Supplementary Information

In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase co-factor activity

Craig S. Brown^{a,b,j,1}, Michael S. Lee^{c,d,1}, Daisy W. Leung^{a,1}, Tianjiao Wang^b, Wei Xu^a, Priya Luthra^e, Manu Anantpadma^f, Reed S. Shabman^e, Lisa M. Melito^g, Karen S. MacMillan^g, Dominika M. Borek^{g,h,i}, Zbyszek Otwinowski^{g,h,i}, Parameshwaran Ramanan^{a,k}, Alisha J. Stubbs^{b,j}, Dayna S. Peterson^{b,j}, Jennifer M. Binning^{a,k}, Marco Tonelli^I, Mark A. Olson^d, Rob Davey^f, Joseph M. Ready^g, Christopher F. Basler^e, and Gaya K. Amarasinghe^{a*}

^aDepartment of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110; ^b Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011; ^cComputational Sciences and Engineering Branch, US Army Research Laboratory, Aberdeen, MD 21005; ^dIntegrated Toxicology Division, USAMRIID, 1425 Porter St., Ft. Detrick. MD 21702; ^eDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ^f Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, 78227; ^gDepartment of Biochemistry & ^hDepartment of Biophysics, UT Southwestern Medical Center at Dallas, Dallas, TX 75390; ⁱCenter for Structural Genomics of Infectious Diseases (CSGID), Chicago, Illinois; ⁱBiochemistry Undergraduate Program, Iowa State University, Ames, IA 50011; ⁱNational Magnetic Resonance Facility at Madison, University of Wisconsin, Madison, 433 Babcock Drive, Madison, WI 53706 USA.

¹These authors made equal contributions.

Supplementary Methods

Synthesis of Ligands for VP35

1. General Procedure for Imine synthesis:

The aldehyde (1 eq.) and aniline (1 eq.) were dissolved in ethanol and stirred at room temperature. When the reaction was complete (0.5-1 h), the mixture was filtered and rinsed with cold ethanol to afford the desired imine.

Imine 1: ¹H NMR (500 MHz, CDCl₃) δ 8.42 (s, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 7.19 (d, *J* = 8.3 Hz, 2H), 3.69 (s, 2H).

Imine 2: ¹H NMR (500 MHz, CDCl₃) δ 8.79 (s, 1H), 7.70 (s, 1H), 7.31 (d, *J* = 7.7 Hz, 2H), 7.18 (d, *J* = 7.6 Hz, 2H), 6.87 (s, 1H), 6.05 (s, 2H), 3.65 (s, 2H).

Imine 3 (LM-133-107): ¹H NMR (500 MHz, DMSO- d_6) δ 12.91 (s, 1H), 8.74 (d, J = 2.3 Hz, 1H), 7.98 (dd, J = 8.3, 2.0 Hz, 2H), 7.59 (d, J = 2.3 Hz, 1H), 7.31 (dd, J = 8.3, 1.9 Hz, 2H), 7.27 (d, J = 2.4 Hz, 1H), 6.20 (s, 2H).

Imine 4: ¹H NMR (500 MHz, CDCl₃) δ 8.49 (s, 1H), 7.38 (d, J = 5.8 Hz, 1H), 7.31 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 3.68 (s, 2H).

Imine 5: ¹H NMR (500 MHz, CDCl₃) δ 8.54 (s, 1H), 7.92 (d, *J* = 4.2 Hz, 1H), 7.37 (d, *J* = 4.2 Hz, 1H), 7.35 (d, *J* = 8.2 Hz, 2H), 7.25 (d, *J* = 8.2 Hz, 2H), 3.70 (s, 2H).

Imine 6: ¹H NMR (500 MHz, CDCl₃) δ 8.50 (s, 1H), 8.01 (d, *J* = 7.7 Hz, 2H), 7.73 (d, *J* = 7.7 Hz, 2H), 7.34 (d, *J* = 7.3 Hz, 2H), 7.22 (d, *J* = 7.2 Hz, 2H), 3.70 (s, 2H).

Imine 7: ¹H NMR (400 MHz, DMSO- d_6) δ 12.60 (s, 1H), 10.13 (s, 1H), 8.86 (s, 1H), 7.94 (s, 1H), 7.75 (d, J = 1.2 Hz, 1H), 7.71 – 7.64 (m, 2H), 6.97 (d, J = 8.0 Hz, 1H).

Imine 8: ¹H NMR (500 MHz, CDCl₃) δ 8.58 (s, 1H), 7.99 (d, *J* = 8.6 Hz, 1H), 7.76 (s, 1H), 7.42 (s, 2H), 7.00 (d, *J* = 8.7 Hz, 1H), 3.96 (s, 2H).

Imine 9: ¹H NMR (400 MHz, DMSO- d_6) δ 12.32 (s, 1H), 8.47 (s, 1H), 7.51 (s, 2H), 7.28 (d, J = 8.3 Hz, 2H), 7.18 (d, J = 8.2 Hz, 2H), 3.91 (s, 3H), 3.58 (s, 2H).

Imine 10: ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.19 (s, 1H), 8.07 (d, *J* = 7.9 Hz, 1H), 7.74 (d, *J* = 7.4 Hz, 1H), 7.61 (t, *J* = 8.0 Hz, 1H), 7.34 (d, *J* = 7.2 Hz, 2H), 7.21 (d, *J* = 7.8 Hz, 2H), 3.70 (s, 2H).

Imine 11: ¹H NMR (500 MHz, CDCl₃) δ 8.55 (s, 1H), 8.00 (d, *J* = 7.3 Hz, 1H), 7.94 (s, 1H), 7.50 (dt, *J* = 15.7, 7.8 Hz, 2H), 7.43 (s, 2H).

Imine 12: ¹H NMR (400 MHz, acetone- d_6) δ 8.50 (s, 1H), 7.46 (dd, J = 5.6, 1.3 Hz, 1H), 7.36 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 6.24 (s, 2H), 3.65 (s, 2H).

Imine 13: ¹H NMR (500 MHz, acetone- d_6) δ 8.84 (s, 1H), 8.34 (s, 1H), 8.30 (d, J = 7.8 Hz, 1H), 7.91 (d, J = 7.7 Hz, 1H), 7.81 (dd, J = 8.9, 5.3 Hz, 2H), 7.60 (d, J = 8.5 Hz, 1H), 7.52 (dd, J = 8.5, 2.6 Hz, 1H).

Imine 14: ¹H NMR (500 MHz, CD₃OD) δ 8.71 (s, 1H), 7.79 (s, 1H), 7.65 (s, 1H), 7.58 (s, 1H), 7.37 – 7.28 (m, 2H), 2.59 (s, 3H).

Imine 15: ¹H NMR (500 MHz, CD₃OD) δ 8.71 (s, 1H), 7.67 (d, *J* = 8.8 Hz, 1H), 7.60 (s, 1H), 7.50 (s, 1H), 7.38 (dd, *J* = 8.4, 2.6 Hz, 1H), 6.77 (dd, *J* = 8.6, 2.8 Hz, 1H).

2. Synthesis of pyrrolidinones

General synthetic scheme for preparation of pyrrolidinones

VPL-001: Sodium phenylpyruvate (200 mg, 0.9797 mmol) was

partitioned between 1M HCl and EtOAc (3x). The combined organic layers were concentrated to an oil (phenylpyruvic acid). This oil was dissolved in EtOH (3.25 mL), and aminophenylacetic acid (148 mg, 0.9797 mmol, 1 eq) and requisite aldehyde(1) (181 mg, 0.9797 mmol, 1 eq) were added to the mixture. The reaction vial was capped and heated to reflux overnight. The crude reaction mixture was concentrated and purified by chromatography on silica gel (0–100% EtOAc/Hexanes + 1% AcOH) then and recrystallization from EtOH/benzene to afford VPL-001 (60 mg, 13%) as a white solid.

¹H NMR (d_8 -THF, 500 MHz) δ = 10.0 (br s, 1H), 7.79 (d, 2H, J = 7.5 Hz), 7.61 (d, 2H, J = 8.5 Hz), 7.31 (s, 2H), 7.27 (app. t, 2H, J = 7.5 Hz), 7.21 (d, 2H, J = 8.5 Hz), 7.14 (t, 1H, J = 7.0 Hz), 6.74 (s, 1H), 6.51 (d, 2H, J = 6.0 Hz), 5.81 (d, 2H, J = 8.5 Hz), 3.46 (s, 2H). ESI m/z: 463.8 ([M+H]⁺, C₂₅H₁₉CINO₆ requires 464.1).

VPL-002: Imine 1 (20mg, 0.073mmol), ethyl 4-(2-methoxyphenyl)-2,4-dioxobutanoate (18mg, 0.073mmol), and triethylamine (0.36mmol) were combined in ethanol and heated to

reflux overnight. The crude reaction mixture was concentrated and partitioned between ethyl acetate and 1N HCI. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The product precipitated out of a 10% THF/hexanes mixture to afford the desired product (5mg) as and off white solid. ¹H NMR (500 MHz, cd₃cn) δ 7.45 (d, *J* = 8.4 Hz, 2H), 7.42 – 7.38 (m, 1H), 7.19 (d, *J* = 8.3 Hz, 2H), 7.09 (d, *J* = 4.2 Hz, 2H), 7.06 (d, *J* = 8.4 Hz, 2H), 6.96 (d, *J* = 8.4 Hz, 1H), 6.90 (t, *J* = 7.4 Hz, 1H), 5.96 (s, 1H), 3.74 (s, 3H), 3.53 (s, 2H). ESI *m/z*: 477.8 ([M+H]⁻, C₂₆H₂₀CINO₆ requires 478.0).

VPL-003: Imine 2 (43mg, 0.135mmol), ethyl 4-(2methoxyphenyl)-2, 4-dioxobutanoate, (34mg, 0.135mmol), and triethylamine (0.677 mmol) were combined in ethanol and

heated to reflux overnight. The crude reaction mixture was concentrated and partitioned between ethyl acetate and 1N HCI. The organic layer was dried over Na₂SO₄, concentrated under reduced pressure, and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (6.6 mg off white solid).

¹H NMR (400 MHz, cd₃cn) δ 7.40 (d, *J* = 7.0 Hz, 2H), 7.22 (d, *J* = 7.9 Hz, 2H), 7.06 (d, *J* = 7.6 Hz, 1H), 6.98 (d, *J* = 8.4 Hz, 1H), 6.90 (t, *J* = 7.1 Hz, 1H), 6.66 (s, 1H), 6.58 (s, 1H), 6.43 (s, 1H), 5.90 (d, *J* = 6.9 Hz, 2H), 3.78 (s, 3H), 3.55 (s, 2H). ESI *m/z*: 519.8 ([M-H]⁻, C₂₇H₂₀CINO₈ requires 520.0).

VPL-004: Imine 3 (65mg, 0.213mmol), ethyl 2, 4-dioxo-4phenylbutanoate (47 mg, 0.213mmol), and triethylamine (1.067 mmol) were combined in ethanol and heated to reflux overnight.

The crude reaction mixture was concentrated and partitioned between ethyl acetate and

1N HCl. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography on silica gel (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (17 mg tan solid).

