothesis guarantees that bj−1 ≤ z∗ · bj−1. Observe that
δ(L−j,L−j+1)

δ(L−j,L−j−1) = δ(L−j,L−j+1)
δ(L−j,L−j−1) = R. Moreover, let x = δ(L−j, L−j−1) and y = δ(L−j, L−j+1),

and then we have:
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z∗ ≥ 1

1− δ(L− j, L− j)
=⇒ z∗ ≥ 1

x+ y
=⇒ z∗ · (x+ y) ≥ 1 =⇒ z∗ · x+ y

x
≥ 1

x
.

Thus

bj =
1 + y · bj−1

x
=

1

x
+R·bj−1 ≤ z∗·

x+ y

x
+R·z∗·bj−1 = z∗·1 + δ(L− j, L− j + 1) · bj−1

δ(L− j, L− j − 1)
= z∗·bj

since x+y
x = 1

δ(L−j,L−j−1) .

Thus for all 0 < j < L−1, we have bj ≤ z∗ ·bj , and hence H(n1, n2) =
∑L−n1−1
j=L−n2

bj ≤
∑L−n1−1
j=L−n2

z∗ ·bj =

z∗ ·H(n1, n2).

This completes the proof.

Implication of Lemma S5. The main implication of Lemma S5 is as follows: any lower bound on the hitting
time on the unloop variant is a lower bound on the hitting time of the original Markov chain; and an upper
bound on the hitting time on the unloop variant multiplied by z∗ gives an upper bound on the hitting time
of the original Markov chain.

3. Evolutionary Process

In this section we consider a simple model of evolutionary process, where organisms/genotypes are repre-
sented as strings of length L, and view evolution as a discrete time process. For simplicity, we will first
consider the case of bit strings and present all our results with bit strings because all the key proof ideas are
illustrated there. We will then generalize our results to strings for any alphabet size in Section 7. For a bit
string s, at any time point a random mutation can appear with probability u, which will invert a single bit
of the string s. Such mutations can be viewed as transitions between genotypes which form a random walk
in the L-dimensional genotypic space of all 2L strings.

Notations. For L ∈ N, we denote by B(L) the set of all L-bit strings. Given a string s ∈ B(L), the
neighborhood Nh(s) of s is the set of strings that differ from s by only one bit, i.e., Nh(s) = {s′ ∈ B(L) : s, s′

differ in exactly one position}. In order to model natural selection, we will consider a constant selection
intensity β ∈ R and each string s will be associated with a fitness according to a fitness function f(s) ∈ R.
The selection intensity and the fitness function will determine the transition probabilities between s and its
neighbors.

Transition probability between strings. Given a string s and s′ ∈ Nh(s), the transition probability
∆(s, s′) from s to s′ depends (i) on the fitness of s and the fitness of the neighbors in Nh(s), and (ii) the
selection intensity. For all s′′ ∈ Nh(s), let df (s, s′′) = (f (s′′)− f (s)) denote the difference in fitness of s and
s′′, and let g(s, s′′) = 1

1+e−β·df (s,s′′)
. Then the transition probability is defined as follows:

∆(s, s′) = u · g(s, s′)∑
s′′∈Nh(s) g(s, s′′)

(1)

The intuitive description of the transition probability (which is refered as Fermi process) is as follows: the
term u represents the probability of a mutation occurring in s, while the choice of the neighbor s′ is based on
a normalized weighted sum, with each sigmoid term 1

1+e−β·df (s,s′)
being determined by the fitness difference

between s, s′ and the selection intensity. The selection intensity acts like the temperature function. The
high values of the selection intensity will favor those transitions to neighbors that have higher fitness, while
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setting β = 0 turns all the possible transitions of equal probability and independent of the fitness landscape
(we refer to this case as neutral selection).

Discovery time. Given a string space B(L), a fitness function f and a selection intensity β, for two
strings s1, s2 ∈ B(L), we denote by T (s1, s2, f, β) the expected discovery time of the target string s1 from
the starting string s2, i.e., the average number of steps necessary to transform s2 to s1 under the fitness
landscape f and selection intensity β. Given a start string s2 and a target set U of strings we denote by
T (U, s2, f, β) the expected discovery time of the target set U starting from the string s2, i.e., the average
number of steps necessary to transform s2 to some string in U . In the following section we will present several
lower and upper bounds on the discovery times depending on the fitness function and selection intensity.

Moran evolutionary process. The evolutionary process we described is the Fermi process where the
transition probabilities are chosen according to the Fermi function and the fitness difference. We will first
present lower and upper bounds for the Fermi evolutionary process for mathematically elegant proofs, and
then argue how the bounds are easily transferred to the Moran evolutionary process.

4. Neutral Selection

In this section we consider the case of neutral selection, and hence the transition probabilities are independent
of the fitness function. Since β = 0 for all strings s, the transition probability equation (Eqn 1) simplifies to
∆(s, s′) = u

L for all s′ ∈ Nh(s). We will present an exponential lower bound on the discovery time of a set

of targets concentrated around the sequence ~0, and we will refer to this case as broad peak. For a constant
0 < c < 1, let ULc denote the set of all strings such that at most cL bits are ones (i.e., at least (1 − c) · L
bits are zeros). In other words, ULc is the set of strings that have Hamming distance at most cL to ~0. We
consider the set ULc as the target set. Because there is neutral selection the fitness landscape is immaterial,
and for the sequel of this section we will drop the last two arguments of T (·, ·, f, β) since β = 0 and the
discovery time is independent of f .

We model the evolutionary process as a Markov chain on a line, ML,0 = (S, δ0) (0 for neutral), which is
obtained as follows: by symmetry, all strings that have exactly i-ones and (L− i)-zeros form an equivalence
class, which is represented as state i of the Markov chain. The transition probabilities from state i are

as follows: (i) for 0 < i < L we have δ0(i, i − 1) = u·i
L and δ0(i, i + 1) = u·(L−i)

L ; (ii) δ0(0, 1) = u; and
(iii) δ0(L,L−1) = u. Then we have the following equivalence: for a string s in B(L)\ULc the discovery time
T (ULc , s) from s to the set ULc under neutral selection is same as the hitting time H(cL, i) in the Markov
chain on a line ML,0, where s has exactly i-ones.

Each state has a self-loop with probability (1−u), and we ignore the self-loop probabilities (i.e., set u = 1)
because by Lemma S5 all lower bounds on the hitting time for the unloop variant are valid for the original
Markov chain; and all upper bounds on the hitting time for the unloop variant need to be multiplied by 1

u to
obtain the upper bounds on the hitting time for the original Markov chain. In other words, we will consider

the following transition probabilities: (i) for 0 < i < L we have δ0(i, i − 1) = i
L and δ0(i, i + 1) = (L−i)

L ;
(ii) δ0(0, 1) = 1; and (iii) δ0(L,L− 1) = 1.

Theorem S1. For all constants c < 1
2 , for all string spaces B(L) with L ≥ 4

1−2·c , and for all s ∈ B(L)\ULc ,

we have T (ULc , s) ≥ c`·L−1A , where A = 3−2·c
4 = 1

2 + 1−2·c
4 > 1

2 , cA = A
1−A > 1 and ` = 1−2·c

4 > 0.

Proof. We consider the Markov chain ML,0 for L ≥ 4
1−2·c and let us consider the midpoint i between cL and

1
2 ·L, i.e., i = 1+2·c

4 ·L. Such a midpoint exists since L ≥ 4
1−2·c . Then for all j such that cL ≤ j ≤ i we have

δ0(j, j + 1) =
L− j
L
≥ L− i

L
=

3− 2 · c
4

= A >
1

2
.

The first inequality holds since j ≤ i, while the second inequality is due to c < 1
2 . We now use Corollary S1

(item 1) for ML,0 with n1 = x = cL, y = i, and k = ( 1+2·c
4 − c) · L = ` · L and vary n2 from x + 1 to L to

obtain that H(n1, n2) ≥ c`·L−1A , and hence for all s ∈ B(L) \ ULc we have T (ULc , s) ≥ c`·L−1A .
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Four-letter alphabet. As in typical cases in biology the alphabet size is four (e.g., DNA, RNA), we state
the analog of Theorem S1 for a four-letter alphabet. Later in this document, Theorem S4 states the general
case for arbitrary alphabet.

