Supporting Information to

"Cross Dimerization of Amyloid-β and αSynuclein Proteins in Aqueous Environment: a Molecular Dynamics Simulations Study"

Jaya C. Jose,[†] Prathit Chatterjee[†] and Neelanjana Sengupta^{†*}

[†]*Physical Chemistry Division*

CSIR-National Chemical Laboratory,

Pune, Maharashtra,

India

* Corresponding author: *E-mail address*: <u>n.sengupta@ncl.res.in</u>

Phone: +91-20-25902087

Fax: +91-20-25902636

Cluster	Salt Bridge	d
C1	K6 – D7	9.1 (2.9)
	K21 – E11	4.5 (2.7)
	E28 – R5	3.6 (0.5)
C2	K6 – D1	7.4 (4.3)
	K32 – D1	5.5 (3.4)
	К32 – ЕЗ	5.9 (1.9)
	K80 – D7	2.9 (0.2)
	K80 – E3	3.3 (0.3)
C3	K6 – E3	5.9 (2.4)
	K12 – E22	5.7 (3.2)
C5	K6 – E22	4.0 (1.3)
	K6 – D23	5.6 (2.2)
	K10 – D23	2.9 (0.3)
	K12 – D1	3.5 (0.6)
	E83 – K28	8.5 (3.4)

 Table S1. Salt bridge distances

Mean value of the inter-residue sidechain distances (d^{SB} , in Å) between the residues that form salt bridges in the clusters a) C1, b) C2, c) C3, d) C5. Standard deviations are provided in braces. The first residue belongs to α Syn₁₋₉₅; the second residue belongs to A β_{1-42} .

Clusters	<nint.<sup>Aβ></nint.<sup>	<nint.<sup>aS ></nint.<sup>	$R_{g}^{A\beta}$	R_{g}^{aS}
C1	141.4	485.0	12.0	14.6
	(7.4)	(18.0)	(0.5)	(0.2)
C2	141.5	414.6	14.67	16.7
	(9.1)	(12.9)	(0.7)	(0.5)
C3	153.1	467.1	10.9	14.4
	(7.6)	(12.9)	(0.2)	(0.2)
C4	126.0	361.9	14.2	23.8
	(5.7)	(9.3)	(0.4)	(0.7)
C5	141.1	454.2	12.9	16.9
	(7.8)	(13.2)	(0.3)	(0.3)

Table S2. Details of internal contacts and compactness of peptides in different clusters

Mean values of the total number of internal contacts formed in the $A\beta_{1-42}$ ($N_{int}^{A\beta}$) and αSyn_{1-25} (N_{int}^{aS}) proteins in the five clusters. The corresponding radii of gyration (in Å) have been denoted as $R_g^{A\beta}$ and R_g^{aS} .

Figure S1. Evolution of the a) total inter-peptide interaction strength, and b) inter peptide distance over 150 ns for the dimensing trajectories.

Figure S2. The backbone mean square fluctuation (MSF) for the a) N-terminal residues, b) middle regions, and c) C-terminal residues of $A\beta_{1-42}$, and the d) N-terminal residues, e) middle regions, and f) C-terminal residues of α Syn₁₋₉₅. The data for the last 50 ns of the dimerising trajectories are shown in *gray*, with the averages in *green* (solid line). Corresponding average data for the same systems for the initial 50 ns is provided in green (broken line). Average data for the non-dimerising systems is shown in *maroon* (broken line) for comparison.

Figure S3. Residue wise maximum electrostatic (left column) and van der Waal (right column) interaction energies (in kcal mol⁻¹) of α Syn₁₋₉₅ with A β_{1-42} for clusters C1, C2, C3, C4 and C5.