¹H NMR (400 MHz, cd₃od) δ 7.88 (d, *J* = 8.3 Hz, 1H), 7.72 (d, *J* = 7.7 Hz, 1H), 7.58 (d, *J* = 8.3 Hz, 1H), 7.40 – 7.35 (m, 1H), 7.35 – 7.29 (m, 1H), 6.65 (s, 1H), 6.57 (s, 1H), 6.47 (s, 1H), 5.83 (s, 1H). ESI *m/z*: 477.7 ([M+H]⁻, C₂₅H₁₆CINO₇ requires 478.0).

VPL-005: Imine 4 (15 mg, 0.0454 mmol), ethyl 2, 4-dioxo-4phenylbutanoate (10 mg, 0.0454 mmol), and diisopropylamine (0.231 mmol) were combined in ethanol and heated to reflux

overnight. The crude reaction mixture was concentrated and partitioned between ethyl acetate and 1N HCI. The organic layer was dried over Na₂SO₄, concentrated under reduced pressure, and purified by chromatography on silica gel (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (4.4 mg tan solid). The compound had very poor solubility in most organic solvents, including DMSO. NMR is very difficult to interpret due to poor solubility.

¹H NMR (500 MHz, dmso) δ 8.42 (s, 2H), 7.79 (d, *J* = 5.8 Hz, 1H), 7.48 (d, *J* = 2.0 Hz, 1H), 7.32 (dd, *J* = 16.5, 6.8 Hz, 2H), 7.23 (s, 2H), 6.95 (s, 1H), 6.27 (s, 1H). ESI *m/z*: 495.6 ([M-H]⁻, C₂₃H₁₆BrNO₅S requires 496.0).

VPL-006: Imine 1, (110mg, 0.402mmol), ethyl 2, 4-dioxo-4-(ptolyl)butanoate (100mg, 0.402mmol), and triethylamine (2.0mmol) were combined in dioxane and heated to reflux

overnight. The crude reaction mixture was concentrated and partitioned between ethyl acetate and 1N HCI. The organic layer was dried over Na₂SO₄, concentrated under reduced pressure and purified by chromatography on silica gel (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (63mg tan solid).

¹H NMR (500 MHz, cd₃cn) δ 7.66 (d, J = 8.1 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 7.8 Hz, 1H), 7.22 (d, J = 8.5 Hz, 1H), 7.18 (d, J = 8.5 Hz, 2H), 6.17 (s, 1H), 3.54 (s, 2H), 2.38 (s, 3H). ESI *m/z*: 460.8 ([M-H]⁻, C₂₆H₂₀CINO₅ requires 460.0).

VPL-007: Imine 1 (12mg, 0.044 mmol), ethyl 2, 4-dioxo-4-(thiophen-3-yl)butanoate (10mg, 0.044mmol), and triethylamine (0.22 mmol) were combined in ethanol and heated to reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0-100%) Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (4.5mg tan solid).

¹H NMR (400 MHz, cd₃cn) δ 8.36 (s, 1H), 7.49 (d, *J* = 7.9 Hz, 2H), 7.45 (d, *J* = 4.5 Hz, 1H), 7.37 (s, 1H), 7.33 (d, *J* = 7.7 Hz, 2H), 7.20 (dd, *J* = 14.5, 8.2 Hz, 4H), 6.15 (s, 1H), 3.55 (s, 2H). ESI *m/z*: 451.7 ([M-H]⁻, C₂₃H₁₆CINO₅S requires 452.0).

VPL-008: Imine 1 (58 mg, 0.212 mmol), ethyl 4-(4methoxyphenyl)-2, 4-dioxobutanoate (53 mg, 0.212 mmol), triethylamine (110mg, 1.0 9mmol) were combined in dioxane

and heated to 80 °C overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0– 100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (34mg white solid).

¹H NMR (500 MHz, CD₃CN) δ 7.78 (dd, *J* = 8.7, 1.8 Hz, 2H), 7.56 – 7.45 (m, 2H), 7.33 (d, *J* = 6.9 Hz, 2H), 7.22 (dd, *J* = 8.6, 1.4 Hz, 1H), 7.18 (dd, *J* = 7.4, 1.0 Hz, 1H), 6.95 (dd, *J* = 8.6, 1.3 Hz, 2H), 6.19 (s, 1H), 3.85 (s, 2H), 3.55 (s, 1H). ESI *m/z*: 476.8 ([M-H]⁻, C₂₆H₂₀CINO₆ requires 476.1).

VPL-009: Prepared analogously to VPL-001: Purification (SiO₂, 0– 70% EtOAc/Hex + 1% AcOH) afforded product mixed with other impurities. This mixture was suspended in 1:1 MeCN/H₂O and a

white precipitate formed. The solid was collected as pure product (9 mg, 4%).

¹H NMR (*d*₈-THF, 500 MHz) δ =10.80 (br s, 1H), 9.01 (br s, 1H), 7.51 (d, 2H, J = 8.5 Hz), 7.17–7.13 (m, 5H), 7.09 (m, 1H), 6.80 (s, 1H), 6.30 (s, 1H), 5.91 (s, 1H), 5.85 (s, 2H), 3.68 (d, 1H, J = 14.5 Hz), 3.41 (s, 2H), 3.17 (d, 1H, J = 14.5 Hz). ESI *m/z*: 477.8 ([M+H]⁺, C₂₆H₂₁CINO₆ requires 478.1).

VPL-010: To a dry scintillation vial under nitrogen was added VPL-003 (19mg, 0.0364mmol). This was suspended in 1ml of

of

methanol.

100ul

of

7eq.

trimethylsilyldiazomethane (2.0 M solution in hexanes) was added and the reaction was stirred at room temperature. The solvent was evaporated under reduced pressure. Purification (SiO₂, 0–10% MeOH/dichloromethane) afforded the desired product.

and

dichloromethane

¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 8.5 Hz, 2H), 7.47 – 7.42 (m, 1H), 7.29 (d, *J* = 7.5 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.96 (t, *J* = 7.5 Hz, 1H), 6.91 (d, *J* = 8.4 Hz, 2H), 6.59 (s, 1H), 6.47 (s, 1H), 6.40 (s, 1H), 5.89 (d, *J* = 11.8 Hz, 2H), 4.01 (s, 3H), 3.84 (s, 3H), 3.57 (s, 2H), 3.49 (s, 3H). ESI *m/z*: 535.8 ([M+H]⁺, C₂₉H₂₄CINO₈ requires 549.8).

VPL-011: Imine 1 (11.6 mg, 0.0423 mmol), ethyl 2, 4-dioxo-4-(4- (trifluoromethyl) phenyl)butanoate (12.2 mg, 0.0423 mmol), diisopropylethylamine (0.211 mmol), were dissolved in dioxane

and heated to 80 $^{\circ}$ C for 2 days. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–

100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H_20 , 2.5% formic acid) to afford the desired product (4.8mg white solid).

¹H NMR (400 MHz, CD₃CN) δ 7.84 (d, *J* = 8.3 Hz, 2H), 7.71 (d, *J* = 8.3 Hz, 2H), 7.50 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.3 Hz, 12H), 7.20 (t, *J* = 8.4 Hz, 4H), 6.11 (s, 1H), 3.54 (s, 2H). ESI *m/z*: 513.8 ([M-H]⁺, C₂₆H₁₇CIF₃N₂O₅ requires 514.0).

VPL-012: Imine 5 (10 mg, 0.0346 mmol), ethyl 2, 4-dioxo-4-(4-(trifluoromethyl) phenyl)butanoate (10 mg, 0.0346 mmol), and diisopropylethylamine (0.17 mmol) were dissolved in dioxane and

heated to 80 °C overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. The organic layer was concentrated and dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (3.2 mg white solid).

¹H NMR (400 MHz, CD₃CN) δ 7.90 (d, *J* = 7.9 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.63 (d, *J* = 3.9 Hz, 1H), 7.51 (d, *J* = 8.3 Hz, 1H), 7.28 (d, *J* = 8.4 Hz, 1H), 7.15 (d, *J* = 3.5 Hz, 1H), 6.44 (s, 1H), 3.58 (s, 1H). ESI *m/z*: 530.7 ([M-H]⁺, C₂₄H₁₅F₃N₂O₇S requires 531.0).

VPL-013: Imine 1 (47 mg, 0.17 mmol), ethyl 4-(3-methoxyphenyl)-2,4-dioxobutanoate (43 mg, 0.17 mmol), and triethylamine (0.86 mmol) were dissolved in dioxane and heated to 80 $^{\circ}$ C overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was concentrated and dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (2.3 mg white solid).

¹H NMR (500 MHz, CD₃CN) δ 7.49 (d, *J* = 8.2 Hz, 2H), 7.36 – 7.27 (m, 4H), 7.21 (d, *J* = 8.6 Hz, 3H), 7.17 (d, *J* = 8.2 Hz, 2H), 7.10 (d, *J* = 7.3 Hz, 1H), 6.15 (s, 1H), 3.79 (s, 3H), 3.54 (s, 2H). ESI *m/z*: 475.8 ([M-H]⁺, C₂₆H₂₀CINO₆ requires 476.1).

VPL-014; Imine 1 (32.5 mg, 0.118 mmol), ethyl 2, 4-dioxo-4-(thiophen-2-yl) butanoate (26.85 mg, 0.118 mmol), and triethylamine (0.59 mmol) were dissolved in ethanol and heated to 80 °C overnight.

The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was concentrated and dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (15.3mg white solid).

¹H NMR (500 MHz, CD₃CN) δ 8.14 (d, *J* = 2.0 Hz, 1H), 7.73 (d, *J* = 4.6 Hz, 1H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 7.19 (dd, *J* = 15.9, 8.2 Hz, 4H), 7.13 (s, 1H), 6.14 (s, 1H), 3.54 (s, 3H). ESI *m/z*: 451.8 ([M-H]⁺, C₂₃H₁₆CINO₅S requires 452.0)

VPL-015: Prepared analogously to VPL-001.

¹H NMR (d_6 -acetone, 500 MHz) δ = 7.69 (d, 1H, J = 7.5 Hz), 7.66 (d, 2H, J = 7.5 Hz), 7.30 (d, 2H, J = 8.0 Hz, 7.26 (d, 1H, J = 8.0 Hz), 7.25 (s, 1H), 7.11 (s, 1H), 7.03 (d, 1H, J = 8.5 Hz), 6.96 (t, 1H, J = 7.5 Hz), 6.90 (s,

1H), 3.96 (s, 3H), 3.58 (s, 2H). ESI *m/z*: 497.6 ([M–H]⁻, C₂₃H₁₇BrNO₅S requires 498.0).

VPL-016: Prepared analogously to VPL-001: ¹H NMR (d_4 -MeOH, 500 MHz) δ = 7.95 (d, 1H, J = 8.0 Hz), 7.65 (dd, 1H, J = 7.0, 7.5 Hz), 7.55 (d, 1H, J = 8.0 Hz), 7.52 (m, 3H), 7.31 (d, 2H, J

= 8.5 Hz), 7.20 (s, 1H), 7.00 (s, 1H), 6.58 (s, 1H), 3.59 (s, 2H). ESI m/z: 512.7 ([M-H]-, $C_{22}H_{14}BrN_2O_6S$ requires 513.0).

VPL-017: Prepared analogously to VPL-001. Upon standing, the product precipitated out of solution as a brown solid (115 mg, 24%).