Consider the alphabet {0, 1, 2, 3}. We can again consider a Markov chain on a line ML,0, where its i-th
position encodes all the strings in B(L) which differ from t in exactly i positions. We consider a string s
that corresponds to the i-th state of ML,β , for 0 < i < L. Then we have the following cases:

• There are exactly i neighbors of s in state i − 1, since in each position among the i positions that s
does not agree with t, there is exactly one mutation that will make s and t match in that position.

• There are exactly 3 ·(L− i) neighbors of s in state i+1, since in each position among the L− i positions
in which s agrees with t, there are 3 mutations that will make s not agree with t in that position.

• There are exactly 2 · i neighbors of s in state i, since in each position j among the i positions that s
does not agree with t, there are 2 mutations that will preserve this disagreement.

Based on the above analysis and Equation 1, the following holds for the transition probabilities of ML,0:

δ0(i, i+ 1)

δ0(i, i− 1)
=

3 · (L− i)
i

while for δ0(i, i) we have:

δ0(i, i) =
2 · i

i+ 3 · (L− i) + 2 · i
=

1
3
2 ·
(
1 + L−i

i

)
which is maximized when i = L to δ0(L,L) = 2

3 , constant.

Theorem S2. For a four-letter alphabet size the following assertions hold :

1. if c < 3
4 , then there exists L0 ∈ N such that for all string spaces B(L) with L ≥ L0, for all s ∈ B(L)\ULc

we have T (ULc , s) ≥ 2(3−4·c)
L
16 ·log

6
4+3·c ; and

2. if c ≥ 3
4 , then for all string spaces B(L), for all s ∈ B(L) \ ULc we have T (ULc ) = O(L2).

Proof. We prove each step separately.

1. We consider the Markov chain ML,0 for L ≥ L0 = 8
3−4·c . Consider the midpoint i between cL and 3·L

4 ,

i.e., i = 3+4·c
8 · L (such a midpoint exists because L ≥ L0 and the choice of c). For all cL < j ≤ i we

have:
δβ(j, j + 1)

δβ(j, j − 1)
=

3 · (L− j)
j

≥ 3 · (L− i)
i

≥ 3 · 5− 4 · c
3 + 4 · c

≥ 6

4 · c+ 3
> 1

since c < 3
4 . We now use Lemma S3 for ML,0 with n1 = x = cL, y = i, and k = L · 3−4·c8 = ` · L and

vary n2 from x+ 1 to L to obtain that H(n1, n2) ≥ A`·L−1, and hence for all s ∈ B(L) \ ULc we have

T (ULc , s) ≥ 2(
3−4·c

8 ·L−1)·log 6
4+3·c ≥ 2(3−4·c)·

L
16 ·log

6
4+3·c .

2. We consider the Markov chain ML,0. For every cL < j < L we have:

δβ(j, j + 1)

δβ(j, j − 1)
=

3 · (L− j)
j

≥ 3 · (L− c · L)

c · L
= 1

Thus for all cL < j < L we have δ0(j, j − 1) ≥ δβ(j, j + 1), and δ0(j, j) ≤ 2
3 . Then, by Lemma S4 we

have that H(cL, n2) = O(L2) for all n2 > cL, We conclude that T (ULc , s) = O(L2) for all s ∈ B(s)\ULc .
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L· · ·L
2

· · ·i· · ·cL+ 1

≥ A = 1
2 + 1−2·c

4 > 1
2

1−2·c
4 · L

cL· · ·10

B(L)

Midpoint between
cL and L

2

...

...

...

...

...

...

(a)

(b)

Supplementary Figure 3: Neutral selection with broad peaks. The figure shows that when the
target set is ULc of strings that have at most c ·n ones (blue in (a)), for c < 1

2 , for a region of length ` ·L− 1,

which is from c · n to the mid-point between cL and L
2 , the transition probability to the right is at least a

constant A > 1
2 , and this contributes to the exponential hitting time to the target set. Figure (b) shows the

comparison of the exponential time for multiple targets and single target under neutral selection.
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L
1+eβ

L· · ·· · ·L
2

· · ·i· · ·cL+ 1

` · L

cL

Midpoint between
cL and L

1+eβ

≥ A > 1
2

· · ·10

(a)

L
1+eβ

L· · ·

≥ 1
2

· · ·L
2

≥ 1
2

· · ·

≥ 1
2

cL

≥ 1
2

· · ·10

(b)

Supplementary Figure 4: Constant selection with broad peaks. The figure shows the illustration
of the dichotomy theorem. The blue region represents the states that correspond to targets, while the
green region depicts the states where the transition probability to the left is greater than 1

2 . Intuitively
given a selection intensity β, the selection intensity allows to reach the region 1

1+eβ
· L in polynomial time.

In figure (a), there exists a region between the blue and green, of length ` · L, where the probability of
transitioning to the right is a constant, greater than 1

2 . In other words, when the blue and green region do
not overlap, in the mid-region between the blue and green region the transition probability to the right is
at least A > 1

2 , and hence the hitting time is exponential. When β and c are large enough so that the two
regions overlap (figure (b)), then all transitions to the left till the target set is at least 1

2 , and hence the
hitting time is polynomial.
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5. Constant Fitness Difference Function

In this section we consider the case where the selection intensity β > 0 is positive, and the fitness function
is linear. For a string s, let h(s) denote the number of ones in s, i.e., the hamming distance from the
string ~0. We consider a linear fitness function f such that for two strings s and s′ ∈ Nh(s) we have
df (s, s′) = (f(s′)− f(s)) = −(h(s′)− h(s)), the difference in the fitness is constant and depends negatively
on the hamming distance. In other words, strings closer to ~0 have greater fitness and the fitness change is
linear with coefficient −1. We call the fitness function with constant difference as the linear fitness function.
Again we consider a broad peak of targets ULc , for some constant 0 < c < 1

2 . Since we consider all strings
in ULc as the target set, it follows that for all strings s ∈ B(L) \ ULc the difference in the hamming distance
between s and s′ ∈ Nh(s) from 0 and the target set ULc is the same. Similarly as in the neutral casel, due
to symmetry of the linear fitness function f , we construct an equivalent Markov chain on a line, denoted
ML,β = (S, δβ), as follows: state i of the Markov chain represents strings with exactly i-ones, and we have
the following transition function: (i) δβ(0, 1) = 1; (ii) δβ(L,L− 1) = 1; and (iii) for 0 < i < L we have

δβ(i, i+ 1) =
1

1 + eβ · i
L−i

; δβ(i, i− 1) =
1

1 + e−β · L−ii
;

(also see the technical appendix for the derivation of the above probabilities).
Again the discovery time corresponds to the hitting time in the Markov chain ML,β . Note that again

we have ignored the self-loops of probability (1 − u), and by Lemma S5 all lower bounds for hitting time
for the unloop variant are valid for the original Markov chain; and all upper bounds on the hitting time for
the unloop variant need to be multiplied by 1

u to obtain upper bounds on the hitting time for the original
Markov chain.

We will present a dichotomy result: the first result shows that if c · (1 + eβ) < 1, for selection intensity
β > 0, then the discovery time is exponential, while the second result shows that if c · (1 + eβ) ≥ 1, then the
discovery time is polynomial. We first present the two lemmas.

Lemma S6. For the linear fitness function f , for all selection intensities β > 0 and all constants c ≤ 1
2

such that c · v < 1, where v = 1 + eβ, there exists L0 ∈ N such that for all string spaces B(L) with L ≥ L0,

for all s ∈ B(L) \ ULc we have T (ULc , s, f, β) ≥ c`·L−1A where A = 1
2 + v·(2−c·v)

2·(v·(c·v+2−2·c)−2) >
1
2 , cA = A

1−A > 1

and ` = 1−c·v
2·v > 0.

Proof. We consider the Markov chain ML,β for L ≥ L0 = 2·v
1−c·v . Consider the midpoint i between cL and L

v ,

i.e., i = 1+c·v
2·v · L (such a midpoint exists because L ≥ L0 and the choice of c). For all cL < j ≤ i we have:

δβ(j, j + 1) =
1

1 + eβ · j
L−j

≥ 1

1 + eβ · i
L−i

=
1

1 + (v − 1) ·
1+c·v
2·v ·L

L− 1+c·v
2·v ·L

=
2 · v − 1− c · v

c · v2 + 2 · v · (1− c)− 2

=
1

2
+

v · (2− c · v)

2 · (v · (c · v + 2− 2 · c)− 2)
= A >

1

2
.

