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Note 1: Dilution of Heritability.

In linear regression, the estimated regression coefficient is β = Cov(X,Y )/Var(X), where X denotes the
genotypic values of the SNP being tested and Y the phenotypic values. For simplicity, suppose both
X and Y have been centred and scaled to have mean zero and variance one. For a binary phenotype
comprising nA cases and nU controls, Y will take value YA =

√
nU/nA if a case, and YU = −

√
nA/nU

if a control. Therefore,

β =

∑
XiYi
n

=
nAYAMA + nUYUMU

n
=

√
nAnU (MA −MU )

n

where n = nA + nU , and MA and MU are the mean values of X across cases and controls, respectively.
The proportion of phenotypic variation explained by this SNP will be β2 = nAnA(MA −MU )2/n2, and
so the important value is S = MA −MU , the mean difference in genotypic values between cases and
controls. Although, strictly speaking, logistic regression would be more appropriate, for small effect sizes,
this linear approximation will suffice.

Now suppose that out of the nU controls, a proportion p are actually cases, and consider the effect
on S. The mean genotypic value for cases will continue to be MA, but the controls will now have mean
(1 − p)MU + pMA, and the observed difference will be S′ = (1 − p)(MA −MU ). Therefore, each SNP
will (on average) contribute only (1 − p)2 as much heritability as it would if cases and controls were
correctly labelled, so summed over all SNPs, the estimate of total SNP heritability will also be lower by
this fraction. Supplementary Fig. 8 demonstrates this relationship holds for values of p up to 0.25. If,
additionally, p′ cases are wrongly labelled as controls, then similar calculations demonstrate the heritabil-
ity will be lower by (1− p− p′)2.

Note 2: Inflation due to genotyping errors.

When the nU control samples come from two datasets, of sizes n1 and n2, we show that the estimate of
total variance explained can be written as

h2 =
nAnU
n2

(
T +

n21
n2U

G1 +
n22
n2U

G2

)2

, (1)

where T denotes the true variance explained, while G1 and G2 correspond to inflation due to genotyping
errors within Control Datasets 1 and 2, respectively.

Suppose that for SNP X, the true difference in mean genotypic values between cases and controls is
S = MA −MU , and so as shown in Supplementary Note 1, the proportion of phenotypic variance the
SNP explains is nAnAS

2/n2. If A1 and A2 denote the amounts by which genotyping errors within each
control dataset increase the mean value of X for each dataset, then MU will be increased by

n1
nU

A1 +
n2
nU

A2,

and as a result the variance explained by the SNP now equals

nAnU
n2

(
S − n1

nU
A1 −

n2
nU

A2

)2

.

If two centred random variables, U and V , are independent, then E((U − V )2) = E(U2) + E(V 2).
Therefore, if we suppose that, for any given SNP, the values of S, A1 and A2 are independent and
have mean zero (which seems reasonable, especially considering that with relatively few SNPs causal and
accurate genotyping, we would expect most values to be zero), then we can write the total heritability in
the form given by (1) where T , G1 and G2 are the sums across all SNPs of S2, A2

1 and A2
2, respectively.
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Figure S1. Estimating inflation due to cryptic relatedness. To estimate the extent by which
residual familial relatedness and population structure inflates estimates of heritability, we calculate
heritability from Chromosomes 1-8, then from Chromosomes 9-22, and from the sum of these two
estimates subtract the estimate of heritability from all autosomes. The x-axis indicates the number of
principal component axes included in the regression model, the y-axes reports the estimate of inflation
(values correspond to the liability scale and are in absolute terms). These tests indicate there is little
benefit including more than five principal component axes as fixed effect covariates (red boxes), at
which point the estimated inflation is 2.8% for all epilepsy, 2.5% for focal epilepsy and 0.4% for
non-focal epilepsy; in relative terms, these values represent 9%, 8% and 1% of the estimate of h2L.
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Figure S2. Power for marginal (single-SNP) analyses. The test statistic from standard linear
regression has a χ2 distribution with non-centrality parameter nh2/(1− h2), where n is the sample size
and h2 is the proportion of phenotypic variance explained by the SNP. For a binary trait, h2