¹H NMR (d_8 -THF, 500 MHz) δ = 11.48 (br s, 1H), 9.95 (br s, 1H), 8.26 (s, 1H), 7.92 (d, 2H, J = 8.0 Hz), 7.77 (d, 1H, J = 7.5 Hz), 7.63–7.57 (m, 2H), 7.47 (app. t, 1H, J = 8.0 Hz), 7.41 (app. t, 1H, J = 8.0 Hz), 7.22 (s, 1H), 7.11 (s, 1H), 6.62 (s, 1H). ESI m/z: 498.6 ([M–H]⁻, C₂₁H₁₂BrN₂O₆S requires 499.0).

VPL-018: Imine 6 (10.4 mg, 0.0338 mmol), ethyl 4-(2methoxyphenyl)-2, 4-dioxobutanoate (8.5 mg, 0.0338 mmol), and diisopropylethylamine (0.169 mmol) were dissolved in ethanol and heated to 80 $^{\circ}$ C overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was concentrated and dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0– 100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (2.5mg white solid).

¹H NMR (500 MHz, , CD₃CN) δ 7.47 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 7.7 Hz, 3H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.2 Hz, 2H), 7.07 (d, *J* = 7.2 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 1H), 6.89 (t, *J* = 7.4 Hz, 1H), 6.07 (s, 1H), 3.72 (s, 3H), 3.53 (s, 2H). ESI *m/z*: 509.8 ([M–H]⁻, C₂₇H₂₀F₃NO₆ requires 510.1).

VPL-019: Imine 6 (10.5 mg, 0.0341 mmol), ethyl 4-(3methoxyphenyl)-2,4-dioxobutanoate (8.5 mg, 0.0341 mmol), and diisopropylethylamine (0.17 mmol) were dissolved in

ethanol and heated to 80 °C overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was concentrated and dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (2.9mg white solid). ¹H NMR (500 MHz, CD₃CN) δ 7.56 (d, *J* = 8.1 Hz, 2H), 7.51 (t, *J* = 8.4 Hz, 3H), 7.34 (dt, *J* = 21.4, 6.7 Hz, 3H), 7.25 – 7.19 (m, 3H), 7.11 (d, *J* = 8.9 Hz, 1H), 6.24 (s, 1H), 3.80 (s, 3H), 3.54 (s, 2H). ESI *m/z*: 509.8 ([M–H]⁻, C₂₇H₂₀F₃NO₆ requires 510.1).

VPL-020: Imine 6 (25 mg, 0.0813 mmol), ethyl 2,4-dioxo-4phenylbutanoate (18mg, 0.0813 mmol), and triethylamine (0.406 mmol) were dissolved in ethanol and heated to 80 °C overnight.

The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was concentrated and dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (19.6mg white solid).

¹H NMR (500 MHz, thf- d_8) δ 7.80 (d, J = 3.6 Hz, 2H), 7.65 (d, J = 8.2 Hz, 2H), 7.49 (bs, 2H), 7.44 – 7.33 (m, 3H), 7.32 – 7.23 (m, 3H), 7.18 (d, J = 8.1 Hz, 2H), 6.25 (s, 1H), 3.43 (s, 2H). ESI m/z: 479.8 ([M–H]⁻, C₂₆H₁₈F₃NO₅ requires 480.1).

VPL-021: Imine 6 (11mg, 0.0346), ethyl 2,4-dioxo-4-(4- (trifluoromethyl)phenyl)butanoate (10 mg, 0.0346 mmol), and diisopropylethylamine (0.173 mmol) were dissolved in dioxane

and heated to 80 °C overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. Heavy precipitate formed in the

organic layer, which was filtered and rinsed with cold hexanes to afford the desired product as white solid. (5.8mg)

¹H NMR (500 MHz, , CD₃CN) δ 7.85 (d, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.58 (d, *J* = 8.1 Hz, 2H), 7.52 (d, *J* = 8.3 Hz, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.24 (s, 1H), 3.55 (s, 2H). ESI *m/z*: 547.8 ([M–H]⁻, C₂₇H₁₇F₆NO₅ requires 548.1)

VPL-022: Imine 6 (20 mg, 0.065 mmol), ethyl 4-(5methylthiophen-2-yl)-2,4-dioxobutanoate (15.6 mg, 0.065 mmol), and diisopropylethylamine (0.325 mmol) were dissolved

in ethanol and heated to 80 °C overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was concentrated and dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (14.4mg white solid).

¹H NMR (400 MHz, CD₃CN) δ 7.99 (d, *J* = 3.1 Hz, 1H), 7.52 (dd, *J* = 19.6, 8.6 Hz, 6H), 7.21 (d, *J* = 8.5 Hz, 2H), 6.84 (d, *J* = 2.7 Hz, 1H), 6.20 (s, 1H), 3.54 (s, 2H), 2.47 (s, 3H). ESI *m/z*: 499.8 ([M–H]⁻, C₂₅H₁₈F₃NO₅S requires 520.1)

VPL-023: Imine 6 (20 mg, 0.065 mmol), ethyl 4-(5bromothiophen-2-yl)-2,4-dioxobutanoate (20 mg, 0.065 mmol), and diisopropylethylamine (0.325 mmol) were dissolved in ethanol

and heated to 80 °C overnight. The crude reaction mixture was concentrated and

partitioned between dichloromethane and 1N HCI. The organic layer was concentrated and dried over Na_2SO_4 and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (19.5 mg white solid).

¹H NMR (400 MHz, , CD₃CN) δ 8.10 (s, 1H), 7.55 (d, J = 8.6 Hz, 2H), 7.51 (d, J = 8.2 Hz, 3H), 7.21 (d, J = 8.2 Hz, 3H), 7.17 (d, J = 3.6 Hz, 1H), 6.16 (s, 1H), 3.54 (s, 2H). ESI *m/z*: 563.6 ([M–H]⁻, C₂₄H₁₅BrF₃NO₅S requires 563.9)

VPL-024: Imine 6 (20 mg, 0.065 mmol), ethyl 4-(5-chlorothiophen-2-yl)-2,4-dioxobutanoate (17 mg, 0.065 mmol), and diisopropylethylamine (0.325 mmol) were

dissolved in ethanol and heated to 80 °C overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was concentrated and dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (24 mg white solid).

¹H NMR (400 MHz, thf) δ 10.84 (s, 1H), 8.01 (s, 1H), 7.61 (d, *J* = 7.5 Hz, 1H), 7.56 (d, *J* = 7.6 Hz, 1H), 7.48 (d, *J* = 7.6 Hz, 1H), 7.20 (d, *J* = 8.4 Hz, 1H), 7.04 (s, 1H), 6.29 (s, 1H), 3.45 (s, 2H). ESI *m/z*: 519.7 ([M–H]⁻, C₂₄H₁₅CIF₃NO₅S requires 520.0)

VPL-025: Imine 7 (22 mg, 0.0676 mmol), ethyl 2,4-dioxo-4phenylbutanoate (14.9 mg, 0.0676 mmol), and diisopropylethylamine (0.325 mmol) were dissolved in ethanol and

heated to 80 °C overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. The organic layer was concentrated and dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (9.8 mg white solid).

¹H NMR (400 MHz, thf) δ 9.63 (s, 1H), 7.91 (s, 2H), 7.87 (d, *J* = 5.7 Hz, 2H), 7.77 (d, *J* = 8.3 Hz, 1H), 7.50 (dt, *J* = 19.1, 9.9 Hz, 2H), 7.39 (t, *J* = 7.1 Hz, 2H), 7.14 (s, 1H), 6.90 (d, *J* = 8.4 Hz, 2H), 6.62 (s, 1H). ESI *m/z*: 497.7 ([M–H][–], C₂₂H₁₄BrNO₆S requires 497.97)

VPL-026: Imine 6 (12.3mg, 0.04mmol), ethyl 4-(4methoxyphenyl)-2,4-dioxobutanoate (10 mg, 0.04mmol), and diisopropylethylamine (0.2mmol) were dissolved in ethanol

and heated to 80 °C overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was concentrated and dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (5.1 mg white solid).

¹H NMR (500 MHz, , CD₃CN) δ 7.78 (d, *J* = 8.7 Hz, 2H), 7.56 (d, *J* = 8.2 Hz, 2H), 7.51 (t, *J* = 9.3 Hz, 4H), 7.22 (d, *J* = 8.3 Hz, 2H), 6.94 (d, *J* = 8.7 Hz, 2H), 6.27 (s, 1H), 3.84 (s, 3H), 3.54 (s, 2H). ESI *m/z*: 509.8 ([M–H]⁻, C₂₇H₂₀F₃NO₆ requires 510.2)

VPL-027: Ethyl 2,4-dioxo-4-phenylbutanoate (61 mg, 0.188 mmol, 2 equiv) and imine 14 (20.7 mg, 0.094 mmol, 1 equiv) were suspended in EtOH (0.73 mL) and Et_3N (0.065 mL, 5 equiv) was

added. The reaction was heated at 80 °C overnight. The crude reaction mixture was concentrated and purified by chromatography (SiO2, 0–20% MeOH/DCM + 1% AcOH) to afford the desired product.

Poor solubility properties prevent interpretation of the ¹H NMR.

ESI *m/z*: 495.7 ([M–H]⁻, C₂₃H₁₅BrNO₅S requires 496.0).

VPL-028: Prepared analogously to VPL-001. The crude product purified by chromatography (SiO₂, 0–3% MeOH/dichloromethane +1% AcOH) to afford the desired

product mixed with 4-aminophenylacetic acid. This mixture was dissolved in EtOAc and extracted with satd. aq. NaHCO₃. The organic layer was removed, and the aqueous layer was heated. Upon cooling to room temperature, the desired product precipitated out of solution as fine plate-like crystals.

¹H NMR (d_4 -MeOH, 500 MHz) δ = 8.06 (d, 1H, J = 8.0 Hz), 7.52 (s, 1H), 7.45 (m, 2H), 7.33 (m, 3H), 7.11 (t, 1H, J = 7.0 Hz), 7.08 (s, 1H), 7.07 (s, 1H), 7.04 (t, 1H, J = 8.0 Hz), 6.55 (s, 1H), 3.46 (s, 2H). ESI *m*/*z*: 506.7 ([M–H][–], C₂₄H₁₆BrN₂O₄S requires 507.0).

VPL-029: Ethyl 2,4-dioxo-4-phenylbutanoate (21.8 mg, 0.0990 mmol) was combined with imine 14 (136 mg, 0.3960 mmol) and N,N-diisopropylethylamine (0.086 mL, 0.4950 mmol) in EtOH (0.5

mL) and the mixture was heated at reflux overnight. The resulting mixture was concentrated and purified by chromatography (SiO₂, 0–20% MeOH/DCM +1% AcOH). The resulting fractions containing product were combined and concentrated. The product was precipitated out of a 10% THF/MeOH mixture to afford the desired product (6.0 mg) as a very insoluble white solid.

¹H NMR (d_6 -DMSO, 600 MHz) δ = 7.90 (br s, 1H), 7.76 (d, 2H, J = 6.6 Hz), 7.47 (dd, 1H, J = 2.4, 9.0 Hz), 7.35 (t, 1H, J = 7.2 Hz), 7.31–7.27 (m, 5H), 6.98 (s, 1H), 6.28 (s, 1H). ESI m/z: 515.6 ([M–H]⁻, C₂₂H₁₂BrCINO₅S requires 515.9).