The first inequality holds as j
L−j ≤

i
L−i since j ≤ i; the second equality is obtained since (v − 1) = eβ

and substituting i with its value 1+c·v
2·v · L; and the result of the equalities are simple calculation; and the

description of the final inequality is as follows: (i) since c ·v < 1, we have 2− c ·v > 0, (ii) the fact that c ≤ 1
2

and c · v ≥ 0 implies that c · v+ 2− 2 · c ≥ 1 and since we have v > 2, it follows that v · (c · v+ 2− 2 · c) > 2;
establishing that the term along with 1

2 in A is strictly positive. We now use Corollary S1 (item 1) for
ML,β with n1 = x = cL, y = i, and k = 1−c·v

2·v · L = ` · L and vary n2 from x + 1 to L to obtain that

H(n1, n2) ≥ c`·L−1A , and hence for all s ∈ B(L) \ ULc we have T (ULc , s, f, β) ≥ c`·L−1A .
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Lemma S7. For all string spaces B(L), for all c < 1
2 and the linear fitness function, for all selection

intensities β > 0 with c · (1 + eβ) ≥ 1, for all s ∈ B(L) \ ULc we have T (ULc , s, f, β) = O(L2).

Proof. We consider the Markov chain ML,β , where β is such that we have c ≥ 1
1+eβ

. For every cL < j < L
we have:

δβ(j, j − 1) =
1

1 + e−β · L−jj
≥ 1

1 + e−β · L−cLcL

=
1

1 + e−β · 1−cc
≥ 1

2
.

The first inequality holds because L−j
j ≤

L−cL
cL since cL < j; the second inequality holds since c · (1+eβ) ≥ 1

which implies that 1 ≥ 1
eβ
· ( 1

c − 1), and hence 1 + e−β · ( 1
c − 1) ≤ 2. Thus for all cL < j < L we have

δβ(j, j − 1) ≥ 1
2 , and by Corollary S1 (item 2) we have that H(cL, n2) = O(L2) for all n2 > cL. Thus we

conclude that T (ULc , s, f, β) = O(L2) for all s ∈ B(s) \ ULc . The desired result follows.

Theorem S3. For the linear fitness function f , selection intensity β > 0, and constant c ≤ 1
2 , the following

assertions hold:

1. If c · (1 + eβ) < 1, then there exists L0 ∈ N such that for all string spaces B(L) with L ≥ L0, for all

s ∈ B(L) \ ULc we have T (ULc , s, f, β) ≥ c`·L−1A where A = 1
2 + v·(2−c·v)

2·(v·(c·v+2−2·c)−2) >
1
2 , cA = A

1−A > 1

and ` = 1−c·v
2·v > 0.

2. If c ·(1+eβ) ≥ 1, then for all string spaces B(L), for all s ∈ B(L)\ULc we have T (ULc , s, f, β) = O(L2).

6. Moran Process Model

In the previous section we considered the constant selection intensity with Fermi process. We now discuss
how from the results of the previous section we can obtain similar results if we consider the Moran process
for evolution.

Basic Moran process description. A population of N individuals mutates with probability u in each
round, at N ·u rate. Consider that the population is currently in state i (which represents all bit strings with
exactly i ones): the probability that the next state is i− 1 is the rate of an i− 1 mutant to be introduced,
times the fixation probability of the mutant in the population. Formally, the transition probability matrix
δM (M for Moran process) for the Markov chain on a line under the Moran process is as follows:

(1) δM (i, i−1) = N ·u· i
L
·ρi,i−1; (2) δM (i, i+1) = N ·u·L− i

L
·ρi,i+1; (3) δM (i, i) = 1−δM (i, i−1)−δM (i, i+1).

We assume that N ·u < 1 and ρi,j is the fixation probability of a j mutant in a population of N−1 individuals
of type i. In particular,

ρi,j =
1− fi

fj

1−
(
fi
fj

)N
and ρi,j ∈ (0, 1) for positive fitness fi and fj , where fi (resp. fj) denotes the fitness of strings with exactly i
(resp. j) ones. We first show a bound for the self-loop probabilities δM (i, i): since strings closer to the target
have a greater fitness value we have fi−1 ≥ fi; and hence the probability of fixation of an (i− 1)-mutant in
a population of type i is at least 1

N . Thus we have

δM (i, i− 1) = N · u · i
L
· ρi,i−1 ≥ N · u ·

i

L
· 1

N
≥ u

L

Then, 1 − δM (i, i) ≥ δM (i, i − 1) ≥ u
L , and 1

1−δM (i,i) ≤
L
u . Hence we will consider the unloop variant of

the Markov chain and by Lemma S5 all lower bounds on discovery time for the unloop variant hold for the
original Markov chain; and the upper bounds for the unloop variant need to by multiplied by L

u to obtain
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the upper bounds for the original Markov chain. Hence if we consider the unloop variant of the Markov
chain on a line obtained from the Moran process we have:

δM (i, i− 1) =
δM (i, i− 1)

δM (i, i− 1) + δM (i, i+ 1)
=

i

i+ (L− i) · ρi,i+1

ρi,i−i

=
1

1 + L−i
i ·

ρi,i+1

ρi,i−i

and δM (i, i+ 1) = 1− δM (i, i− 1). We now consider the case of multiplicative fitness function.

Multiplicative fitness rates. We consider the case where we have multiplicative fitness function where
fi−1

fi
= ri ≥ 1, as the fitness function increases as we move closer to the target. Then

ρi,i+1

ρi,i−1
=

1−ri+1

1−rNi+1

1−r−1
i

1−r−Ni

= r
−(N−1)
i · r

N
i − 1

rNi+1 − 1
· ri+1 − 1

ri − 1

and

δM (i, i− 1) =
1

1 + L−i
i ·

ρi,i+1

ρi,i−1

=
1

1 + L−i
i · r

−(N−1)
i · r

N
i −1

rNi+1−1
· ri+1−1
ri−1

.

For constant factor ri = r for all i, we obtain

δM (i, i− 1) =
1

1 + L−i
i · r−(N−1)

.

Let us denote by δM,r(i, i − 1) = 1
1+L−i

i ·r−(N−1)
the transition probabilities of the unloop variant of the

Markov chain on a line for the Moran process with multiplicative constant r. Then we have the following
cases:

1. (Neutral case). In the neutral case we have r = 1, and then the Markov chain with transition proba-
bilities δM,1 is the same as the transition probabilities δ0 of the Markov chain ML,0 in Section 4 for
neutral selection.

2. (Constant r multiplicative fitness). The transition probabilities δM,r(i, i− 1) has the same form as the
transition probabilities of the Markov chain ML,β under positive selection intensity and linear fitness
function, in Section 5. In particular, for eβ = rN−1, we have δβ of ML,β is the same as δM,r, and thus
from the results of Section 5 we obtain similar results for the Moran process.

Summary of results for Moran process with multiplicative fitness landscape. From the results of
Section 4 and Section 5, and the equivalence of the transition probabilities of the Markov chains in Section 4
and Section 5 with those in the Moran process, we obtain the following results for Moran process of evolution
under constant multiplicative fitness landscape r:

1. (Single target). For a single target, for all constants r and population size N , the discovery time from
any non-target string to the target is exponential in the length of the bit strings.

2. (Broad peaks). For broad peaks with constant c fraction of clustered targets with c ≤ 1
2 , if c·(1+rN−1) <

1, then the discovery time from any non-target string to the target set is at least exponential in the
length L of the bit strings; and if c · (1+ rN−1) ≥ 1, then the discovery time from any non-target string

to the target set is at most O(L
3

u ) (i.e., polynomial).