corresponds to the observed scale (cases 1, controls 0), but knowing the disease prevalence and study
ascertainment, it can be converted to the liability scale using the transformation detailed in Figure S5.
The three plots correspond to the phenotypes all epilepsy (1258 cases, 5129 controls), focal epilepsy
(958 cases) and non-focal epilepsy (300 cases). In each plot, the y-axis shows how the probability that a
SNP achieves genome-wide significance (5× 10−8) depends on the proportion of liability variance it
explains (x-axis). The red and green lines mark the thresholds for 50% and 80% detection power.
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Figure S3. Marginal (single-SNP) association analyses. Each plot reports −log10 p-values from
marginal tests of association, where red/green points correspond to genotyped SNPs and grey to
imputed. From top to bottom, the plots refer to all epilepsy (1258 cases, 5129 controls), focal epilepsy
(958 cases), non-focal epilepsy (300 cases) and generalized epilepsy (151 cases). The conventional
threshold for genome-wide significance (5×10−8) is marked in each plot by a horizontal dashed line.
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Figure S4. The liability model for diseases. When considering binary outcomes, it is convenient
to assume an underlying liability model, whereby case/control status is determined by whether an
unobserved random variable (the “liability”) is above or below a threshold value, T . The liability is
assumed to have a standard normal distribution, so T is determined by the prevalence of the disease K:
the area to the right of T must equal K (e.g., for all epilepsy, K = 0.005 so T = 2.58). z is the height of
the standard normal curve at the threshold.
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Figure S5. Transforming heritability between liability and observed scales; proof of
principle. To convert estimates of heritability between the observed (h2O) and liability (h2L) scales, we
use the formula h2L = h2O ×K2(1−K)2/p(1− p)z2, where K is the prevalence, p the proportion of cases
in the sample and z is the standard normal density at the liability threshold. To test the reliability of
this transformation for our analysis, we constructed a population dataset consisting of 280 000
individuals genotyped for 20 000 independent SNPs. We generated liability values with heritability 0.1,
0.2, 0.3 or 0.4, supposing 2000 SNPs were causal; individuals with liability > Φ−1(0.995), were deemed
cases, the remainder controls (Φ is the standard normal cumulative density function). From this
population dataset, we selected at random 1258 cases and 5129 controls, using which we estimated
heritability. On average, estimate of h2L based on this subset of samples (each box corresponds to 50
repetitions) are approximately a tenth lower than the true values (horizontal lines).
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Figure S6. Estimating inflation due to genotyping errors; proof of principle. For this
simulation, we used (pre-imputation) genotypes for Chromosomes 1 and 2 (40 032 SNPs) and all 6387
individuals. We generated liability values with 50% heritability supposing 2000 SNPs were causal;
individuals with liability > Φ−1(0.6), became cases, the remainder controls. We first computed a
kinship matrix using the observed genotypes, from which we obtained a “correct” estimate of h2O. In
order to simulate genotyping errors, we randomly divided the control individuals into two sets. For 5%
of SNPs, we picked a random error term (drawn from a uniform distribution on [-0.05,0.05]), and added
this value to genotypes for individuals within the first control dataset. We did the same for individuals
within the second control dataset (again affecting 5% of SNPs). We then recomputed kinships and
obtained a new estimate of h2O; the difference between this and the correct estimate represents the
“true” inflation due to genotyping errors. We also considered increasing the proportion of affected SNPs
to 10% and 15%, and repeated the process for a total of 10 phenotypes. For each phenotype, the left
plot shows how well we can estimate the inflation due to genotyping errors using the method outlined in
the main text. The right plot presents unadjusted (red) and adjusted (green) estimates of h2O (all values
are relative to the correct estimates). We see that even when genotyping errors more than double the