VPL-030: GA-228 (9.0 mg, 0.0407 mmol) and ammonium formate (2.2 mg, 0.0732 mmol) were dissolved in 2-methoxyethanol (0.15 mL) and heated at reflux overnight. The

resulting mixture was concentrated and purified by chromatography (0–20% MeOH/DCM) to afford the desired product (4.0 mg, 44%).

¹H NMR (d_4 -MeOH, 500 MHz) δ = 7.49 (t, 1H, J = 8.5 Hz), 7.42–7.39 (m, 4H), 7.33 (d, 2H, J = 7.5 Hz), 7.25 (d, 2H, J = 8.5 Hz), 6.15 (s, 1H), 6.03 (s, 1H), 5.99 (s, 1H), 5.86 (s, 1H), 5.83 (s, 1H), 3.49 (s, 2H). ESI m/z: 488.8 ([M–H]⁻, C₂₆H₁₈CIN₂O₆ requires 489.1).

VPL-031: Imine 8 (21mg, 0.061mmol), ethyl 2,4-dioxo-4phenylbutanoate (3.5mg, 0.061 mmol), and diisopropylethylamine (0.305 mmol) were combined in ethanol and heated to reflux

overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na_2SO_4 and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (4.5mg tan solid).

¹H NMR (400 MHz, thf- d_8) δ 7.94 – 7.86 (m, 3H), 7.52 – 7.43 (m, 2H), 7.43 – 7.34 (m, 2H), 7.15 – 7.06 (m, 2H), 6.88 (s, 1H), 6.47 (s, 1H), 3.93 (s, 3H). ESI *m/z*: 511.6 ([M–H]⁻, C₂₃H₁₆BrNO₆S requires 511.99).

VPL-032: Imine 1 (18.4mg, 0.0672mmol), ethyl 2,4-dioxo-4phenylbutanoate (14.8 mg, 0.0672 mmol), and diisopropylethylamine (0.336 mmol) were combined in ethanol

and heated to reflux overnight. The crude reaction mixture was concentrated and

partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0-100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (6.2 mg tan solid).

¹H NMR (400 MHz, CD₃CN) δ 7.73 (d, J = 7.3 Hz, 2H), 7.60 – 7.54 (m, 1H), 7.50 (d, J = 8.4 Hz, 2H), 7.47 – 7.39 (m, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.20 (dd, J = 16.2, 8.2 Hz, 4H), 6.18 (s, 1H), 3.55 (s, 2H). ESI *m/z*: 445.8 ([M–H]⁻, C₂₅H₁₈CINO₅ requires 446.08).

VPL-033: Imine 9 (58 mg, 0.18 mmol), ethyl 2,4-dioxo-4phenylbutanoate (40 mg, 0.18 mmol), and triethylamine (0.9 mmol) were combined in dioxane and heated to reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0-100%) Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (33 mg tan solid).

¹H NMR (400 MHz, CD₃CN) δ 7.76 (d, J = 7.8 Hz, 2H), 7.58 (t, J = 8.3 Hz, 1H), 7.53 – 7.42 (m, 4H), 7.24 (d, J = 8.2 Hz, 2H), 6.89 (s, 1H), 6.76 (s, 1H), 6.09 (s, 1H), 3.73 (s, 3H), 3.56 (s, 2H). ESI *m/z*: 491.8 ([M–H]⁻, C₂₆H₂₀CINO₇ requires 492.09).

VPL-034: Imine 10 (24 mg, 0.078 mmol), ethyl 4-(5bromothiophen-2-yl)-2,4-dioxobutanoate (11.9 mg, 0.078 mmol), and triethylamine (0.195 mmol) were combined in

dioxane and heated to reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (12.4 mg white solid).

¹H NMR (400 MHz, CD₃CN) δ 7.94 (d, *J* = 2.7 Hz, 1H), 7.71 (s, 1H), 7.62 (d, *J* = 7.7 Hz, 1H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.42 – 7.34 (m, 1H), 7.27 – 7.11 (m, 4H), 6.18 (s, 1H), 3.54 (s, 2H). ESI *m/z*: 563.6 ([M–H]⁻, C₂₄H₁₅BrF₃NO₆S requires 563.98).

VPL-035: Imine 6 (30mg, 0.1mmol), ethyl 2,4-dioxo-4-(thiophen-2yl)butanoate (11.2 mg, 0.05mmol), and triethylamine (0.25 mmol) were combined in dioxane and heated to reflux overnight. The

crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na_2SO_4 and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) followed by a trituration with DCM to afford the desired product (8.9 mg white solid).

¹H NMR (500 MHz, acetone) δ 9.36 (s, 1H), 7.71 (d, *J* = 7.6 Hz, 2H), 7.57 (d, *J* = 7.7 Hz, 2H), 7.53 (d, *J* = 3.2 Hz, 2H), 7.44 (bs, 2H), 7.24 (d, *J* = 7.1 Hz, 2H), 7.03 (s, 1H), 6.15 (s, 1H), 3.54 (s, 2H).

ESI *m/z*: 485.8 ([M–H]⁻, C₂₄H₁₆F₃NO₅S requires 486.07).

VPL-036: Imine 10 (26mg, 0.084mmol), ethyl 4-(5-chlorothiophen-2-yl)-2,4-dioxobutanoate (11 mg, 0.042 mmol), and triethylamine (0.21 mmol) were combined in

dioxane and heated to reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) followed by a trituration with DCM to afford the desired product (4.4 mg white solid).

¹H NMR (500 MHz, acetone) δ 8.14 (d, *J* = 4.0 Hz, 1H), 7.85 (s, 1H), 7.74 (d, *J* = 7.5 Hz, 1H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.49 – 7.43 (m, 1H), 7.28 (d, *J* = 8.3 Hz, 2H), 7.17 (d, *J* = 4.1 Hz, 1H), 6.41 (s, 1H), 3.56 (s, 2H). ESI *m/z*: 519.7 ([M–H]⁻, C₂₄H₁₅CIF₃NO₅S requires 520.0).

VPL-037: 4-aminophenyl acetic acid (27mg, 018mmol), 3-chloro-4, 5-dimethoxybenzaldehyde (36 mg, 0.18 mmol), ethyl 2,4-dioxo4-phenylbutanoate (20mg, 0.09mmol), and triethylamine (0.9 mmol) were combined in 2 ml of ethanol and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (16.2mg white solid).

¹H NMR (500 MHz, acetone) δ 7.89 (d, *J* = 7.3 Hz, 2H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.62 – 7.53 (m, 1H), 7.48 (t, *J* = 7.3 Hz, 2H), 7.30 (d, *J* = 8.3 Hz, 2H), 7.14 (d, *J* = 9.2 Hz, 2H), 6.30 (s, 1H), 3.79 (s, 3H), 3.64 (s, 3H), 3.58 (s, 2H).

ESI *m/z*: 505.8 ([M–H]⁻, C₂₇H₂₂CINO₇ requires 506.1).

VPL-038: Imine 11 (18.1 mg, 0.058 mmol), ethyl 4-(5bromothiophen-2-yl)-2,4-dioxobutanoate (8.9 mg, 0.029 mmol), and triethylamine (0.145 mmol) were combined in ethanol and heated to

reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (3.8 mg white solid). Compound had very poor solubility in most organic solvents.

¹H NMR (500 MHz, acetone- d_6) δ 8.96 (s, 1H), 8.44 (d, J = 1.2 Hz, 1H), 7.93 (d, J = 5.1 Hz, 1H), 7.84 (d, J = 6.7 Hz, 1H), 7.60 – 7.41 (m, 1H), 7.12 (d, J = 10.9 Hz, 3H), 6.53 (s, 1H). ESI m/z: 565.5 ([M–H]⁻, C₂₀H₁₁Br₂NO₅S₂ requires 565.8).

VPL-039: Imine 4 (40 mg, 0.12 mmol), ethyl 4-(5-bromothiophen-2-yl)-2,4-dioxobutanoate (37.6 mg, 0.12 mmol), and triethylamine (0.617 mmol) were combined in

dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) followed precipitation from ethyl acetate and hexanes to afford the desired product (21.2 mg white solid).

¹H NMR (500 MHz, acetone- d_6) δ 8.31 (s, 1H), 7.66 (dd, J = 11.5, 8.3 Hz, 2H), 7.33 (d, J = 7.2 Hz, 2H), 7.22 (d, J = 23.7 Hz, 3H), 6.56 (s, 1H), 3.61 (s, 2H). ESI *m*/*z*: 579.5 ([M–H]⁻, C₂₁H₁₃Br₂NO₅S₂ requires 579.8).

VPL-040: Imine 12 (73 mg, 0.23 mmol), ethyl 4-(5-chlorothiophen-2-yl)-2,4-dioxobutanoate (30 mg, 0.115 mmol), and triethylamine (0.575 mmol) were combined in

dioxane and heated to reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0-100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) followed precipitation from tetrahydrofuran and toluene to afford the desired product (12.1 mg white solid).

¹H NMR (500 MHz, acetone-*d*₆) δ 9.22 (s, 1H), 7.71 (d, *J* = 7.9 Hz, 2H), 7.27 (d, *J* = 6.8 Hz, 2H), 7.20 – 7.06 (m, 1H), 6.93 (d, *J* = 19.3 Hz, 2H), 6.74 (s, 1H), 5.96 (s, 2H), 3.57 (s, 2H). ESI *m/z*: 529.7 ([M–H][–], C₂₄H₁₅Cl₂NO₇S requires 529.99).

VPL-041: Imine 11 (71mg, 0.23mmol), ethyl 4-(5-chlorothiophen-2-yl)-2,4-dioxobutanoate -diketoester (30 mg, 0.115 mmol), and triethylamine (0.575 mmol) were combined in ethanol and heated

to reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. The organic layer was dried over Na_2SO_4 and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) followed precipitation from ethyl acetate:hexanes to afford the desired product (9.8 mg off-white solid).

¹H NMR (500 MHz, acetone- d_6) δ 8.38 (s, 1H), 8.19 (d, J = 0.8 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.87 (d, J = 7.4 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.31 (s, 1H), 7.26 (s, 1H), 7.20 (s, 1H), 6.73 (s, 1H). ESI *m/z*: 521.6 ([M–H]⁻, C₂₀H₁₁BrCINO₅S₂ requires 521.9).

VPL-042: 4-aminophenyl acetic acid (59 mg, 038 mmol), 4bromo-2-thiophenecarboxaldehyde (73 mg, 0.38 mmol), ethyl 4-(5-chlorothiophen-2-yl)-2.4-dioxobutanoate (50 mg, 0.19

mmol), and triethylamine (97 mg, 0.96 mmol) were combined in 2 ml of dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) followed precipitation from ethyl acetate:hexanes to afford the desired product (22.6 mg white solid).

¹H NMR (500 MHz, acetone- d_6) δ 8.18 (s, 1H), 7.65 (d, J = 8.5 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.31 (s, 1H), 7.25 (s, 1H), 7.20 (d, J = 3.0 Hz, 1H), 6.62 (s, 1H), 3.62 (s, 2H). ESI m/z: 535.6 ([M–H]⁻, C₂₁H₁₃BrCINO₅S₂ requires 535.9).

VPL-043: 4-aminophenyl acetic acid (59 mg, 038 mmol), 4bromo-2-thiophenecarboxaldehyde (73 mg, 0.38 mmol), ethyl 4-(3-chlorophenyl)-2,4-dioxobutanoate (50 mg, 0.19 mmol),

and triethylamine (97 mg, 0.96 mmol) were combined in 2 ml of dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na_2SO_4 and concentrated under reduced pressure and purified by chromatography (0–100%)

Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) followed precipitation from acetone to afford the desired product (13.4 mg yellow solid).

