The RNA-binding protein DDX1 promotes primary microRNA maturation and inhibits ovarian tumor progression

Cecil Han, Yunhua Liu, Guohui Wan, Hyun Jin Choi, Luqing Zhao, Cristina Ivan, Xiaoming He,

Anil K. Sood, Xinna Zhang, Xiongbin Lu

Inventory of Supplemental Information

- Figures S1-S7
- Figures S1-S7 Legends
- Table S1-S2
- Supplemental Experimental Procedures
- Supplemental References

DDX1/Drosha/DAPI

В

RNase A + + RNase V1 +

+

1.5 - Relative pre-miR-21 level 50 0.1 0.0 RN25E V1 - RN25E V1*

D

HeyA8

SKOV3

HCT116 p53+/+

A HCT116 p53-/-

IG10

А

DDX1-shRNA1: CAGATGGTCTTTGTTGTCA DDX1-shRNA2: AGATGGTCTTTGTTGTCAA

В

D

In vivo processing of primary miRNAs

luciferase activity

Ε

Relative luciferase activity

Figure S4

NCS - NCS +

D

DDX1/ miR-200a

SUPPLEMENTAL FIGURE LEGENDS

Figure S1 (related to Figure 1). DDX1 interacts with the Drosha microprocessor. (A) Colocalization of DDX1 and Drosha in human U2OS cells. Scale bar: 10µm. (B) RNase activity was determined by incubating total RNA with 0.1 unit of RNase A or RNase V1 for 30 min. Integrity of RNA was observed by gel separation and ethidium bromide staining (two left panels). RNA degradation was evaluated by reduced levels of β-actin mRNA (single-stranded RNA) or pre-miR-21 (double-stranded RNA). * p < 0.05.

Figure S2 (related to Figure 2). Posttranscriptional regulation of the DDX1-dependent miRNA expression. (A) Transcription of the DDX1-dependent miRNA genes in control and DDX1-knockdown cells in nuclear run-on assays. Pri-miR-34a and pri-miR-21 were used as DDX1-independent miRNA controls. Quantification of transcription activities were shown on the right. (B) Efficiency of DDX1 knockdown in various cell lines. GAPDH levels were used for normalization. (C) CT (cycle threshold) values of DDX1-dependent miRNAs in qPCR assays. (D) Effect of DDX1 on miRNA processing. Northern blotting was performed to determine the levels of pre-miRNAs and mature miRNAs in total RNAs purified from control and DDX1-knockdown cells. U6 RNA was used as a loading control. Band intensity was quantified with Image J.

Figure S3 (related to Figure 3). DDX1 physically binds pri-miR-200s and promotes their processing. (A) Knockdown efficiency of two DDX1 shRNAs. (B) To test the specificity of DDX1 RIP assay, levels of pri-miRNAs were measured in the DDX1 immunoprecipitates of DDX1-knockdown cells. Control IgG immunoprecipitates were used as negative controls. No significant differences were observed for pri-miRNA levels in the control or DDX1-knockdown

immunoprecipitates. (C) Immunoprecipitation of MS2-pri-miR-200a, MS2-pri-miR-200b and MS2-pri-miR-21 in MS2-TRAP assays. Pri-miRNA levels were measured by RT-qPCR. (D) Schematic diagram for in-vivo pri-miRNA processing assay. (E) In-vivo pri-miRNA processing activity is dependent on Drosha. Firefly luciferase signals were normalized by internal control Renilla luciferase readings and are shown as fold changes in comparison with luciferase control vector without pri-miRNA insert. Error bars represents the mean \pm SD, * p < 0.05.

Figure S4 (related to Figure 3). DDX1-binding requirements in pri-miR-200s. (A) Predicted structures of pri-miR-200a and pri-miR-200b. WT (wildtype) and mt (mutant) forms of pri-miR-200a/b are shown. Two A residues in or near the loops of the pre-miRNAs are conserved in most of the DDX1-dependent miRNAs (Table S1). (B) Mutating the AA di-nucleotides to CC in pri-miR-200a/b abolished their interaction with DDX1. * p < 0.05.