The polynomial discovery time for a broad peak surrounded by a fitness slope, requires the slope to
extend to a Hamming distance greater than 3L/4. What happens then, if the slope only extends to a certain
maximum distance less than 3L/4? Suppose the fitness gain only arises, if the sequence differs from the
specific sequence in not more than a fraction s of positions. Formally, we can consider any fitness function,
f , that assigns zero fitness to sequences that are at a Hamming distance of at least sL from the specific
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Supplementary Figure 5: Broad peak with different fitness landscapes. For the broad peak there
is a specific sequence, and all sequences that are within Hamming distance cL are part of the target set. (A) If
the fitness landscape is flat outside the broad peak and if c < 3/4, then the discovery time is exponential in
sequence length, L. (B) If the broad peak is surrounded by a multiplicative fitness landscape whose slope
extends over the whole sequence space, then the discovery time is either polynomial or exponential in L
depending on whether c(1 + rN−1/3) ≥ 1 or not. (C) If the fitness slope extends to a Hamming distance
less than 3L/4, then the discovery time is exponential in L. (D) Numerical calculations for broad peaks
surrounded by flat fitness landscapes. We observe exponential discovery time for c = 1/3 and c = 1/2.
(E) Numerical calculations for broad peaks surrounded by multiplicative fitness landscapes. The broad peak
extends to c = 1/6 and the slope of the fitness landscape to s = 1/2. The discovery time is exponential,
because s < 3/4. The fitness gain is r = 1.01 and the population size is as indicated. As the population size,
N , increases the discovery time converges to that of a broad peak with c = 1/2 embedded in a flat fitness
landscape.
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sequence. Now our previous result for neutral drift with broad peak applies. Since we must rely on neutral
drift until the fitness gain arises, the discovery time in this fitness landscape is at least as long as the discovery
time for neutral drift with a broad peak of size c = s. If s < 3/4, then the expected discovery time starting
from any sequence outside the fitness gain region is exponential in L. Tables 1 and 2 illustrate how setting
c = s under-approximates the expected discovery time.

r = 1.01 N = 102 N = 5 · 102 N = 103 N = 104 N =∞

s = 1
3

c = 1
12 1.872592 · 10337 6.149382 · 10170 5.893335 · 10170 5.891566 · 10170 5.891566 · 10170

c = 1
6 5.962263 · 10260 6.149382 · 10170 5.893335 · 10170 5.891566 · 10170 5.891566 · 10170

s = 1
2

c = 1
12 3.285017 · 10264 1.307607 · 1065 1.285938 · 1065 1.285790 · 1065 1.285790 · 1065

c = 1
6 1.396805 · 10188 1.307607 · 1065 1.285938 · 1065 1.285790 · 1065 1.285790 · 1065

Supplementary Table 1: Numerical data for the discovery time of broad peaks embedded in
multiplicative fitness landscapes. The width of the broad peak is either c = 1/12 or c = 1/6 and
L = 1000. The fitness slope extends to s = 1/3 and s = 1/2. The data are extrapolated from numbers
obtained for small values of L. For population sizes N = 1000 and greater, there is no difference in the
discovery time of c = 1/6 and c = 1/12. For N →∞ the discovery time for a particular s converges to the
discovery time for a broad peak with c = s embedded in a flat fitness landscape.

Figure 5 gives a pictorial illustration of all the above scenarios.

7. General Alphabet

In previous sections we presented our results for L-bit strings. In this section, we consider the case of general
alphabet, where every sequence consists of letters from a finite alphabet Σ. Thus, B(L) is the space of all
L-tuple strings in ΣL. We fix a letter σ ∈ Σ, and consider a target set ULc , consisting of all the L-tuple
strings, such that every s ∈ ULc differs from the target string t = σL (of all σ’s) in at most cL positions (i.e.,
Hamming distance at most c ·L from the target string t). We will prove a dichotomy result that generalizes
Theorem S3.

We can again consider a Markov chain on a line ML,β , where its i-th position encodes all the strings in
B(L) which differ from t in exactly i positions. We consider a string s that corresponds to the i-th state of
ML,β , for 0 < i < L. Then we have the following cases:

• There are exactly i neighbors of s in state i − 1, since in each position among the i positions that s
does not agree with t, there is exactly one mutation that will make s and t match in that position.

• There are exactly (L− i) · (|Σ| − 1) neighbors of s in state i+ 1, since in each position among the L− i
positions in which s agrees with t, there are |Σ|−1 mutations that will make s not agree with t in that
position.

• There are exactly i · (|Σ| − 2) neighbors of s in state i, since in each position j among the i positions
that s does not agree with t, there are |Σ| − 2 mutations that will preserve this disagreement.

Let us denote |Σ| = 1 +κ, where κ ≥ 1. Based on the above analysis and Equation 1, the following holds
for the transition probabilities of ML,β :
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δβ(i, i+ 1)

δβ(i, i− 1)
=

(L− i) · κ · 1
1+eβ

i
1+e−β

=
L− i
i
· κ · e−β

while for δβ(i, i) we have:

• (κ = 1): Then δβ(i, i) = 0, since every mutation changes the distance from t.

• (κ > 1): Then by Equation 1, for 0 < i ≤ L:

δβ(i, i) =
1

1 + 2
(κ−1)·(1+e−β) + 2·(L−i)·(κ)

i·(κ−1)·(1+eβ)

which is maximized when i = L to δβ(L,L) = 1
1+ 2

(κ−1)·(1+e−β)

, constant for a fixed alphabet Σ.

Lemma S8. For the linear fitness function f , for all selection intensities β ≥ 0 and all constants c ≤ κ
κ+1

such that c · v < 1 for v = 1 + eβ

κ , there exists L0 ∈ N such that for all string spaces B(L) with L ≥ L0, for

all s ∈ B(L) \ ULc we have T (ULc , s, f, β) ≥ A`·L−1, where A = v·(2−c)−1
1+c·v · κ · e−β > 1 and ` = 1−c·v

2·v .

Proof. We consider the Markov chain ML,β for L ≥ L0 = d 2·v
1−c·v e. Consider the midpoint i between cL

and L
v , i.e., i = L · 1+c·v2·v (such a midpoint exists because L ≥ L0 and the choice of c, as i > cL). For all

cL < j ≤ i we have:

δβ(j, j + 1)

δβ(j, j − 1)
=

L− j
j
· κ · e−β ≥ L− i

i
· κ · e−β =

L− L · 1+c·v2·v
L · 1+c·v2·v

· κ · e−β =
2 · v − 1− c · v

1 + c · v
· κ · e−β = A > 1

The first inequality holds because j ≤ i and thus L−j
j ≥

L−i
i . The equalities follow as simple rewriting, while

A > 2·v−2
2 · κ · e−β = (v− 1) · κ · e−β = 1, since c · v < 1. We now use Lemma S3 for ML,β with n1 = x = cL,

y = i, and k = L · 1−c·v2·v = ` · L and vary n2 from x+ 1 to L to obtain that H(n1, n2) ≥ A`·L−1, and hence
for all s ∈ B(L) \ ULc we have T (ULc , s, f, β) ≥ A`·L−1.

Lemma S9. For all string spaces B(L), for all c ≤ κ
κ+1 and the linear fitness function f , for all selection

intensities β ≥ 0 with c · v ≥ 1 for v = 1 + eβ

κ , for all s ∈ B(L) \ ULc we have T (ULc , s, f, β) = O(L
2

M ), where
M = min0<i≤L 1− δβ(i, i) = 1− 1

1+ 2

(κ−1)·(1+e−β)

.

Proof. We consider the Markov chain ML,β , where β is such that we have c · v ≥ 1. For every cL < j < L
we have:

δβ(j, j − 1)

δβ(j, j + 1)
=

j

L− j
· e

β

κ
≥ cL

L · κ · (1− c)
· eβ =

c · eβ

κ− c · κ
≥ 1

The first inequality holds because cL < j; the second inequality holds because c · (1 + eβ

κ ) ≥ 1 and thus
c·eβ
κ−c·κ ≥ 1. Thus for all cL < j < L we have δβ(j, j − 1) ≥ δβ(j, j + 1), while M = min0<i≤L 1− δβ(i, i) =

1− 1
1+ 2

(κ−1)·(1+e−β)

. Then, by Lemma S4 we have that H(cL, n2) = O(L
2

M ) for all n2 > cL. We conclude that

T (ULc , s, f, β) = O(L
2

M ) for all s ∈ B(s) \ ULc . The desired result follows.

Lemmas S8 and S9 yield the following dichotomy (recall that |Σ| = 1 + κ):

Theorem S4. For alphabet size |Σ|, for the linear fitness function f , selection intensity β ≥ 0, and constant
c ≤ κ

κ+1 , where |Σ| = 1 + κ; the following assertions hold :

1. if c · (1 + eβ

κ ) < 1, then there exists L0 ∈ N such that for all string spaces B(L) with L ≥ L0, for all

s ∈ B(L) \ ULc we have T (ULc , s, f, β) ≥ A`·L−1 where A = v·(2−c)−1
1+c·v · κ · e−β > 1 and ` = 1−c·v

2·v , with

v = eβ+κ
κ ; and
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2. if c ·(1+ eβ

κ ) ≥ 1, then for all string spaces B(L), for all s ∈ B(L)\ULc we have T (ULc , s, f, β) = O(L
2

M ),
where M = 1− 1

1+ 2

(κ−1)·(1+e−β)

.