¹H NMR (500 MHz, thf) δ 7.85 (s, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.62 (d, *J* = 8.3 Hz, 2H), 7.55 (d, *J* = 7.9 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 1H), 7.28 (d, *J* = 8.3 Hz, 2H), 7.19 (s, 1H), 7.15 (s, 1H), 6.56 (s, 1H), 3.58 (s, 2H). ESI *m/z*: 529.6 ([M–H][–], C₂₃H₁₅BrCINO₅S requires 529.9).

VPL-044: 4-aminophenyl acetic acid (59mg, 0393mmol), 7chlorobenzo[d][1,3]dioxole-5-carbaldehyde (72mg,

4-(3-chlorophenyl)-2,4-dioxobutanoate

(50mg, 0.19mmol), and triethylamine (97mg, 0.96mmol) were combined in 2ml of dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0– 100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (17.1 mg white solid).

ethyl

0.393mmol),

¹H NMR (500 MHz, acetone- d_6) δ 7.87 (d, J = 1.6 Hz, 1H), 7.84 (d, J = 7.7 Hz, 1H), 7.67 (d, J = 8.5 Hz, 2H), 7.62 (d, J = 7.9 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.32 (d, J = 8.5 Hz, 2H), 7.13 (s, 1H), 6.99 (s, 1H), 6.25 (s, 1H), 6.00 (d, J = 4.0 Hz, 2H), 3.60 (s, 2H). ESI m/z: 523.7 ([M–H]⁻, C₂₆H₁₇Cl₂NO₇ requires 524.0).

VPL-045: 3-aminobenzoic acid (54 mg, 0393 mmol), 4-bromo-2thiophenecarboxaldehyde (75 mg, 0.393 mmol), ethyl 4-(3chlorophenyl)-2,4-dioxobutanoate (50 mg, 0.19 mmol), and

triethylamine (97 mg, 0.96 mmol) were combined in 2ml of dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. The organic layer was dried over Na_2SO_4 and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product (15.8 mg white solid).

¹H NMR (500 MHz, thf-*d*₈) δ 8.35 (s, 1H), 7.87 (d, *J* = 7.9 Hz, 2H), 7.80 (t, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 7.9 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.20 (s, 1H), 7.16 (s, 1H), 6.64 (s, 1H). ESI *m/z*: 515.6 ([M–H]⁻, C₂₂H₁₃BrCINO₅S requires515.9).

VPL-046: 3-aminobenzoic acid (54 mg, 039 mmol), 7chlorobenzo[d][1,3]dioxole-5-carbaldehyde (72 mg, 0.39 mmol), diketoester (50 mg, 0.19 mmol), and triethylamine (97 mg, 0.96 mmol) were combined in 2 ml of dioxane and heated at reflux

overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. The organic layer was dried over Na_2SO_4 and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product.

¹H NMR (500 MHz, acetone- d_6) δ 8.42 (s, 1H), 7.97 – 7.87 (m, 2H), 7.83 (dd, J = 14.3, 7.6 Hz, 2H), 7.62 (d, J = 7.4 Hz, 1H), 7.51 (dd, J = 15.4, 7.6 Hz, 2H), 7.15 (s, 1H), 7.03 (s, 1H), 6.34 (s, 1H), 5.99 (d, J = 4.7 Hz, 2H). ESI m/z: 509.7 ([M–H][–], C₂₅H₁₅ Cl₂NO₇ requires 510.0).

VPL-047: 4-aminophenyl acetic acid (65 mg, 0.43 mmol), 4bromo-2-thiophenecarboxaldehyde (82 mg, 0.43 mmol), ethyl 2, 4-dioxo-4-(m-tolyl)butanoate (50 mg, 0.213 mmol), and

triethylamine (1.07 mmol) were combined in 2ml of dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. The organic layer was dried over Na_2SO_4 and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) and rinsed with ether to afford the desired product.

¹H NMR (500 MHz, acetone- d_6) δ 7.69 (dd, J = 12.8, 7.3 Hz, 4H), 7.46 – 7.37 (m, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.23 (s, 1H), 6.68 (s, 1H), 3.62 (s, 3H), 2.39 (s, 3H). ESI *m/z*: 509.7 ([M–H]⁻, C₂₄H₁₈ BrNO₅S requires 510.0).

VPL-048: 4-aminophenyl acetic acid (65 mg, 0.43 mmol), 7chlorobenzo[d][1,3]dioxole-5-carbaldehyde (79 mg, 0.427 mmol), ethyl 2,4-dioxo-4-(m-tolyl)butanoate (50 mg, 0.213 mmol), and triethylamine (1.07 mmol) were combined in 2ml of dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na_2SO_4 and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product.

1H NMR (500 MHz, acetone- d_6) δ 7.74 – 7.65 (m, 4H), 7.41 (d, J = 7.1 Hz, 1H), 7.37 (d, J = 7.7 Hz, 1H), 7.32 (d, J = 8.1 Hz, 2H), 7.09 (s, 1H), 6.94 (s, 1H), 6.27 (s, 1H), 6.01 (d, J = 4.4 Hz, 2H), 3.61 (s, 2H), 2.39 (s, 3H). ESI *m/z*: 503.8 ([M–H][–], C₂₇H₂₀ CINO₇ requires 504.0).

VPL-049: 3-aminobenzoic acid (59 mg, 0.427 mmol), 4-bromo-2thiophenecarboxaldehyde (82 mg, 0.43 mmol), ethyl 2,4-dioxo-4-(m-tolyl)butanoate (50 mg, 0.213 mmol), and triethylamine (1.07 mmol) were combined in 2 ml of dioxane and heated at reflux

overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. The organic layer was dried over Na_2SO_4 and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product.

¹H NMR (500 MHz, acetone- d_6) δ 8.41 (d, J = 2.8 Hz, 1H), 7.97 – 7.90 (m, 1H), 7.90 – 7.83 (m, 1H), 7.71 (d, J = 4.6 Hz, 2H), 7.55 (dd, J = 13.3, 7.7 Hz, 1H), 7.46 – 7.35 (m, 2H), 7.32 (d, J = 4.3 Hz, 1H), 7.26 (d, J = 4.3 Hz, 1H), 6.79 (d, J = 5.2 Hz, 1H), 2.39 (d, J = 4.9 Hz, 3H). ESI *m/z*: 495.7 ([M–H]⁻, C₂₃H₁₆ BrNO₅S requires 495.99).

VPL-050: 4-aminophenyl acetic acid (52.4 mg, 0.347 mmol), 4-bromo-2-thiophenecarboxaldehyde (66.3 mg, 0.347 mmol), ethyl 2,4-dioxo-4-(3-(trifluoromethyl)phenyl)butanoate (50

mg, 0.173 mmol), and triethylamine (1.07 mmol) were combined in 2 ml of dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product.

¹H NMR (400 MHz, acetone- d_6) δ 8.17 (d, J = 7.7 Hz, 2H), 7.95 (d, J = 7.7 Hz, 1H), 7.77 (t, J = 7.7 Hz, 1H), 7.67 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 7.32 (s, 1H), 7.29 (s, 1H), 6.68 (s, 1H), 3.62 (s, 2H). ESI *m/z*: 563.6 ([M–H][–], C₂₄H₁₅ BrF₃NO₅S requires 563.98).

VPL-051: 4-aminophenylacetic acid (52 mg, 035mmol), 7chlorobenzo[d][1,3]dioxole-5-carbaldehyde (64mg, 0.35mmol), ethyl 2,4-dioxo-4-(3-(trifluoromethyl)phenyl)butanoate (50 mg, 0.17 mmol), and triethylamine (97 mg, 0.96 mmol) were combined in 2ml of dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product.

¹H NMR (500 MHz, acetone- d_6) δ 8.17 (d, J = 7.2 Hz, 2H), 7.93 (d, J = 7.7 Hz, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.68 (d, J = 8.5 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.14 (s, 1H), 7.01 (s, 1H), 6.28 (s, 1H), 5.99 (d, J = 3.1 Hz, 2H), 3.59 (s, 2H). ESI *m/z*: 557.7 ([M–H]⁻, C₂₇H₁₇ CIF₃NO₇ requires 558.0).

VPL-052: Imine 11 (54mg, 0.17mmol), ethyl 2,4-dioxo-4-(3- (trifluoromethyl)phenyl)butanoate (50 mg, 0.17 mmol), and

triethylamine (0.87 mmol) were combined in dioxane and heated

to reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) followed precipitation from ethyl acetate:hexanes to afford the desired product.

¹H NMR (500 MHz, acetone- d_6) δ 8.41 (s, 1H), 8.18 (d, J = 8.4 Hz, 2H), 7.95 (t, J = 8.7 Hz, 2H), 7.87 (d, J = 7.7 Hz, 1H), 7.77 (t, J = 7.6 Hz, 1H), 7.55 (t, J = 7.9 Hz, 1H), 7.32
(d, J = 9.8 Hz, 1H), 6.77 (s, 1H). ESI m/z: 549.6 ([M–H]⁻, C₂₃H₁₃ BrF₃NO₅S requires 549.96).

VPL-053: Prepared analogously to VPL-001. The crude reaction mixture was concentrated, and partitioned between DCM and 1M HCI (3x). Upon standing, a light colored precipitate fell out of the

organic extract. The tan solid was collected via filtration. LC/MS and 1H NMR revealed this precipitate to be the desired product (18.8 mg, 17%).

¹H NMR (d_4 -MeOH, 500 MHz) δ = 7.82 (d, 2H, J = 8.0 Hz), 7.71 (s, 1H), 7.58 (t, 1H, J = 7.0 Hz), 7.47 (app. t, 2H, J = 7.5 Hz), 7.29 (s, 1H), 7.28 (d, 1H, J = 1.5 Hz), 7.203 (s, 1H), 7.08 (s, 1H), 6.55 (s, 1H). ESI *m/z*: 497.6 ([M–H]⁻, C₂₂H₁₃BrNO₆S requires 498.0).

VPL-055: 3-aminobenzoic acid (31 0.227mmol), 7mg, chlorobenzo[d][1,3]dioxole-5-carbaldehyde (42mg, 0.227mmol), ethyl 2,4-dioxo-4-phenylbutanoate (50mg, 0.227 mmol). and triethylamine (1.13 mmol) were combined in 2 ml of dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCl. The organic layer was dried over Na₂SO₄ and

concentrated under reduced pressure and purified by chromatography (0-100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product.

¹H NMR (500 MHz, acetone- d_6) δ 8.43 (s, 1H), 7.91 (d, J = 6.8 Hz, 3H), 7.81 (d, J = 7.6 Hz, 1H), 7.60 (t, J = 7.2 Hz, 1H), 7.50 (q, J = 7.6 Hz, 3H), 7.12 (s, 1H), 6.99 (s, 1H), 6.36 (s, 1H), 5.99 (d, J = 4.0 Hz, 2H). ESI m/z: 475.7 ([M–H][–], C₂₅H₁₆CINO₇ requires 476.0).

VPL-056: 3-(trifluoromethyl)benzaldehyde (348 mg, 2.0 mmol), 3aminobenzoic acid (274 mg, 2.0 mmol), diethyl oxalacetate (188 mg, 1.0 mmol), and triethylamine (5.0 mmol) were dissolved in 5ml

of dioxane and heated to reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0– 100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product.