Figure S5 (related to Figure 4). DNA damage-induced miR-200 expression is independent of p53. (A) Levels of miR-200a/b/c were induced after NCS (500 ng/ml) treatment in control U2OS cells, but not in the DDX1-knockdown U2OS cells using DDX1 shRNA-2. miR-218 and miR-21 were used as DDX1-independent controls. (B) Levels of miR-200a/b/c in HCT116 p53+/+ and HCT116 p53-/- cells treated with or without NCS (500 ng/ml, 4 h) (* p < 0.05). (C) Levels of miR-200a/b/c in the DDX1-knockdown HCT116 p53+/+ and HCT116 p53-/- cells treated with or Without NCS (500 ng/ml, 4 h) (* p < 0.05). (C) Levels of miR-200a/b/c in the DDX1-knockdown HCT116 p53+/+ and HCT116 p53-/- cells treated with or Without NCS (500 ng/ml, 4 h) (* p < 0.05). (C) Levels of miR-200a/b/c in the DDX1-knockdown HCT116 p53+/+ and HCT116 p53+/+ cells treated with NCS (500 ng/ml, 4 h). (D) Levels of miR-200a/b/c in HCT116 p53+/+ cells treated with NCS (500 ng/ml) and ATM inhibitor (10 μ M of CGK733).

Figure S6 (related to Figure 5). Interaction between DDX1 and the Drosha complex is unchanged after DNA damage. (A) Protein levels of DDX1, Rad50, NBS1 and ATM are unchanged after NCS treatment (500 ng/ml, 4 h). (B) Interactions of DDX1 with Rad50, NBS1 and ATM are unchanged after NCS treatment. (C) Homologous recombination DNA repair activity is only minimally affected by DDX1. (**D**) DDX1 is phosphorylated in vivo. DDX1overexpressing HEK293T cells were treated with or without ATM inhibitor (10 μ M, CGK733) and phosphorylated proteins were labelled with ³²P-ATP. In vivo phosphorylation of wildtype and phosphorylation-mutant DDX1 (single or double sites) was shown at the bottom. (**E**) Protein levels of DDX1 and Drosha are unchanged throughout 0-8 h post-NCS treatment. p53 and GAPDH were used as positive and negative controls for DNA damage signalling, respectively. (**F**) Subcellular distributions of Drosha and DDX1 are unchanged after DNA damage (500 ng/ml NCS, 4 h). Lamin B and GAPDH were used as biomarkers for nuclear and cytoplasmic proteins, respectively. (**G**) Localization of Drosha and DGCR8 was unchanged after DNA damage (500 ng/ml NCS, 4 h). No distinct foci were observed for either Drosha or DGCR8 following DNA damaging treatment.

Figure S7 (related to Figure 7). DDX1 levels are associated with clinical outcome of cancer patients. (A) Kaplan-Meyer plots for overall survival of patients with ovarian serous adenocarcinoma in the training cohort (n = 259). (B) Kaplan-Meyer plots for overall survival of patients with kidney renal clear cell carcinoma (n = 313). (C) Relative expression levels of miR-200a (p = 0.03) and miR-200c (p = 0.04) in the DDX1-low and -high groups from the training cohort of ovarian serous adenocarcinomas. (D) Representative images for DDX1 and miR-200a levels in human ovarian tumor tissue microarray (Biomax, BC110118,). DDX1 levels are correlated with miR-200a levels. Scale bar: 200 µm.