Note that Theorem S4 with the special case of |Σ| = 2 and κ = 1 gives us Theorem S3.

Corollary S2. For alphabet size |Σ| = 1+κ, consider the Moran process with multiplicative fitness landscape
with constant r, population size N , and mutation rate u. Let c ≤ κ

κ+1 . The following assertions hold :

1. if c · (1 + rN−1

κ ) < 1, then there exists L0 ∈ N such that for all string spaces B(L) with L ≥ L0,
for all s ∈ B(L) \ ULc the discovery time from s to some string in ULc is at least A`·L−1 where A =
v·(2−c)−1

1+c·v · κ · r1−N > 1 and ` = 1−c·v
2·v , with v = 1 + rN−1

κ ; and

2. if c · (1 + rN−1

κ ) ≥ 1, then for all string spaces B(L), for all s ∈ B(L) \ ULc the discovery time from s

to some string in ULc is at most O( L3

M ·u ), where M = 1− 1
1+ 2

(κ−1)·(1+r−(N−1))

is constant.

Explicit bounds for four letter alphabet. We now present the explicit calculation for L0 and ` of
Corollary S2 for four letter alphabet. For the four letter alphabet we have κ = 3, and for the exponential
lower bound we have cv < 1. In this case we have

v =
3 + rN−1

3
and ` =

1− 3c− crN−1

6 + 2rN−1
=

3(1− c)− crN−1

6 + 2rN−1
.

Since cv < 1 we have

A = 3r1−N
2v − cv − 1

1 + cv
≥ 2(v − 1)

1 + cv
= 3r1−N

2 r
N−1

3
3+3c+crN−1

3

=
6

3(1 + c) + crN−1

By changing the exponential lower bound to base 2, we have that the discovery time is at least 2(`L−1) log2 A.
Thus we have the following two cases:

• Selection: With selection (i.e., r > 1) the exponential lower bound on the discovery time when cv < 1
is at least:

2

(
3(1−c)−crN−1

6+2rN−1 L−1
)

log2
6

3(c+1)+crN−1
;

for all L ≥ L0 = 6+2rN−1

3(1−c)−crN−1 .

• Neutral case: Specializing the above result for the neutral case (i.e., r = 1) we obtain the exponential
lower bound on the discovery time when cv < 1 is at least:

2( 3−4c
8 L−1) log2

6
4c+3 ;

for all L ≥ L0 = 8
3−4c . We ignore the factor 1 as compared to L and have that 2( 3−4c

8 L−1) log2
6

4c+3 ≥
exp

((
3−4c
16 L

)
log2

6
4c+3

)
.

Discussion about implications of results. We now discuss the implications of Corollary S2.
1. First the corollary implies that for a single target (which intuitively corresponds to c = 0) even with

multiplicative fitness landscape (which is an exponentially increasing fitness landscape) the discovery
time is exponential.

2. The discovery time is polynomial if c · (1+ rN−1

κ ) ≥ 1, however this requires that the slope of the fitness
gain extends over the whole sequence space (at least till Hamming distance (κ/(κ+ 1)) · L).
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3. Consider the case where the fitness gain arises only when the sequence differs from the target in not
more than a fraction of s positions, i.e., the slope of the fitness function only extends upto a Hamming
distance of s·L. Now our result for neutral drift with broad peak applies. Since we must rely on neutral
drift until the fitness gain arises, the discovery time of this process is at least as long as the discovery
time for neutral drift with a broad peak of size c = s. If r = 1 (neutral drift), then we have that
the discovery time is polynomial if c(1 + 1

κ ) ≥ 1, and otherwise it is exponential. Hence if the fitness
gain arises from Hamming distance s · L and s < κ/(κ+ 1), then the expected discovery time starting
from any sequence outside the fitness gain region is exponential in L. Moreover, there are two further
implications of this exponential lower bound. First, note that if r = 1, then rN−1 is 1 independent of
N , and thus the exponential lower bound is independent of N . Second, note that if the fitness gain
arises from Hamming distance s · L, and it is neutral till the fitness gain region is reached, then the
exponential lower bound for s < κ/(κ + 1), is also independent of the shape of the fitness landscape
after the fitness gain arises. Formally, if we consider any fitness function f that assigns zero fitness
to strings that are at Hamming distance at least s · L from the ideal sequence, and any nonnegative
fitness value to other strings, then the process is neutral till the fitness gain arises, and the exponential
lower bound holds for the fitness landscape, and is independent of the population size. For a four letter
alphabet (as in the case of RNA and DNA) the critical threshold is thus s = 3/4.

Remark S1. Note that we have shown that all results for bit strings easily extend to any finite alphabet
by appropriately changing the constant. For simplicity, in the following sections we present our results for
strings over 4-letter alphabet, and they also extend easily to any finite alphabet by appropriately changing
the constants.

Remark S2. We have established several lower bounds on the expected discovery time. All the lower bounds
are obtained from hitting times on Markov chains, and in Markov chains the hitting times are closely
concentrated around the expectation. In other words, whenever we establish that the expected discovery
time is exponential, it follows that the discovery time is exponential with high probability.

8. Multiple Independent Searches

In this section we consider multiple independent searches. For simplicity we will consider strings over 4-letter
alphabet, and as shown in Section 7 the results easily extend to strings over alphabets of any size.

8.1. Polynomially many independent searches. We will show that if there are polynomially many
multiple searches starting from a Hamming distance of at least 3L

4 , then the probability to reach the target
in polynomially many steps is negligibly small (smaller than an inverse of any polynomial function). We will
present our results for Markov chain on a line, and it implies the results for the evolutionary processes. In
all the following lemmas we consider the Markov chain on a line for a four letter alphabet. Before the formal
proof we present informal arguments and intuition for the proof.

The basic intuition and steps of the proof. The basic intuition and steps of our proof are as follows:

1. First we show that in the Markov chain on a line, from any point n2 ≥ 3L
4 the probability to not reach

3L
4 in polynomially many steps is very (exponentially) small. The key reason is that we have shown

that the expected hitting time from n2 to 3L
4 is at most L2; and hence the probability to reach 3L

4
from n2 within L5 steps is very high. Thus the probability to not reach within L5 steps is very small
(see Lemma S10).

2. Second, we show that the contribution to the expected hitting time for the steps beyond L2 · 2L logL is
at most a constant. The informal reasoning is that beyond the expected hitting time, the probability to
not reach in steps beyond the expected hitting time drops exponentially. Hence we obtain a geometric
series whose sum is bounded by a constant (see Lemma S11).
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3. Then we show that if the expected hitting time is exponential, then for all polynomials p1(·) and p2(·),
the probability to reach within p1(L) steps is smaller than 1

p2(L)
. The key argument is to combine the

previous two results to show that if the probability to reach within p1(L) steps is more than 1
p2(L)

,

then the expected hitting time would be a polynomial, contradicting that the expected hitting time is
exponential.

The formal arguments of the above results yield Theorem S5. We present the formal proof below.

Lemma S10. From any point n2 ≥ 3L
4 the probability that 3L

4 is not reached within L5 steps is exponentially
small in L (i.e., at most e−L).

Proof. We have already established that the expected hitting time from n2 to 3L
4 is at most L2. Hence the

probability to reach 3L
4 within L3 steps must be at least 1

L (otherwise the expectation would have been

greater than L2). Since from all states n2 ≥ 3L
4 the probability to reach 3L

4 is at least 1
L within L3 steps,

the probability that 3L
4 is not reached within k · L3 steps is at most

(
1− 1

L

)k
. Hence the probability that

3L
4 is not reached within L5 steps is at most(

1− 1

L

)L·L
≤ e−L.

The desired result follows.

Lemma S11. The contribution of the expectation to reach after L2 · 2L·logL steps to the expected hitting
time is at most a constant (i.e., O(1)).