¹H NMR (500 MHz, acetone- d_6) δ 8.35 (s, 1H), 7.96 – 7.85 (m, 2H), 7.77 (d, J = 7.7 Hz, 1H), 7.68 (d, J = 7.3 Hz, 1H), 7.57 (d, J = 7.3 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.45 (t, J = 7.9 Hz, 1H), 6.30 (s, 1H), 4.15 (dd, J = 9.8, 7.4 Hz, 2H), 1.16 (t, J = 7.1 Hz, 3H). ESI m/z: 433.8 ([M–H]⁻, C₂₁H₁₆F₃NO₆ requires 434.1).

VPL-057: 3-aminobenzoic acid (48 mg, 0.35 mmol), 7chlorobenzo[d][1,3]dioxole-5-carbaldehyde (64 mg, 0.35 mmol), ethyl 2,4-dioxo-4-(3-(trifluoromethyl)phenyl)butanoate (50 mg, 0.17 mmol), and triethylamine (0.87 mmol) were combined in 3ml of dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. The organic layer was dried over Na_2SO_4 and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product.

¹H NMR (500 MHz, acetone- d_6) δ 8.43 (d, J = 0.5 Hz, 1H), 8.19 (s, 2H), 7.92 (d, J = 7.7 Hz, 2H), 7.81 (d, J = 7.6 Hz, 1H), 7.77 – 7.66 (m, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.16 (s, 1H), 7.03 (s, 1H), 6.34 (s, 1H), 5.99 (s, 2H). ESI *m/z*: 543.7 ([M–H]⁻, C₂₆H₁₅F₃NO₇ requires 544.0).

VPL-058: 3-aminobenzoic acid (47 mg, 0.35 mmol), 3-(trifluoromethyl)benzaldehyde (60 mg, 0.35 mmol), ethyl 2,4dioxo-4-(3-(trifluoromethyl)phenyl)butanoate (50 mg, 0.17 mmol),

and triethylamine (0.87 mmol) were combined in 2 ml of dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. A precipitant was formed during the work-up, which was filtered and dried to afford the desired product. (59 mg white solid).

¹H NMR (500 MHz, acetone- d_6) δ 8.41 (s, 1H), 8.15 (d, J = 6.6 Hz, 2H), 7.98 (s, 1H), 7.93 (dd, J = 6.4, 4.2 Hz, 2H), 7.87 (d, J = 7.0 Hz, 1H), 7.79 (d, J = 7.7 Hz, 1H), 7.74 (t, J = 8.0 Hz, 1H), 7.53 – 7.45 (m, 3H), 6.57 (s, 1H). ESI m/z: 533.8 ([M–H]⁻, C₂₆H₁₅F₆NO₅ requires 534.09).

VPL-059: 3-aminobenzoic acid (53 mg, 0.38 mmol), 3-(trifluoromethyl)benzaldehyde (67 mg, 0.38 mmol), ethyl 2,4dioxo-4-(3-(trifluoromethyl)phenyl)butanoate (50 mg, 0.19 mmol), and triethylamine (0.96 mmol) were combined in 2 ml of

dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure and purified by chromatography (0– 100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) to afford the desired product.

¹H NMR (500 MHz, acetone- d_6) δ 8.39 (s, 1H), 8.16 (d, J = 4.2 Hz, 1H), 7.92 (dd, J = 8.1, 1.2 Hz, 1H), 7.89 (s, 1H), 7.78 (d, J = 7.7 Hz, 2H), 7.51 (d, J = 7.8 Hz, 1H), 7.47 (t, J = 8.0 Hz, 2H), 7.18 (d, J = 4.2 Hz, 1H), 6.51 (s, 1H). ESI m/z: 506.7 ([M–H]⁻, C₂₃H₁₃ClF₃NO₅S requires 506.0).

VPL-060: 3-aminobenzoic acid (53 mg, 038 mmol), 7chlorobenzo[d][1,3]dioxole-5-carbaldehyde (71 mg, 0.38 mmol), ethyl 4-(5-chlorothiophen-2-yl)-2,4-dioxobutanoate (50 mg, 0.19

mmol), and triethylamine (97 mg, 0.96 mmol) were combined in 2 ml of dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned

between dichloromethane and 1N HCI. A white precipitate formed in the DCM layer which was filtered and rinsed with cold DCM to afford the desired product (30.1 mg).

¹H NMR (500 MHz, acetone- d_6) δ 8.40 (d, J = 1.5 Hz, 1H), 8.18 (d, J = 4.1 Hz, 1H), 7.90 (dd, J = 8.1, 2.0 Hz, 1H), 7.81 (d, J = 7.7 Hz, 1H), 7.50 (t, J = 7.9 Hz, 1H), 7.19 (d, J = 4.1 Hz, 1H), 7.10 (d, J = 1.4 Hz, 1H), 6.94 (d, J = 1.5 Hz, 1H), 6.30 (s, 1H), 6.00 (d, J = 1.1 Hz, 2H). ESI *m/z*: 515.6 ([M-H]⁻, C₂₃H₁₃Cl₂NO₇S requires 515.0).

VPL-061: 3-(trifluoromethyl)benzaldehyde (47 mg, 0.27 mmol), 5-amino-2-chloro-benzoic acid (46 mg, 0.27 mmol), and), ethyl 2,4-dioxo-4-(3-(trifluoromethyl)phenyl)butanoate (39 mg,

0.135 mmol), and triethylamine (68 mg, 0.67 mmol) were combined in dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. A white precipitate formed in the DCM layer which was filtered and rinsed with cold DCM to afford the desired product (32 mg).

¹H NMR (500 MHz, acetone- d_6) δ 8.30 (d, J = 2.7 Hz, 1H), 8.13 (s, 2H), 8.00 (s, 1H), 7.93 (d, J = 7.8 Hz, 1H), 7.90 – 7.84 (m, 2H), 7.73 (t, J = 8.0 Hz, 1H), 7.53 (t, J = 6.7 Hz, 1H), 7.49 (d, J = 8.7 Hz, 2H), 6.55 (s, 1H). ESI m/z: 567.7 ([M-H]⁻, C₂₆H₁₄ClF₆NO₅ requires 568.0)

VPL-062: Diethyl oxalacetate (75 mg, 0.399 mmol), tert-butyl-3aminobenzoate (154 mg, 0.8 mmol), 3trifluoromethylbenzaldehyde (139 mg, 0.8 mmol), and triethylamine (202 mg, 1.99 mmol) were combined in 3ml dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. The organic layer was concentrated and dried over Na_2SO_4 and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H20, 2.5% formic acid) to afford the desired product (27 mg tan solid).

¹H NMR (500 MHz, acetone- d_6) δ 8.21 (s, 1H), 7.93 (d, J = 7.4 Hz, 1H), 7.70 – 7.63 (m, 2H), 7.57 (d, J = 6.1 Hz, 1H), 7.52 (d, J = 8.3 Hz, 1H), 7.41 (t, J = 7.9 Hz, 1H), 6.25 (s, 1H), 4.14 (dd, J = 14.6, 7.0 Hz, 2H), 1.56 (s, 9H), 1.14 (t, J = 6.3 Hz, 3H). ESI *m/z*: 489.8 ([M-H]⁻, C₂₅H₂₄F₃NO₆ requires 490.0).

VPL-063: 3-aminobenzoic acid (73 mg, 0.534 mmol), 3-(trifluoromethyl)benzaldehyde (93 mg, 0.534 mmol), ethyl 4-(dimethylamino)-2,4-dioxobutanoate (50 mg, 0.267 mmol), and

triethylamine (1.33 mmol) were combined in 2 ml of dioxane and heated at reflux overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI.

¹H NMR (500 MHz, acetone- d_6) δ 8.41 (s, 1H), 7.88 (d, J = 7.5, 1H), 7.79 (s, 1H), 7.75 (d, J = 7.3, 1H), 7.70 (d, J = 7.0, 1H), 7.57 (d, J = 7.0, 1H), 7.51 (t, J = 7.3, 1H), 7.44 (t, J = 7.7, 1H), 6.40 (s, 1H), 2.91 (s, 6H). ESI *m/z*: 432.8 ([M-H]⁻, C₂₁H₁₇F₃N₂O₅ requires 490.0).

VPL-064: Imine 13 (126mg, 0.38mmol), ethyl 4-(5-chlorothiophen-2-yl)-2,4-dioxobutanoate (50 mg, 0.19 mmol), and triethylamine (0.96 mmol) were combined in dioxane and heated to reflux

overnight. The crude reaction mixture was concentrated and partitioned between dichloromethane and 1N HCI. The organic layer was dried over Na_2SO_4 and concentrated under reduced pressure and purified by chromatography (0–100% Hexanes/Ethyl Acetate followed by 95% EtOAc, 2.5% H₂0, 2.5% formic acid) followed precipitation from ethyl acetate:hexanes to afford the desired product.

¹H NMR (500 MHz, acetone- d_6) δ 8.29 (d, J = 2.6, 1H), 8.15 (d, J = 4.1, 1H), 7.92 (s, 1H), 7.87 (dd, J = 2.6, 8.8, 1H), 7.79 (d, J = 7.6, 1H), 7.54 (d, J = 7.7, 1H), 7.49 (t, J = 7.3, 2H), 7.18 (d, J = 4.1, 1H), 6.50 (s, 1H). ESI m/z: 539.7 ([M-H]⁻, C₂₃H₁₂Cl₂F₃NO₅S requires 539.98).

Ethyl 4-(dimethylamino)-2, 4-dioxobutanoate(2)

To a dry round bottom flask was added dimethylacetamide (11.48mmol) and 60ml of dry THF. The mixture was cooled to -78C in a dry ice/acetone bath. Lithium diisopropylamide (12.62mmol) was added drop wise, so that the temperature of the flask did not exceed -70C. The mixture was stirred for 10 minutes before the addition of diethyl oxalate (11.48mmol) in 5ml of THF (drop wise). The mixture was warmed to room temperature and stirred for 12 hours, re-cooled to -78C

and a solution of acetic acid in THF was added. After warming to room temperature the reaction was partitioned between water and diethyl ether. The aqueous layer was extracted 3X. The combined organic extracts were dried Na₂SO₄, concentrated and purified by chromatography (0–100% Hexanes/Ethyl Acetate) to afford the desired product.

¹H NMR (500 MHz, CDCl₃) δ 6.25 (s, 1H), 4.34 (q, *J* = 7.0 Hz, 2H), 3.06 (d, *J* = 27.8 Hz, 7H), 1.36 (t, *J* = 7.1 Hz, 4H).

References

- 1. Weisse K, H. (1911) Action of Sulfur Monochloride and of Sulfuryl Chloride on Piperonaldehyde. *Chem. Berichte*, 43:2605-2606.
- 2. Goldup SM, Pilkington CJ, White AJ, Burton A, & Barrett AG (2006) A simple, short, and flexible synthesis of viridiofungin derivatives. (Translated from eng) *J Org Chem* 71(16):6185-6191 (in eng).

Supplementary Tables

Supplementary Table 1. Effect of functional groups of the pyrrolidinone scaffold

on the potency of small molecule binding. Dissociation constants (K_D) are measured

by NMR.

Supplementary Table 2. Small molecules arranged by functional groups. Same

compounds as Supplementary Table 1 arranged according to the different functional

groups at ring B, C, and D.