		1 <u>3</u> 0																		ACTTC							
000000	XXXXXXXX						AGG											4		CAGCGGA(AGGGT	TTGAGA	TTGAGA			AGCA
0000000		120					ACACTAC	BTTC			0000	FGCACG				0		ATA- TAC	CAA	FCACAAG	CA	CCT 6660.	FAACGCT	FA- CGGT		CA 	ACATGO
000 E 0 0 0		110	CAGTA	4A			DCA CA CO	CGGGT GG(900000		AGGTGAC	BGAGCCC			с О	CAGTAC	DCGCT GC	FTATTGC	CAGTAT	BAGCTGT	CGGTAT	FACGCTG	AGAGTGT'	GAGTGT'	GAGTAT	CATCTT(I GA LT GAV
	XXIIIIX		TTTTT-	ATGGGA/	-GGCA	BTATCT	V CCA GGG(GOCTCC(TCTGGT(AACAG	GTTCAA/	GACGGC	.GGAGG	VCGTTTT	CGTTTT-	- CTTTT	SGT CCAT (GCTGTC1	CTTTT	GCTGTT(CTTTTT-	COTCCCI	CCCTTC/	CCCTTT(CTTTT-	BAGCCACT	AGICICI
		100	BACAACAC	TGCCAAT	GAAGGAT	CAAAAAG	CACAACA	TAAAGAT	BACTCAGT	TAGCATT	TAACGAT	TAATGAT	TAATGAT	AATTCCA	AAATCCA	AT GGCCT	TAAAACC	TGCAACT	TCATCCA	ACTCCAT	TGCACTT	CT GCTT CC	A GCGCTT	GGCGCTT	BACAATTT	60TCT660	ATAAGCI
00 H 0 H 0 H	UNIA I A I A I A I A I A I A I A I A I A	<u>90</u>	TTCACGG	TGTGCAG	GATAACT	CTTACCC	GCTACTT	TGTCTGG	CCT GT GG	TACATAT	TGTCTGG	TGCCTGG	TGCCGGG	TAGAGGA	TAGAGGA	AACACAG	TGTCTGG	GCTAACA	ITACAGGG	- TGGAGC	AACATGG	- CTGTGC	AAAAGAA	BAAAGAA	TACAAGG	CTGAAAG	- 11A161
0 <u> </u>	<u>ULAALUU</u>	_	COMATCA	GCAATCA	GTACTGT	.GGAAGCC	GAGAACG	CTAACAC	GCAATGC	TGACTCC	CTAACAC	CTAATAC	CTAATAC	5TTAAACA	TTAATCA	CGAATAT.	CTAATAC	GGCATCC	COMATCO	CCAACC-	CGAAACA	.GCAAGT-	6CTAAAAG	CCAAAGG	TGAATCA	TTGATAA	GTAALT-
•	¥	.08	A A	¥	AGGTACA	GTAGTCA	SCCAATCA	BAAG- CTC	¥	AC	CT	TCT	3A- G- TCT	0	¥	¥	2 TGT	TGTGAAT	L	AGATGCA	A A	TCACA	9 6	T 4	A A	3ACA GA	5T CAAT CT
	SILIAIU	70	ACTTATG	COCTCTC	ATTCTAA	CTCAACA	9GCCGTTG	AATTGTG	BAGCTCT-	GCCTCCA	AGCTTGA	AGTCAGG	00TT000	ATTTATG	ATTTATG	ATTAATG	DCCCCTC	JTTGAATA	GCTCATG	AGTTTAG	ATATGTG	SGT GAA CA	TCTGTTG	TCTCTTG	ATTTATG	ACTTGTG	GGTGAAG
		60	T T T	7 TCTO	GTCT	XIGTTCCT	GAATCAG	ATGGTCT	> TGT 0	960TTTTT	ATTTCCC	GATGG	66T60	GTT-	7 ATT-	TTTT	ACCT	TAGCTOG	TTT	.6- GGTCA	TTT	XTCTCCAC	2 0 CTT	2 ACTT	TTT)T 0T 00	GCAGTAT
00 H H O O H	<u>, I 66I I 6</u>		6ATTC60	CTGTGTC	TGATGCT	00CTT00	GTGTTGT	GTGTTGG	CATAGGC	TGATAGG	GTGCTGC	GCATT- 0	GTGTTTG	TGTTTAT	TGAGTAC	A GTTCGC	TGGTTAG	GTATTGT	TGTTCGT	CCA GGT	TTTTC60	TAACTCC	GGGAAGC	GGGAAGC	ST GTT CGC	BATACCAG	TAAAAGI
0 HINO H HO	CI 1 6X 1 8	50	CGTGGTG	TTTTGC	ACAGTGC	CGGTCTC	CAGCTG-	CAGTACA	TGAATTC	CTAATCG	CCGGACA	CTGGGCA	CCCAGCA	CCTTCTA	CCTTCTA	TGTGATC	CCAGACA	TGGCAGT	CCT GT CC	ATGGATC	CATGTTA	TGATGTT	CTCTAGA	CTACAAA:	CTT GGT C	TCACGAG	TTATTCA
0 1 0 1 0 0	CGLIALC	40	AGTTGTT	TAGCACA	AGTTATC	CTTTTG	0010000	CATCTTC	TGAGAAC	GTTAATG	CATCTTA	CATCTTA	CGTCTTA	GGATATT	AGATTCT	GUTGTO	CGTCTTA	GATGAGC	GGTTATC	CGACACC	AGTTGCC	CTTGCAG	TGTGACC	TGTGACC	AATTATC	CATCATG	AATGAGO
FOOOD FO	<u>X I 66661</u>		GAAGAGA	TTGGCAC	CT GGCT C	6GAT	ATGGTGT	CTGGGTC	CT GGCAC	CT	GTGA G	:GT 66 C	- CCC T	AAAGGT	AAAAGGT	GAGAAGA	ATGG C	TGTGTGT	GGAGAGA	CATTGTT	GAAAAGA	GTTAAGA	CT CA GGC	CTCATGC	GAGGAGA	CGGGGGAT	AGTCAGA
∎ 5 ■ >		30	TACTT	3GCCGATT	TGCC		CCCTGGC	900000000	0		366CCCCT	3GGCA GCC			T T	GGTACCT	000000000	0 0	GGTACTT	36AAAGTT	GGTACCT	966C66CT	T T	T T	- ATACTT	GACATCT	TAGCC
	:	20		TG				00 00			000	CAGCTCC					CG		11 · · · · ·	TGGTTTG	T T	3TT 66600				.GATCTCA	
		.0																		36CCTT60		CCT GT GCC				·CP	
			miR-82 [-	miR-96 .	miR-101 .	miR-129 .	miR-138 .	miR-141	miR-146b .	miR-155 .	miR-200a .	miR-200b .	miR-200c	miR-376 .	miR-376a .	miR-410	miR-429 .	miR-449a .	miR-487b .	miR-490	miR-495	miR-499	miR-518e .	miR-524 .	miR-539 .	miR-542	- пвс-ыш