Proof. From any starting point, the probability to reach the target within L steps is at least 1
LL

. Hence

the probability not reaching the target within k · LL steps is e−k. Hence the probability to reach after
` · L2 · 2L·logL steps at most e−`·L

2

. Thus expectation contribution from L2 · 2L·logL steps is at most

∞∑
`=1

(`+ 1) · L2 · 2L·logL

e`·L2 ≤ L2 · 2L·logL

eL2 ·
∞∑
`=1

(`+ 1)

e`
≤ 22·logL+L·logL

2L2 ·
∞∑
`=1

(
`

e`
+

1

e`

)
≤ e

(e− 1)2
+

1

(e− 1)
= O(1).

The desired result follows.

Lemma S12. In all cases, where the lower bound on the expected hitting time is exponential, for all poly-
nomials p1(·) and p2(·), the probability to reach the target set from any state n2 such that n2 ≥ 3L

4 within
the first p1(L) steps is at most 1

p2(L)
.

Proof. We first observe that from any start point n′2 ≥ 3L
4 the expected time to reach 3L

4 is L2, and

the probability that 3L
4 is not reached within L5 steps is exponentially small (Lemma S10). Hence if the

probability to reach the target set from 3L
4 within p1(L) steps is at least 1

p2(L)
, then from all states the

probability to reach within L5 ·p1(L) steps is at least 1
L·p2(L) . In other words, from any state the probability

that the target set is not reached within L5 · p1(L) steps is at most (1− 1
L·p2(L) ). Hence from any state the

probability that the target set is not reached within k ·L5 · p1(L) steps is at most (1− 1
L·p2(L) )

k. Thus from

any state the probability that the target set is not reached within L3 · p2(L) · L5 · p1(L) steps is at most(
1− 1

L · p2(L)

)L·p2(L)·L2

= e−L
2

.

Hence the probability to reach the target within L8 · p1(L) · p2(L) steps is at least 1− 1
eL2 . By Lemma S11

the expectation contribution from steps at least L2 · 2L·logL is constant (O(1)).
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Hence we would obtain an upper bound on the expected hitting time as

L8 · p1(L) · p2(L) ·
(

1− 1

eL2

)
+
L2 · 2L·logL

eL2 +O(1) ≤ L9 · p1(L) · p2(L).

Note that the above bound is obtained without assuming that p1(·) and p2(·) are polynomial functions.
However, if p1(·) and p2(·) are polynomial, then we will obtain a polynomial upper bound on the hitting
time, which contradicts the exponential lower bound. The desired result follows.

Corollary S3. In all cases, where the lower bound on the expected hitting time is exponential, let us denote
by h denote the expected hitting time. Given numbers t1 and t2, the probability to reach the target set from
any state n2 such that n2 ≥ 3L

4 within the first t1 = h
L9·t2 steps is at most 1

t2
.

Proof. In the proof of Lemma S12 first we established that the hitting time is at most L9·p1(L)·p2(L) (without
assuming they are polynomial). By interpreting t1 as p1(L) and t2 = p2(L) we obtain that h ≤ L9 · t1 · t2.
The desired result follows.

Theorem S5. In all cases, where the lower bound on the expected hitting time is exponential, for all poly-
nomials p1(·), p2(·) and p3(·), for p3(L) independent multiple searches, the probability to reach the target set
from any state n2 such that n2 ≥ 3L

4 within first p1(L) steps for any of the searches is at most 1
p2(L)

.

Proof. Consider the polynomial p2(L) = p3(L)·p2(L). Then by Lemma S12 for a single search the probability
to reach the target within p1(L) steps is at most 1

p2(L)
. Hence the probability that none of the search reaches

the target in p1(L) steps is

(
1− 1

p2(L)

)p3(L)
=

(
1− 1

p2(L)

)p3(L)· p2(L)

p2(L)

=

(
1− 1

p2(L)

)p2(L)· 1
p2(L)

= e
− 1
p2(L) ≤ 1− 1

2 · p2(L)
;

since e−2·x ≤ 1− x, for 0 ≤ x ≤ 1
2 . The desired result follows.

Remark S3. Observe that in Theorem S5 the independent searches could start at different starting points,
and the result still holds, because in all cases we established an exponential lower bound, the lower bound
holds for all starting points outside the target region.

8.2. Probability of hitting in a given number of steps. We now present a simple (and informal)
argument for the approximation of the probability that none of M independent searches succeed to discover
the target in a given number of b steps, where the expected discovery time for a single search is d, for b << d.
The steps of the argument are as follows:

1. First we observe that the expected discovery time is the expected hitting time in a Markov chain, and
the probability distribution of the hitting time in a Markov chain is largely concentrated around the
expected hitting time d, when the expected hitting time is exponential and the starting state is far
away from the target set. The result of sharp concentration around the expected hitting time is a
generalization of the classical Chernoff bound for the sum of independent variables: the generalization
for Markov chains is obtained by considering Azuma-Hoeffding’s s inequality for bounded martin-
gales [1, Chapter 7] that shows exponential concentration around the expected hitting time. Note that
for Markov chains, the martingale for expected hitting time is bounded by 1 (as with every step the
hitting time increases by 1).

2. Given that the probability distribution is concentrated around the mean, an approximation of the
probability that a single search succeeds in b steps is at most b

d , for b << d.
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3. Given independent events E1, E2, . . . , EM such that the success probabilities are a1, a2, . . . , aM , respec-
tively, by independence (that allows us to multiply probabilities) the probability that none of the events
succeed is (1− a1) · (1− a2) . . . (1− aM ). Hence for independent M searches the probability that none
of the searches succeed in b steps when the expected hitting time for a single search is d is at least(

1− b

d

)M
= e−

M·b
d .

The above reasoning gives an informal argument to obtain an upper bound on the probability of success of
M independent searches in b steps.

9. Distributed Targets

We now discuss several cases of distributed targets for which the exponential lower bounds can be obtained
from our results. We discuss the results for four letter alphabet.

1. Consider the example of distributed targets where the letters in a given L0 number of positions are
immaterial (e.g., the first four positions, the tenth position and the last four positions are immaterial,
and hence L0 = 9 in this case). Then we can simply apply our results ignoring the positions which are
immaterial, i.e., the string space of size L− L0, and apply all results with effective length L− L0.

2. Consider the example where the target set is as follows: instead of the target of all σ’s (i.e., t = σL),
the target set has all sequences that have at least an α · L length segment of σ’s, for α > 1/2. Then
all the targets have an overlapping segment of (2 · α − 1) · L number of σ’s from position (1 − α) · L
to α · L. We can then obtain a lower bound on the discovery time of these targets by considering as
target set the superset containing all sequences with σ’s in that region. In other words, we can apply
our results with single target but the effective length is (2 · α − 1) · L. A pictorial illustration of the
above two cases is shown in Supplementary Figure 6.

3. We now consider the case of distributed targets that are chosen uniformly at random and independently,
and let m << 4L be the number of distributed targets. Let the selection gradient extend up to a
distance of cL from a target, for c < 3/4. Formally we consider any fitness landscape f that assigns
zero fitness to a string whose Hamming distance exceeds cL from every target. We consider a starting
sequence for the search and argue about the estimate on the expected discovery time.
• First we consider the Markov chain M defined on B(L) where every string s in B(L) is a state

of the Markov chain. The transition probability from a string s to a neighboring string in Nh(s)
of Hamming distance 1 is 1

|Nh(s)| . The Markov chain M has the following two properties: it is

(i) irreducible, i.e., the whole Markov chain M is a recurrent class; and (ii) reversible, i.e., if there
is a transition probability from s to s′, there is also a transition probability from s′ to s.
• Since M is irreducible and reversible, and due to its symmetric nature, it has a very fast mixing

time (the number of steps required to converge to the stationary distribution). In particular,
the stationary distribution, which is the uniform distribution over B(L), is converged to with in
O(L · logL) steps [2].
• Since c < 3/4, the expected time to reach a string from where the selection gradient to a specific

target is felt is exponential (by Corollary S2). Thus given m << 4L and c < 3/4, a string from
where the selection gradient to any target is felt is reached with in the first O(L · logL) steps with
low probability.
• Since any string from where the selection gradient is felt to a target is reached with in the first
O(L · logL) steps with low probability, and after O(L · logL) steps M converges to the uniform
distribution, a lower bound on the expected discovery time can be obtained as follows: consider
the probabilistic process that in every step chooses a string in B(L) uniformly at random and the
process succeeds if the chosen string has a Hamming distance at most cL from any of the target
sequence. The expected number of steps required for the success of the probabilistic process is a
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(a)