estimate of h2O, we can still expect to recover the correct estimate with reasonable accuracy.
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Figure S7. Estimating the number of causal variants. In the main text, we focus on estimating
the number of causal variants for the phenotype all epilepsy. Here, we also consider the subtypes focal
and non-focal epilepsy. We vary the number of causal variants (x-axis) and the assumed distribution of
heritability across these variants (black, equal; red, uniform; green, exponential; blue, chi squared), with
parameters chosen to ensure the total variance explained by causal variants matches our estimates
based on the real data; for these simulations, the y-axis reports the probability that in marginal tests of
association, no SNP exceeds the lowest p-value observed for the real data. For each distribution, our
point estimate (lower bound) for the number of causal variants is the number required for this
probability to exceed 0.5 (0.05). These estimates are marked by vertical lines.
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Figure S8. Classification performance of prediction models. Each ROC curve plots the true
positive rate (the proportion of individuals who develop epilepsy that are correctly classified) against
the false positive rate (the proportion of individuals who do not develop epilepsy but are wrongly
classified). We consider different prediction models, defined by the proportion of liability variation each
explains (from 5 to 30%, indicated by line colour). The left curve reports the performance of the model
applied to the general population; the middle and right curves correspond to single-seizure individuals,
assuming either the Best or Worst Case Scenarios for the liability distribution of single-seizure
individuals who do not develop epilepsy (see main text). The figures in parentheses report AUC (area
under curve) for each model. AUC values are invariant to ascertainment, which is the reason why values
match for the first two curves.
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Figure S9. The effect of mislabelling samples; proof of principle. Given that a fraction p of
controls are in fact cases, we calculate that the estimate of h2L (or equivalently, that of h2O) should be
(1− p)2 times the true value. We test this theory through simulation, using (pre-imputation) genotypes
for Chromosomes 1 and 2 (40 032 SNPs) and all 6387 individuals. We first generated liability values
with 50% heritability supposing 2000 SNPs were causal, according to which we dichotomised individuals
into cases and controls based on a threshold of 0. The “correct” heritability estimate is that obtained
using the correct labellings. Then we randomly sample 5% of cases, relabel these as controls and
re-estimate heritability, recording the average heritability over ten samplings (measured as a proportion
of the correct estimate). We also consider 10%, 15%, 20% and 25% of cases wrongly labelled, and
repeat for a total of 50 phenotypes. We find that the observed proportions closely concentrate around
those expected (dashed line).
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Figure S10. Principal component plot of samples. The x and y-axes correspond to the first two
axes from principal component analysis. After checks of genotyping accuracy, and removal of individuals
so that no pair remained with estimated kinship > 0.1875, (a level of relatedness halfway between those
expected for full-sibs and cousins), 6561 samples remained. Then 36 were excluded as suspected
population outliers (grey) and 83 to remove pairwise relatedness higher than that expected by chance
(purple). Of the remaining samples, 5129 were controls (black) and 1295 cases, of which 958 had type
focal (red), 151 generalized (green), 149 unclassified (dark blue) and 40 had status unknown (light blue).
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Epilepsy Subtype Number of Individuals
Focal: Hippocampal sclerosis lesion 61
Focal: Lesion other than hippocampal sclerosis 148
Focal: Lesion negative 379
Focal: Lesion status not documented 370
Generalized: Childhood absence epilepsy 15
Generalized: Juvenile absence epilepsy 9
Generalized: Juvenile myoclonic epilepsy 48
Generalized: Generalized tonic-clonic seizures 3
Generalized: Other type or type not documented 76
Unclassified 149