SI Figures

Supplementary Fig. 1. Filoviral VP35 IIDs contain two highly conserved basic patches termed Central Basic Patch (CBP) and First Basic Patch (FBP). Surface representation of VP35 IID with CBP and FBP labeled.

Supplementary Fig. 2. GA017-VP35 ellD interactions are in the fast exchange regime. 1H-15N HSQC spectrum of 15N-enriched ellD in the absence (black) or presence of increasing concentrations (dark red to light red) of GA017.

Supplementary Fig. 3. Chemical shift of I303 residue serves as a reliable reporter for estimating binding affinity from HSQC data. Correlation coefficients for:(a) estimated binding affinity from single point Ile303 chemical shift changes vs. measured binding affinity from Ile303 titration data ($r^2 = 0.91 \pm 0.22$), and (b) measured binding affinity from Ile303 titration data vs. measured binding affinity from averaged titration data for several residues in the binding pocket ($r^2 = 1.09 \pm 0.11$).

Supplementary Fig. 4. Docked structures closely resemble experimentally derived ligand bound complexes. Docked (green) and experimentally derived structures (blue) of GA017.

Supplementary Fig. 5. Firefly luciferase activity does not show a dose dependence with increasing compound concentrations. Experimentally meaured Firefly luciferase levels for control and experimental conditions. Plus/minus indicate experiments with and without VP35. DMSO (D) lanes are with the addition of 0.5% DMSO, which was the highest concentration used in these assays as a co-solvent. Error bars represent standard erros in triplicate experiments. For each compound the Firefly luciferase activity between different doses is not statistically significant.

Scaffold				B N HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
VPL-64	30 ± 7	58.90 ± 21.1	COOH	S CI	
VPL-60	33 ± 7	50.4 ± 4.7		C	
VPL-36	36 ± 13	49.9 ± 9.8	P P	G	CF3
VPL-61	36 ± 10	38.7 ± 16.0	CI	CF3	CF3
VPL-34	39±16	63.9 ± 17.7	HOO	S Br	CF3
VPL-42	46 ± 19	36.8 ± 8.1	H	S C	s bi
VPL-59	47 ± 38	55.7 ± 4.9	СООН	CI	CF3
VPL-51	49±35	44.8 ± 3.2	HOO		

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
VPL-57	52 ± 10	73.0 ± 31.0	СООН	CF ₃	CI
VPL-58	52 ± 45	47.0 ± 4.0	СООН	CF3	CF3
VPL-29	60 ± 16	70.6 ± 7.9	СООН		S Br
VPL-46	63 ± 18	68.5 ± 33.0		a de la constante de la consta	
VPL-39	70 ± 14	65.8 ± 10.2		S Br	S
VPL-43	77 ± 15	81.7 ± 6.1			Br
VPL-49	79 ± 17	79.2 ± 8.5			Br
VPL-48	79 ± 3	108.0 ± 7.0			

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
VPL-52	80 ± 3	60.9 ± 3.0		CF3	S Br
VPL-50	80 ± 26	63.9 ± 7.4	HO	¢F3	S Br
VPL-44	89 ± 14	99.9 ± 25.9	P P		
GA312=GA259	101 ± 40	103.8 ± 41.7			CI
VPL-45	101 ± 25	92.5 ± 8.4	СООН		S Br
VPL-33	109 ± 2	110.9 ± 41.2	H		H3 H
VPL-37	117 ± 12	74.6 ± 14.5			
VPL-41	120 ± 11	129.5 ± 35.1	СООН	CI	Br

Scaffold				B N A HO C	
smx	$K_{D}(\mu M, estimate)$	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
VPL-27	124 ± 36	214.6 ± 24.9	СООН		S Br
VPL-40	126 ± 32	369.8 ± 173.3	HO	S CI	
GA228=GA292	127 ± 5	291.9 ± 17.5	HO		
GA272	128 ± 34	111.9 ± 30.7	СООН		S Br
VPL-11	134 ± 11	124.3 ± 16.2	HO	CF3	C
VPL-32	135 ± 44	280.2 ± 51.2			CI
VPL-47	138 ± 40			CH3	Br
VPL-38	149 ± 45	98.0 ± 36.0	СООН	S Br	Br

Supplementary Table 1: Substructures by potency

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
VPL-55	152 ± 40		соон		CI
VPL-23	161 ± 86			SBr	CF ₃
VPL-24	161 ± 82			CI	CF ₃
GA307	179 ± 72		HOO		H ₃ C CH ₃ CH ₃
GA307	179 ± 72		СООН		H ₃ C CH ₃ CH ₃
GA272-B	204 ± 28	114.1 ± 20.6			S Br
GA286	238 ± 48			F	
GA286	238 ± 48			F	

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA315	260 ± 49				
GA315	260 ± 49		H H		
GA274=GA322	264 ± 63		H	s	H ₃ C CH ₃
GA274	264 ± 63		P P	s	
VPL-21	266 ± 47		H H	CF3	CF2
GA294	275 ± 39				а
GA294	275 ± 39				
GA322	281 ± 78			s	

Supplementary Table 1: Substructures by potency

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA017-D	296 ± 111			s s	H ₃ C CH ₃ CH ₃
VPL-6	307 ± 51			CH3	CI
GA314	313 ± 88			F	СН3
GA239	323 ± 109			δ	
GA239	323 ± 109			S S	
GA256	330 ± 158			F	H ₃ C CH ₃ CH ₃
GA212	331 ± 62			F	

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA212	331 ± 62			F	
VPL-5	335 ± 38				Br
GA222	346 ±136			s	CF3
VPL-19	346 ± 168				CF3
GA229	353 ± 159		соон	s s	CF3
VPL-8	357 ± 68		соон	QCH3	CI
VPL-3	361 ± 24			H ₃ CO	CI

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA251	369 ± 134		HO		H ₃ C CH ₃ CH ₃
VPL-13	372 ± 87			OCH3	CI
VPL-7	378 ± 72			CI	CI
VPL-31	384 ± 76		СООН		Br
GA234	385 ± 145				
GA243=GA301	386 ± 83			F	

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA263	417 ± 107				
VPL-53	418 ± 70		ОН		Br
GA231	447 ± 100				
GA218	453 ± 91		СООН		
VPL-63	453 ±252	518.1 ± 310.2	соон	CH ₃ N CH ₃	
VPL-28	458 ± 108			NH	S Br
GA310	475 ± 60				CI

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
VPL-22	478 ± 187				QF3
VPL-35	483 ± 134			s s	CF ₃
VPL-20	485 ± 172		H A A A A A A A A A A A A A A A A A A A		CF3
GA293	502 ± 52		H H		CH ²
GA262	504 ± 204			F	
VPL-14	512 ± 94			s	CI
GA313	516 ± 92			F F	

Supplementary Table 1: Substructures by potency

Scaffold				B N A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA249	517 ± 127		Соон		F
VPL-25	533 ± 60		СООН		CF3
GA235=GA297	537 ± 62		H C C C C C C C C C C C C C C C C C C C	S	
GA287	547 ± 48		HO		F
GA299	552 ± 149				
GA017	555 ± 112	270.7 ± 80.0		S	H ₃ C CH ₃ CH ₃
GA250=GA306	565 ± 237		СООН		Br

Supplementary Table 1: Substructures by potency

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA324	585 ± 34		соон		
GA241	609 ± 101		соон	s	CH3
GA285	626 ± 109			F	
GA304	629 ± 98			CI	
VPL-4	655 ± 183				CI
GA230	659 ± 231				CH3
GA311	690 ± 104			F	

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA254=GA318	475 ± 60				CI
GA320	726 ± 151				
GA210	752 ± 175		Q	F	
GA022	753 ± 74				
GA258	760 ± 166			F	F
VPL-30	764 ± 383				

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA213	773 ± 142				F
GA217=GA288	420 ± 70				
VPL-26	834 ± 324				CF3
GA271	836 ± 279				s
GA224	837 ± 521			F	F
GA300	840 ± 155				

Supplementary Table 1: Substructures by potency

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA226	851 ± 150		СООН		F F
GA269	876 ± 266				
GA267	888 ± 122				
GA237	889 ± 218				
GA321	924 ± 233				s
GA223=GA290	927 ± 112			s	

Supplementary Table 1: Substructures by potency

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA308	936 ± 30		СООН		F
GA242	983 ± 167		СООН	F	
GA260	988 ± 260		H		
GA246	1049 ± 328		HO		
GA232	1069 ± 193				F
GA238	1120 ± 374				
GA221	1137 ± 268		СООН		

Supplementary Table 1: Substructures by potency

Scaffold				B N A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA019	1177 ± 54				
GA255	1210 ± 278		СООН	s	
GA017-E	1211 ± 1356		Q	s s	
GA023	1215 ± 459		COOH		
GA295	1222 ± 144				F
VPL-56	1232 ± 115			0	{
GA264=GA316	1256 ± 335				F

Supplementary Table 1: Substructures by potency

Scaffold				B N A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA021	1283 ± 138		HOO		\$\$
GA244=GA302	1309 ± 406		СООН	s	
GA298	1324 ± 402			C	
VPL-17	1385 ± 983		COOH	O ₂ N	Br
GA227	1423 ± 268				
VPL-16	1436 ± 717			O ₂ N	
GA252	1472 ± 332				F

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
VPL-18	1537 ± 514			OMe	CF3
VPL-12	1588 ± 620			CF ₃	NO2
GA219	1618 ± 1034		соон	S	
VPL-10	1631 ± 1125				CI
GA225	1860 ± 876			s	
GA216	1890 ± 1834			S	CI
VPL-9	2005 ± 671				CI

Supplementary Table 1: Substructures by potency

Scaffold				B A HO C	
smx	$K_D(\mu M, estimate)$	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA017-F2	2023 ± 2434		P P	S S	
GA303	2152 ± 201			CI	CH3
GA214	2348 ± 1423			S S	
VPL-1	2354 ± 2418				CI CI
GA266	2474 ± 1011			S S	s
GA291	2508 ± 2240			s	

Supplementary Table 1: Substructures by potency

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA245	2540 ± 1214				
GA270	2675 ± 1621		СССОН	s	F
GA257	2749 ± 1535		HOOO	CI	s
GA236	3060 ± 2222				
GA233	3160 ± 1317				

Supplementary Table 1: Substructures by potency

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA247	3247 ± 2066		СООН	s s	
VPL-2	3279 ± 2052		HOO	оме 	CI
GA215	3385 ± 1232		соон	F	
GA248	3646 ± 1077				ООООООО
GA276	3692 ± 432		ССОН		
Scaffold				B A HO C	
-------------	-------------------------------	--------------------------	--------	-------------------	------------------
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA280	3962 ± 2054		H	s	O ₂ N
VPL-15	4044 ± 1631			OMe	
GA268=GA319	4094 ± 1324				N
GA278	4192 ± 1465		HO	CI	
GA220	4501 ± 1785			CI	
GA281	4580 ± 1266				

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA296	4595 ± 3288				
GA289	4851 ± 3780		H0 0		
GA277	4860 ±2405				NO2
GA240	4930 ± 2335		соон		s s
GA282	5034 ± 2330		соон		
GA273	5264 ± 2274				s