(b)

Supplementary Figure 6: Distributed target examples. Figure (a) shows that if there are positions
of the string that are immaterial, then the effective length decreases. Figure (b) considers the case when
the evolutionary process searches for a string of length α ·L, and it shows that it searches for a single string
of length at least (2 · α− 1) · L.
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lower bound on the expected discovery time. Hence we first estimate the success probability of
every step for the probabilistic process. Consider a target string and a string chosen uniformly
at random. Since the string is chosen uniformly at random, we can equivalently think that
the process is generating uniform distribution over the alphabet for every position of the string
sequence. The probability that the i-th position of the sequence of a target differs from the
chosen sequence has probability 3/4 (since we have a four letter alphabet). In other words, the
generation of the positions of the string are Bernoulli random variables with mean 3/4. Let X
denote the random variable for the number of positions of a target that differ from the chosen
sequence (in other words, X denotes the Hamming distance), and hence X is distributed according
to Bionomial(L, 3/4). We now apply Hoeffding’s inequality and obtain that the probability that
chosen string lies within the selection gradient from a specific target is at most

P[X ≤ cL] ≤ exp
(
−2 · (3/4− c)2 · L

)
By union bound, the probability of success in every step is at most m · exp

(
−2 · (3/4− c)2 · L

)
,

and thus the expected discovery time is at least
exp(2·(3/4−c)2·L)

m . Note that in proof of the lower
bound above any sequence with positive fitness is considered as a target, and hence the lower
bound on the expected discovery time holds even if there is a broad peak of width cL around each
of the m target sequences.

Theorem S6. Consider the four letter alphabet, and a starting sequence in B(L). Let the target set
of m << 4L sequences be chosen uniformly at random, with selection extending up to a distance of cL
from each target sequence, with c < 3/4. Then with high probability the expected discovery time of the

target set is at least
exp(2·(3/4−c)2·L)

m .
Hence, ifm is polynomial, or even an exponential smaller than exp

(
2 · (3/4− c)2 · L

)
, then the expected

discovery time is exponential with high probability.

10. A Mechanism for Polynomial Time

In the previous sections we have shown the scenarios where the discovery time is not polynomial. We now
discuss a way that can ensure polynomial bounds. In the regeneration process, the process of evolution keeps
on generating strings close to the target (say of distance k from the target). If the initial distance is k and
constant, then we show with very high probability in polynomially many regenerations the target is reached.

Regeneration process. Formally, the regeneration process has two key aspects: (1) The process keeps on
generating starting sequences; and (2) the starting sequences that are generated are only a constant number
k steps away from some sequence in the target set.

Polynomially many regenerations. First note that from every string s, if there is a transition from the
string s to a neighbor Nh(s), then there is at least a probability of 1

4·L to a neighbor that is closer to the
target set. Hence in every step, if there is a mutation, then the probability to move closer to the target set
is at least 1

4·L (and in expectation a transition to a neighbor occurs in every 1
u steps). Thus with probability

at least α =
(

1
4·L
)k

the target is reached for a single trial in O( ku ) steps, i.e., the probability is obtained as
the product of the probabilities that each of the k steps of mutations bring closer to the target. Thus the
probability to not reach in L · (4 · L)k = L · 1α independent trials (or regeneration steps) is at most

(1− α)
1
α ·L = e−L;

i.e., exponentially small in L. In other words, with L · (4 · L)k = L · 1
α trials (regenerations) the target is

discovered in time at most O( ku ·L·
1
α ) with very high probability; i.e., if k is constant, then with polynomially

many regenerations the target is discovered in polynomial time with very high probability.
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11. Calculations and Details of Data of Article

We first present a calculation of the number of targets in a broad peak.

Calculation 1. For a four letter alphabet, the number of sequences that differ in at most cL positions form
~0 is

cL∑
i=0

3i
(
L

i

)
≥ 3cL

(
L

cL

)
= 3cL

L!

(cL)!((1− c)L)!

By Stirling’s approximation we have n! ≥ (ne )
n

√
2πn

and thus we have

L!

(cL)!((1− c)L)!
'

(
L
e

)L√
2πL(

cL
e

)cL√
2πcL

(
(1−c)L

e

)(1−c)L√
2π(1− c)L

=
1

ccL+0.5(1− c)(1−c)L+0.5
√

2πL
≥ (1− c)(c−1)L√

2πL

where we first apply Stirling’s approximation, and for the inequality use that since c < 3
4 we have 1

ccL+0.5 ≥ 1.
By converting the exponential to base 2 we obtain

(1− c)(c−1)L√
2πL

=
2(c−1)L log2(1−c)

√
2πL

≥ 2c(1−c)L√
2πL

since − log2(1− c) ≥ c for 0 ≤ c < 3
4 . Hence the number of sequences at hamming distance at most cL from

~0 grows exponentially, as
3cL2c(1−c)L√

2πL
≥ 2cL√

2πL
≥ 2cL

3L

as 3cL ≥ 2c
2L since c < 1, and

√
2πL < 3L.

Calculation 2. For L = 100 and c = 0.10, the number of strings in the cloud around the target is as follows:

10∑
i=1

(
100

i

)
· 3i ≈ 1.06 · 1018

Calculation 3. We now apply the approximation results of Section 8.2 for calculation of success probability
for multiple searches to discover the target in bounded number of steps. Let us consider b = 1014 steps
(upper bound for 4 billion years), and M = 1024 independent searches, and let L = 1000 and c = 1/2. Then
the expected discovery time for a single search is at least 1065. Thus applying the formula (1 − b/d)M for
the probability that none of the searches succeed we have the probability of failure for all searches is:(

1− 1014

1065

)1024

=

(
1− 1

1051

)1024

=

(
1− 1

1051

)1051·10−27

'
(

1

e

)10−27

=
1

1027
√
e
≥ 1− 10−26.

Thus the probability of at least one search succeeding within 1014 generations is at most 10−26 ' 0.

More precise version of Table 1 of article. A more elaborate and precise version of Table 1 of article is given
below.
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r = 1 c = 1
3 c = 1

2 c = 3
4

L = 102 1.027309 · 1018 7.366173 · 107 182.71

L = 103 5.891566 · 10170 1.285790 · 1065 2666.2

Supplementary Table 2: Table 1 of main text with higher precision. Table of numerical data for
discovery time.

12. Related Work

In this section we discuss and compare our results with relevant related works from population genetics.

Genetic adaptation on continuous and sequence space. The subject of genetic adaptation has been
an active research area for several decades, and has been nicely summarized by Orr [3]. In a seminal
work [4], Fisher introduced the geometric model of adaptation in order to capture the statistical properties
of beneficial mutations and their effect in a continuous phenotypic space. He concluded that evolution
proceeds via mutations of small effect, a view that was first reconsidered later by Kimura [5]. Orr [6]
extended this work of Kimura by studying the distribution of sizes of mutations for the whole evolutionary
walk, and showed that it is an exponential distribution which retains its shape (but gradually shrinking)
for the whole of the walk (also see [7] for a review and summary of this work). Kimura is also known for
having introduced the neutral theory of molecular evolution [8]. To quote from Orr [3] “Throughout the
1960s and 1970s, evolutionary geneticists grew increasingly convinced that much, if not most, molecular
evolution reflects the substitution of neutral [8,9] or nearly neutral [5,10–12] mutations, not beneficial ones.”
In [13,14], Maynard Smith conceived the idea that organisms evolve in the discrete, high-dimensional space
of DNA and protein sequences, and the adaptive walk proceeds via unit mutational steps to fitter sequences.
The idea of exploring sequence space was expanded in [15], where evolution in rugged fitness landscapes was
captured by the NK model. Recently, it has been demonstrated empirically that the ruggedness of the NK
model is correlated, so that typically large peaks are clustered together [16]. Gillespie [17] described a simple
stochastic substitution model under strong selection and weak mutation, and by means of extreme value
theory concluded that the mean number of gene substitutions until fixation is small. This view was further
developed in [18, 19], where the assumption that the starting sequence must be highly fit was necessary for
efficient evolution. In a similar setting, Orr [20] showed that finding local optima in sequence spaces takes
at least e− 1 steps where e = 2.71. This came as a conclusion from the observation that the mean distance
to a local maxima is e− 1.