Table S1. Phenotypic breakdown of epilepsy cases. All epilepsy cases were carefully phenotyped
by epilepsy specialists (see [1] for details). Clinical data included: numbers and types of epilepsy
seizures pre-treatment, results of MRI and EEG, information on drug treatment and outcome. Most
patients were reviewed on at least ten occasions post starting treatment, and all patients were
re-evaluated at data entry to confirm accuracy of seizure and epilepsy classification. From this
information it was possible to identify subsets of individuals exhibiting specific epilepsy subtypes, some
of which are listed above. However, to ensure reasonable sample size we focused analysis on three broad
phenotypes: all epilepsy, focal epilepsy and non-focal epilepsy.

Phenotype h2
O K h2

T h2
L K h2

T h2
L K h2

T h2
L

All Epilepsy 42 (6) 0.0020 27 [19-33] 26 (4) 0.005 32 [24-41] 31 (5) 0.010 39 [28-50] 37 (6)
Focal 41 (7) 0.0012 19 [4-35] 28 (5) 0.003 23 [5-43] 33 (5) 0.006 26 [5-50] 38 (6)
Non-Focal 24 (8) 0.0008 30 [13-49] 39 (12) 0.002 36 [15-59] 46 (14) 0.004 41 [18-70] 52 (16)

Table S2. Estimates of prevalence affect estimates of h2T and h2L. The estimate of total liability
heritability, h2T , depends the population prevalence, K (as well as on sibling relative risk); similarly, the
estimate of variance explained on the underlying liability scale, h2L, which is obtained by transforming
the corresponding estimate on the observed scale, h2O, also depends on K. In the main text, we assumed
K = 0.005 for the phenotype all epilepsy; here, we consider three different values (0.002, 0.005 and
0.01), continuing to suppose that 60% of epilepsy patients are classified focal, and report for each the
resulting estimate of h2T (95% confidence interval in parentheses) and of h2L (standard deviation in
parentheses). Although varying K affects the estimates of h2T and h2L considerably, it has only a modest
effect on h2L/h

2
T , the proportion of total liability heritability explained by common SNPs.

Genotyped SNPs Imputed SNPs
Phenotype K Sibling Relative Risk h2T h2O h2L h2O h2L
All Epilepsy 0.005 3.3 [2.5-4.3] 32 [24-41] 21 (5) 16 (3) 18 (4) 14 (3)
Focal 0.003 2.6 [1.2-5.3] 23 [5-43] 23 (5) 19 (4) 19 (4) 15 (4)
Non-Focal 0.002 4.7 [2.1-10.8] 36 [15-59] 12 (5) 24 (10) 3(5) 6 (9)

Table S3. Estimates of variance explained using GCTA. For the estimates of h2L in the main
text, we computed a weighted kinship matrix using LDAK [2] which allows for the uneven nature of
linkage disequilibrium. Here we report estimates when we omit this adjustment and instead follow the
procedure of GCTA, [3] which weights each SNP equally when computing the kinship matrix. We
would expect an estimate based on imputed SNPs to be no smaller than that based on genotyped
SNPs, but we see that without adjusting for uneven tagging, this proves not to be the case. As before,
h2T represents the total liability heritability, estimated based on estimates of prevalence and sibling
relative risk.
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Phenotype Total h2L Common h2L Controls 1 h2L Controls 2 h2L Genotyping Error
All Epilepsy 31 28 0 2 2
All Epilepsy 33 28 3 0 3
All Epilepsy 46 44 0 1 2

Table S4. Estimating inflation due to genotyping errors. For each phenotype, we estimate how
much of h2L is specific to each control dataset, the sum of which provides an estimate of how much
genotyping errors within controls inflate our estimate of h2L. The remaining portion of h2L is common to
all datasets and represents true signal plus inflation due to genotyping errors in cases (with only one case
dataset available, it is not possible to separate out the contribution of genotyping errors within cases).
Because we restrict that component estimates are non-negative, they do not necessary sum to h2L.

Subset of SNPs Phenotype h2L (SD) Ph2
L>0 Permuted P1 Permuted P2

All epilepsy 0.00 (0.18) 0.50 — —
Three susceptibility loci Focal epilepsy 0.04 (0.20) 0.42 — —

Non-focal epilepsy 0.00 (0.53) 0.50 — —
All epilepsy 3.9 (1.0) 0.00002 0.004 0.002

85 susceptibility genes Focal epilepsy 3.3 (1.1) 0.001 0.038 0.042
Non-focal epilepsy 3.5 (2.8) 0.1 0.178 0.182