 Table S1. Alignment of DDX1 dependent pre-miRNAs using Clustal W.

Table S2. Primers for mature miRNAs in qRT-PCR assays were obtained from Exiqon: U6 RNA control (#201510), miR-200a (#204707), miR-200b (#204650), miR-200c (#204482), miR-141 (#204504), miR-429 (#205068), miR-21 (#204230), miR-10a (#204778). Other primers specific for qRT-PCR are listed below.

pri-miR-21- forward	TTTTGTTTTGCTTGGGAGGA
pri-miR-21- reverse	AGCAGACAGTCAGGCAGGAT
pri-miR-10a- forward	CGGAAAGTAGGAGAACTGGA
pri-miR-10a- reverse	CAGAAAAATACTACATATAC
pri-miR-200a- forward	GATGCAAGGGTCAGAAGGGC
pri-miR-200a- reverse	GAGCCATCTGGCCCGGACG
pri-miR-200b- forward	CTGGCGGGACCCCACGTC
pri-miR-200b- reverse	TGCCTCGGTGGTGTCCCCG
pri-miR-200c- forward	CCTGGGCCTGAAGCTGCCT
pri-miR-200c- reverse	GGCGATGGATGTTGCTGAC
pri-miR-141- forward	GAGCGCGCACCGTAGTTCT
pri-miR-141- reverse	CCTGAAGGTTACTGCCGAG
pri-miR-429- forward	CGGAGGCCACCCACACCA
pri-miR-429- reverse	GCGGATGGACGGTTTTAC
pre-miR-10a-forward	CTGTCTGTCTTCTGTA
pre-miR-10a-reverse	GAGCGGAGTGTTTAT
pre-miR-21-forward	ATGTTGACTGTTGAATCTCATGG
pre-miR-21-reverse	TGTCAGACAGCCCATCGAC
pre-miR-200a-forward	TGTGAGCATCTTACCGGACA
pre-miR-200a-reverse	GGGTCACCTTTGAACATCGT
pre-miR-200b-forward	ACCCAGCTCGGGCAGCCGT
pre-miR-200b-reverse	TCTAGATGCGTGCAGGGCT
pre-miR-200c-forward	GAAGCTGCCTGACCCAAG
pre-miR-200c-reverse	CAGGGATCTGCAGCTTTTC
pre-miR-141-forward	GGCCGGCCCTGGGTCCATCT
pre-miR-141-reverse	CCACCCGGGAGCCATCTTTA
GAPDH-forward	AGCCACATCGCTCAGACAC
GAPDH-reverse	GCCCAATACGACCAAATCC
Human DDX1-forward	TTGATGGGAAAGTTACCTACGG
Human DDX1-reverse	CAAGATGCAGGAAAGATGTCTG
Mouse DDX1-forward	AATGAAATGCAGCTACTTTCCG
Mouse DDX1-reverse	CTGTCTACATGACGTCAGAAGG
Human Drosha-forward	TGAAACACTATGATGACCACAG
Human Drosha-reverse	GATAAACCGTAACTCCTTCCAG