Supplementary Table 1: Substructures by potency

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA265	5267 ± 3437		соон		s
GA261	5282 ± 2286		соон		
GA317	5414 ± 2964		СООН		s
GA323	5477 ± 4894			CI	
GA283	5623 ± 5341				N
GA279	6340 ± 4469				

Supplementary Table 1: Substructures by potency

Scaffold				B A HO C	
smx	K _D (μM, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)
GA305	8240 ± 8960				
VPL-62	-	ND		0	

Scaffold				B N HO C		
smx	$K_D(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
VPL-64	30 ± 7	58.90 ± 21.1	соон	S CI		
VPL-61	36 ± 10	38.7 ± 16.0	Q			
VPL-29	60 ± 16	70.6 ± 7.9	СООН		S	
VPL-4	655 ± 183		COOH			
GA017-E	1211 ± 1356			s s		
VPL-31	384 ± 76		 MeO		Br	
VPL-25	533 ± 60				CF3	

Scaffold				B N HO C		
smx	$K_D(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA270	2675 ± 1621		СООН	s	F	
GA276	3692 ± 432		соон			
GA268=GA319	4094 ± 1324				{	
VPL-53	418 ± 70				Br	
GA017-F2	2023 ± 2434		HO HO HO	s s		

Scaffold				B A HO C		
smx	$K_D(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
VPL-27	124 ± 36	214.6 ± 24.9	COOH CH₃		Br	
VPL-57	52 ± 10	73.0 ± 31.0	соон		CI	
VPL-58	52 ± 10	73.0 ± 31.0	СООН		 CF3	
VPL-52	80 ± 3	60.9 ± 3.0	соон	CF3	S Br	
VPL-45	101 ± 25	92.5 ± 8.4	COOH	CI	Br	
VPL-46	63 ± 18	70.6 ± 7.9				

Scaffold				B N HO C		
smx	$K_{D}(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
VPL-60	33 ± 7	50.4 ± 4.7	СООН	S	CI	
VPL-59	47 ± 38	55.7 ± 4.9		CI	CF3	
VPL-41	120 ± 11	129.5 ± 35.1	СООН	CI	Br	
VPL-38	149 ± 45	98.0 ± 36.0	соон	Br	Б	
GA017-D	296 ± 111		СООН	s	H ₃ C CH ₃ CH ₃	
GA239	323 ± 109			S		
GA229	353 ± 159		соон	S	CF ₃	

Scaffold						
smx	$K_D(\mu M, estimate)$	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
VPL-56	1232 ± 115		соон	0		
GA241	609 ± 101			s		
GA255	1210 ± 278			s		
GA214	2348 ± 1423		СООН	s		
GA244=GA302	1309 ± 406		соон	S		
GA219	1618 ± 1034			S S		

Scaffold				B N HO C		
smx	$K_D(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA216	1890 ± 1834		соон	s		
GA247	3247 ± 2066		Соон	s		
VPL-63	453 ±252	518.1 ± 310.2	соон	N CH ₃	CF3	
VPL-49	79 ± 17	79.2 ± 8.5		CH3		
GA272	128 ± 34	111.90	СООН		Br	
VPL-55	152 ± 40	111.9 ± 30.7	соон		CI	

Scaffold						
smx	$K_D(\mu M, estimate)$	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA307	179 ± 72					
GA250=GA306	565 ± 237		СООН		Br	
GA226	851 ± 150		СООН		F F	
VPL-8	357 ± 68		соон	OCH3	CI	
GA234	385 ± 145		СООН		a	
GA308	936 ± 30		Соон		F	

Scaffold						
smx	$K_D(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA215	3385 ± 1232		соон			
GA240	4930 ± 2335		СООН	C C	S	
GA221	1137 ± 268		ČŐ			
GA282	5034 ± 2330				······································	
GA265	5267 ± 3437		СООН		s	
GA261	5282 ± 2286		СООН			

Scaffold						
smx	$K_D(\mu M, estimate)$	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA317	5414 ± 2964		соон		s	
GA023	1215 ± 459					
GA227	1423 ± 268				> F	
GA243=GA301	386 ± 83			F		
GA249	517 ± 127				F	
GA224	837 ± 521		СООН	F	F C C C C C C C C C C C C C C C C C C C	

Scaffold						
smx	$K_D(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA242	983 ± 167		СООН	F		
GA218	453 ± 91		соон			
GA324	585 ± 34				s	
VPL-17	1385 ± 983		СООН		Br	
VPL-42	46 ± 19	36.8 ± 8.1		S CI	Br	
VPL-40	126 ± 32	369.8 ± 173.3		S CI		

Scaffold				B N HO C		
smx	$K_D(\mu M, estimate)$	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
VPL-24	161 ± 82			CI	CF3	
VPL-36	36 ± 13	49.9 ± 9.8		S CI		
VPL-34	39±16	63.9±17.7		S Br	CF3	
VPL-39	70 ± 14	65.8 ± 10.2		Br	S Br	
VPL-23	161 ± 86			Br	CF3	
VPL-22	478 ± 187			CH3	CF ₃	
GA274=GA322	264 ± 63			s	H ₃ C CH ₃	

Scaffold				B A HO C		
smx	$K_D(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA222	346 ±136			S	CF3	
GA217=GA288	420 ± 70			s		
VPL-35	483 ± 134			s	CF3	
VPL-14	512 ± 94			s	CI	
GA291	2508 ± 2240			s		
GA235=GA297	537 ± 62			s		

Scaffold				B N HO C		
smx	$K_D(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA017	555 ± 112	270.7 ± 80.0		s	H ₃ C CH ₃ CH ₃	
GA266	2474 ± 1011			s s	s	
GA223=GA290	927 ± 112			s s		
GA225	1860 ± 876			s s		
GA280	3962 ± 2054			s	 O ₂ N	

Scaffold				B N HO C		
smx	$K_D(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
VPL-7	378 ± 72			s s	Q	
VPL-51	49 ± 35	44.8 ± 3.2		CF3		
VPL-50	80 ± 26	63.9 ± 7.4		CF3	Br	
VPL-11	134 ± 11	124.3 ± 16.2		CF3	CI	
VPL-48	79 ± 3	108.0 ± 7.0		CH3		
VPL-47	138 ± 40				Br	
VPL-43	77 ± 15	81.7 ± 6.1			Br	

Scaffold				B N HO C		
smx	$K_D(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
VPL-44	89 ± 14	99.9 ± 25.9	P P	а 		
GA239	323 ± 109		HO		OCH ₃	
VPL-19	346 ± 168		HOO	OCH3	CF ₃	
VPL-13	372 ± 87			OCH3	CI	
GA312=GA259	101 ± 40	103.8 ± 41.7			CI	
VPL-33	109 ± 2	110.9 ± 41.2			OCH3 OH	
VPL-37	117 ± 12	74.6 ± 14.5				

Scaffold				B A HO C		
smx	$K_D(\mu M, estimate)$	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA228=GA292	127 ± 5	291.9 ± 17.5				
VPL-32	135 ± 44	280.2 ± 51.2	HO		CI	
GA307	179 ± 72				H ₃ C CH ₃ CH ₃	
GA272-B	204 ± 28	114.1 ± 20.6			Br	
GA294	275					
GA294	275 ± 39					
VPL-5	335 ± 38				S Br	

Scaffold				B N HO C		
smx	$K_D(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA251	369 ± 134					
GA231	447 ± 100				C	
VPL-20	485 ± 172		H H H		CF3	
GA293	502 ± 52				CH3	
GA287	547 ± 48		HO		F	
GA299	552 ± 149					
GA230	659 ± 231		HO		CH3	

Scaffold				B N HO C		
smx	$K_{D}(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA320	726 ± 151					
VPL-30	764 ± 383					
VPL-9	2005 ± 671				CI	no carbonyl
VPL-1	2354 ± 2418				CI	
GA213	773 ± 142				F	
GA300	840 ± 155					

Scaffold				B A HO C		
smx	$K_D(\mu M, estimate)$	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA271	836 ± 279				s	
GA269	876 ± 266					
GA237	889 ± 218					
GA321	924 ± 233		H C C C C C C C C C C C C C C C C C C C		s	
GA232	1069 ± 193					
GA238	1120 ± 374					

Scaffold				B N HO C		
smx	$K_{D}(\mu M, estimate)$	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA295	1222 ± 144					
GA233	3160 ± 1317					
GA248	3646 ± 1077				Он	
GA296	4595 ± 3288					
GA305	8240 ± 8960				ОН	

Scaffold				B N HO C		
smx	$K_D(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA286	238 ± 48			F		
GA314	313 ± 88			F	CH3	
GA256	330 ± 158			F	H ₃ C CH ₃ CH ₃	
GA212	331 ± 62		H O	F		
GA262	504 ± 204			F		
GA285	626 ± 109			F		

Scaffold				B N HO C		
smx	$K_D(\mu M, estimate)$	K _D (μΜ, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA311	690 ± 104			F	F	
GA210	752 ± 175			F		
GA258	760 ± 166			F		
GA315	260 ± 49			OCH3		
GA263	417 ± 107					
VPL-26	834 ± 324				CF3	

Scaffold				B N HO C		
smx	$K_D(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA260	988 ± 260				F	
VPL-21	266 ± 47			CF3	CF ₃	
VPL-12	1588 ± 620			CF3	S NO ₂	
VPL-6	307 ± 51			CH3	CI	
GA315	260 ± 49					
GA304	629 ± 98					
GA246	1049 ± 328				CI	

Scaffold				B N HO C		
smx	$K_D(\mu M, estimate)$	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA298	1324 ± 402					
GA254=GA310	475 ± 60		P P	F	CI	
GA267	888 ± 122		HO			
GA252	1472 ± 332				F	
GA318	1062 ± 49		H0 0			
GA022	753 ± 74					
GA303	2152 ± 201				CH3	

Scaffold				B N HO C		
smx	K_{D} (μ M, estimate)	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA245	2540		HOO			
GA236	3060 ± 2222		HO	C		
GA257	2749 ± 1535			CI	s	
GA278	4192 ± 1465			CI		
GA220	4501 ± 1785		HO	CI CI		

Scaffold				B N HO C		
smx	$K_D(\mu M, estimate)$	K _D (μM, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA289	4851 ± 3780			CI		
GA277	4860 ±2405				NO2	
VPL-3	361 ± 24		HO	H ₃ CO	CI	
GA281	4580 ± 1266					
GA323	5477 ± 4894			CI		
VPL-10	1631 ± 1125		O	Me0	CI	cf vpl 3

Scaffold				B N HO C		
smx	$K_D(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
VPL-15	4044 ± 1631		HO	Meo	S Br	
GA021	1283 ± 138				\$\$	
VPL-2	3279 ± 2052			MeO	CI	
VPL-18	1537 ± 514				CF3	
GA273	5264 ± 2274					

Scaffold				B A HO C		
smx	$K_{D}(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
GA279	6340 ± 4469					
GA264=GA316	1256 ± 335				F	
GA283	5623 ± 5341				{	
GA313	516 ± 92					
GA019	1177 ± 54					
VPL-16	1436 ± 717			0 ₂ N	S Br	

Supplementary Table 2: Substructures by functional groups

Scaffold				B A HO C		
smx	$K_D(\mu M, estimate)$	K_{D} (μ M, NMR)	N1 (B)	4-keto (C)	5-aryl (D)	scaffold changes
VPL-28	458 ± 108		HO O	NH	Br	**no carbonyl
VPL-62	-	ND		0		cf vpl-56