Table S5. Variance explained by previously reported susceptibility loci. We first estimate the
variance explained on the liability scale h2L (standard deviation in parenthesis) by the 6003 SNPs within
500 kb of the three loci previously identified through genome-wide association studies: rs2292096
(located at 1q32.1), rs13026414 (2p16.1) and rs72823592 (17q21.32). Next we consider the 119 630 SNPs
located inside or within 20 kb of 85 genes obtained by searching the UniProtKB database
(http://www.uniprot.org) using the keyword “epilepsy”. The first p-value corresponds to a
“self-contained” test that the estimate of variance explained is significantly greater than zero. For the
susceptibility genes, we additionally provide a p-value for a “competitive test” which assesses whether
the 119 630 SNPs explain more variance than expected given the total variance explained by all SNPs.
For this we use cyclic permutations to obtain 500 new lists of 119 630 SNPs displaying similar structure
to the original list; for each permutation, we increase the SNP index by 2500 (so if the original list
contains SNPs 1, 2, 3, ..., the first permutation will consider SNPs 2501, 2502, 2503, ...). Permuted P1

indicates how often a permutation resulted in a larger estimate of h2L; Permuted P2 indicates how often
a permutation resulted in a smaller Ph2

L>0.
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Case-Control Ratio 1258:5129

Equal, 870 Causal Loci n = 6387 n = 12500 n = 20000 n = 50000 n = 100000

Expected Number of Associations 0.1 0.6 3.9 147 710
% of Variance Explained 0.0 0.0 0.1 4.4 21.4

Uniform, 1230 Causal Loci n = 6387 n = 12500 n = 20000 n = 50000 n = 100000

Expected Number of Associations 0.1 0.7 4.6 142 570
% of Variance Explained 0.0 0.0 0.2 4.9 17.8

Exponential, 2160 Causal Loci n = 6387 n = 12500 n = 20000 n = 50000 n = 100000

Expected Number of Associations 0.1 0.9 5.7 103 401
% of Variance Explained 0.0 0.0 0.3 4.3 12.2

Chi Squared, 3390 Causal Loci n = 6387 n = 12500 n = 20000 n = 50000 n = 100000

Expected Number of Associations 0.1 0.9 5.9 96 360
% of Variance Explained 0.0 0.1 0.3 4.1 11.1

Case-Control Ratio 1:2

Equal, 870 Causal Loci n = 6387 n = 12500 n = 20000 n = 50000 n = 100000

Expected Number of Associations 0.2 2.3 16.2 391 854
% of Variance Explained 0.0 0.1 0.5 11.8 25.8

Uniform, 1230 Causal Loci n = 6387 n = 12500 n = 20000 n = 50000 n = 100000

Expected Number of Associations 0.2 2.7 18.3 331 759
% of Variance Explained 0.0 0.1 0.7 11.0 21.9

Exponential, 2160 Causal Loci n = 6387 n = 12500 n = 20000 n = 50000 n = 100000

Expected Number of Associations 0.2 3.5 19.2 218 627
% of Variance Explained 0.0 0.2 1.0 7.8 16.3

Chi Squared, 3390 Causal Loci n = 6387 n = 12500 n = 20000 n = 50000 n = 100000

Expected Number of Associations 0.3 3.6 19.2 198 567
% of Variance Explained 0.0 0.2 1.0 7.3 14.8

Table S6. Expected success of marginal (single-SNP) analyses. Our dataset had sample size
n = 6387. Considering four distributions of heritability across causal loci, in each case supposing our
point estimate for the number of causal variants is correct, we predict how the success of future
genome-wide association studies will improve by increasing n. We also consider if the case-control ratio
(currently 1258:5129) was instead increased to 1:2.

Pairing 1 Pairing 2 ρ Pρ=1 Pρ=0

1958 BC vs Focal NBS vs Non-Focal 0.56 (0.22) 0.007 0.001
NBS vs Focal 1958 BC vs Non-Focal 0.34 (0.18) 0.00002 0.02

Table S7. Bivariate analysis for focal and non-focal epilepsy. GCTA can estimate the
correlation ρ between effect sizes for pairs of traits (here, two subtypes of epilepsy). To perform the
test, it is necessary to pair each of the two sets of cases (here, focal or non-focal patients) with a control
dataset (either National Blood Service or 1958 Birth Cohort), so we consider both possible
combinations. We report the estimate of ρ (standard deviation in parentheses), P from a test that the
two traits have identical genetic architectures (ρ = 1) and P from a test that the genetic architectures
have no shared component (ρ = 0). In the main text, we report the average correlations and p-values
across the two combinations.