The speed of adaptation has also frequently been characterized in terms of fixation rates of beneficial
mutations. Orr [21] studied the rate of adaptive substitutions in asexuals as a function of the mutation rate
under the assumption that selection against the deleterious mutations is stronger than selection in favor of
the beneficial one. It was shown that the mutation rate which maximizes the adaptation rate depends only
the strength of selection against deleterious mutations. This work was later extended in [22] where it was
shown that beneficial alleles with relatively small beneficial advantage also have relatively small probability
of fixation.

Role of recombination. A key research question is what phenomenon contributes to speed-up of the
evolutionary search process. The classical work of Crow and Kimura shows that recombination leads to a
speed in evolution. Crow and Kimura [23] studied the advantage that recombination confers to an adapting
sexual population over its asexual counterpart, by eliminating the clonal interference between simultaneously
emerging beneficial mutants. In [23] the length L of the genome sequence is not a parameter, and the
results show that the speed-up due to recombination is proportional to the population size. The speed-up
of recombination in various models with L also as a parameter was considered by Maynard Smith, and
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Table 1 in [24] summarizes the relative speed-up under various models. In the best case, the speed-up due
to recombination is proportional to the product of the population size and the length L of the genome.
Charlesworth in [25] also examined the advantage in the population mean fitness that sexual populations
have over asexuals, for various dynamic selection functions, and showed that this advantage is substantial for
various breeding systems. The advantage of sexual reproduction continuous to be an active topic of study.
A recent study [26] used a theoretical argument to demonstrate that in infinite populations of two loci that
can accumulate infinite many mutations each, as long as the rate of recombination is r > 0, the speedup
advantage of the sexual populations over asexuals is approaches 2. This is because in infinite populations, no
matter how small the recombination rate is, as long as it is non-zero, a small fraction of highly fit individuals
due to recombination will always exist. Because this portion of the population has an exponentially large
fitness advantage, it will spread fast, and the rate of adaptation approaches that of extreme recombination
(r = 1), which was proven to be 2. In [27], several different modes of recombination were examined and it
was shown that in all models, when the population size is large, the rate of adaptation has a logarithmic
dependency on N · u (population size times beneficial mutation rate), rather than linear. However, the rate
of adaptation has a quadratic dependency on the recombination rate, showing that recombination plays a
more important role in this rate for large populations. There are, of course, other parameters that affect the
rate of adaptation in sexuals. In [28], the authors examined sexual reproduction in chromosomes where short
stretches are linked together, and hence, clonal interference exists locally. The population can be effectively
seen as consisting of many asexual stretches linked together by a smaller recombination factor, and it was
estimated that beneficial mutations fix at a rate proportional to the new rate of recombination, with only
logarithmic dependency on the rate in which beneficial mutations are introduced.

Our results. In this work our contributions are as follows:
1. We present the mathematical foundations to estimate the expected number of steps for evolutionary

processes as a function of L;
2. we characterize scenarios when the expected time is exponential in L;
3. we present strong dichotomy results between exponential vs polynomial time;
4. we suggest a mechanism that enables to break the infeasible exponential barrier and allows evolution

to work in polynomial time.
In part, our work systematically explores fitness landscapes with large neutral regions, where broad peaks
are distributed at random. Such landscapes are widespread in biology. Studies have shown that the fit-
ness landscapes of RNA are typically highly neutral, with very low peak density (around 10−13, according
to [29]). Wagner’s studies have also identified neutrality as an important ingredient for robustness [30, 31].
Elaborate computer simulations have also outlined the importance of random drift in the emergence of novel
functions [32].

Our results nicely combine and explain several existing results. The regeneration process that breaks the
exponential barrier requires that (i) the starting sequence starts only a constant number of steps away from
the target and (ii) the starting sequence can be repeatedly generated. The first aspect is related to the results
of Gillespie [18,19] that using extreme value theory suggests that the starting sequence must be a highly fit
sequence for efficient evolution (i.e., in our setting close to the target). The second aspect ties in with the
long-standing ideas that gene (and genome) duplications are the major events leading to the emergence of new
genes [33] and that evolution is a ‘tinkerer’ playing around with small modifications of existing sequences
rather than creating entirely new sequences [34]. Recent studies [35] have shown that large numbers of
transcirption factor binding sites have been evolved under divergent evolution, supporting the claim of local
sequence duplication as a mechanism to emerge new functions. Our work shows that the combination of
these two ideas break the exponential barrier. Our results also nicely combine with the existing results on
recombination. Recombination that may lead to a linear factor speed-up does not change an exponential
function to a polynomial one, but may contribute greatly to the efficiency of a polynomial process. The
polynomial upper bound of Lk+1 for regeneration process holds without selection and recombination. But
the polynomial bound of Lk+1 can still be inefficient, and then selection and possibly recombination plays
the role to make the feasible polynomial bound much more efficient.
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13. Additional Simulation Results

In this section we describe some additional computer simulation results. Our first simulation result is for the
Moran process and per-bit mutation rate. The second simulation result is for another classical evolutionary
process, namely, the Wright-Fisher process. The details are described in Supplementary Figure 7 and
Supplementary Figure 8, respectively.

A. Technical Appendix: Linear Fitness Transition Probabilities

We derive the transition probabilities of the corresponding Markov chain on a line ML,β for the case of the
linear fitness landscape and any selection intensity. That is, given s and s′ ∈ Nh(s), we have df (s, s′) =
(f(s′)− f(s)) = −(h(s′)− h(s)). Our goal is to show that for 0 < i < L we have:

(i) δβ(i, i+ 1) =
1

1 + eβ · i
L−i

(ii) δβ(i, i− 1) =
1

1 + e−β · L−ii

For s in equivalence class 0 < i < L, i.e. h(s) = i, there exist exactly i neighbors s′ ∈ Nh(s) with
h(s′) = i− 1 and df (s, s′) = 1, and L− i neighbors s′′ ∈ Nh(s) with h(s′′) = i+ 1 and df (s, s′′) = −1. Then
from the normalized sum of Eqn 1 we obtain:

(i)

δβ(i, i+ 1) =
L−i
1+eβ

L−i
1+eβ

+ i
1+e−β

=
1

1 + i
L−i ·

1+eβ

1+e−β

=
1

1 + i
L−i · eβ ·

e−β+1
1+e−β

=
1

1 + eβ · i
L−i

(ii) Let x = eβ · i
L−i

δβ(i, i− 1) = 1− δβ(i, i+ 1) = 1− 1

1 + x
=

x

1 + x
=

1
1
x + 1

=
1

1 + e−β · L−ii

because 1
x = e−β · L−ii .
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Supplementary Figure 7: Moran process with per-bit mutation rate. The figure shows the results
of the average discovery time obtained from computer simulation of a Moran process with per-bit mutation
rate. We consider the case of neutral drift with broad peak of c = 1/2. We consider a population of size N ,
and in each round an individual A is chosen at random to reproduce, and the off-spring A′ of A is produced
from the string of A with per-bit mutation rate of 1%. Then an individual is chosen at random to die and the
off-spring A′ replaces the dead individual (thus population size remains constant). The process stops as soon
as one individual reaches a string with Hamming distance at most cL from the target (one individual hits
the broad peak). The discovery time is the number of generations (reproductions) required by the individual
who reaches the peak the first time. We ran the computer simulation for 1000 samples for each experiment
and then plot the average discovery time, and the figure shows the result for N = 100, 500, and 1000, and
shows the average discovery time as a function of the gene length L. We again observe that the discovery
times grow exponentially in n in all cases.
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Supplementary Figure 8: Wright-Fisher Process. The figure shows the evolution of populations in the
Wright-Fisher model, for population size N = 104, for various values of L. We consider the multiplicative
fitness landscape with r = 1.01, and the selection is felt from L/2 away from the ideal sequence ~0. At
every generation a new population replaces the old one, such that the expected number of off-springs of an
individual of the old population to the new one is proportional to its fitness. These off-springs are mutated
with a uniform mutation rate per bit (u = 10−4)). The first two figures depict the evolution of the mean
fitness and normalized mean fitness of the population, while the last figure depicts the normalized average
distance of the population from the target sequence ~0. The results are obtained from a computer simulation
where for each value of L the simulation was ran for 50 cases, and the averages are shown.
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