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Supplementary Material 

Curve fitting Analysis. To compare the dynamics of upright and inverted face encoding, a 

shifted exponential function was fitted to the averaged d’ values at each time point 

(Wickelgren & Corbett, 1977): 

! 

ˆ d '= A 1 " exp "R t " I( )[ ]{ } for t > I , otherwise 

! 

ˆ d ' =  0.  (1) 

Here, A is the asymptote, R is the rate of approach to asymptote, I is the intercept, and t is 

the stimulus encoding duration.  The inverse of the rate, 1/R, is expressed in seconds.  

The eight possible models derived from this exponential function, which differed 

in the number of free parameters, were fitted to the 16 (2 stimulus types x 8 presentation 

durations) data points, 

! 

d
i
. More specifically, the models differed in whether the 

intercepts, rates of approach to the asymptote, or the asymptotes themselves were the 

same or different for the upright and inverted curves fitted to the observed data.  This was 

notated with a 1 or 2 respectively (e.g. 2I, 1R, 2A). The least constrained model (6 

parameters; 2I, 2R, 2A), allowed different intercepts, rates of approach to the asymptote, 

and asymptotes for the performance functions for upright and inverted faces, while the 

most constrained model possible (3 parameters; 1I, 1R, 1A), assuming equivalent 

intercept, rate, and asymptotes for upright and inverted faces. Fits were calculated for the 

average sensitivity across participants. 

Data fitting was implemented in Matlab (Mathworks) using a simplex hill-

climbing function to iteratively adjust parameters to maximize the value of the variance 

accounted for (r2). The range of values from which the starting point of the curve fitting 

functions could be selected were limited as follows: intercept, 0.01 - 0.5, growth rate 0.01 

– 10.0, asymptote, 0.1 - 5.0). To increase the plausibility of the resulting best fit models, 
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the fitting procedure was restricted so that the asymptote parameter for inverted faces 

could not exceed that for upright faces. Two thousand iterations were performed per 

model to fit the data. Goodness of fit was assessed by calculating r2 values (equation 2).  
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where 

! 

d
i( )  refers to the observed data point i, 

! 

ˆ d 
i
 is the value predicted by equation 1, and  

! 

d  is the overall mean.   

Nested models (whose parameters are proper subsets or super-sets) were 

statistically compared with an F-test comparing a full (greater number free parameters) to 

a reduced model (fewer number of free parameters) as follows in equation 3 (Lu & 

Dosher, 1998): 
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where df1 = k full – k reduced, and df1 = N - k full.  The k refers to the number of free 

parameters in each model, and N is the number of predicted data points. This F-test 

incorporates an adjustment for the number of free parameters. The resulting F-values 

were converted to a t-value to evaluate the nested models.  This conversion was done so 

that a one-tailed test could be applied. A one-tailed test is most appropriate because, 

logically, the fit of the nested model (i.e. the model with less free parameters) must be 

lower than, or at best equal to, that for the less constrained model.  
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Goodness of fit was also evaluated by comparing—between models— the 

r2
adjusted, which is the proportion of variance accounted for after it is adjusted for the 

number of free parameters, k (Reed, 1976).   
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where N is the number of data points 

! 

d
i( ) , 

! 

ˆ d 
i
 is the value predicted by equation 1, k is the 

number of free parameters, and  

! 

d  is the overall mean.   

 

Experiment 1: Curve-fitting Results 
 
Curve fitting. A curve was fitted to the average sensitivity (d’) measures for each group 

for each of the eight possible models. The data were best described by a model in which 

the asymptote and intercept, but not the rate of approach to asymptote, differed for 

upright and inverted faces (Figure S1). More specifically, constraining the rate parameter 

so that it was the same for both upright and inverted faces did not result in a significant 

drop in the variance accounted for across the two conditions (2I, 1R, 2A, r2 = .9772), 

relative to the full model (2I, 2R, 2A, r2 = .9813), t(10)=1.48, p=.084. However, 

constraining the intercept parameter (1I, 2R, 2A, r2 = .9698), t(10)=2.48, p=.0164, or the 

asymptote (1I, 2R, 2A, r2 = .8953), t(10)=6.78, p<.0001, so they were the same for both 

upright and inverted faces did result in a significantly worse fit relative to the full model. 

The best-fitting model not only confirmed the considerable difference in the asymptote 

level of performance between the two groups (.92 d’ difference), but it also suggests that 

the onset of recognition performance for upright faces occurs approximately 33 ms before 



 4 

that for inverted faces. However, we find no evidence for a difference in the rate of 

perceptual encoding for upright and inverted faces.  

 

Figure S1. The performance (d’) for upright and inverted faces in Experiment 1 was best 

described by a shifted exponential function that equated the rate of approach to asymptote 

(9.86), but had different performance onsets (intercepts; upright, 27 ms; inverted, 60 ms) 

and asymptote performance levels (upright, d’=1.83; inverted, .91) for upright and 

inverted faces (r2 = .9772, r2
adjusted

 = .9688). 

 
Experiment 2: Curve-fitting Results 

Curve fitting. A curve was fit to the average sensitivity (d’) measures from the expert and 

novice groups for each of the eight possible models. Constraining the asymptote (2I, 2R, 

1A, r2 = .9747), t(10)=4.99, p=.00025, resulted in a significantly worse fit relative to the 

full model (2I, 2R, 2A, r2 = .9928). Constraining the intercept parameter (1I, 2R, 2A, r2 = 

.9920), t(10)=1.02, p=.167,  or the rate parameter (2I, 1R, 2A, r2 = .9912), t(10)=1.46, 

p=.087, so that they were the same for both upright and inverted faces did not 

significantly affect the fit relative to the full model. Notably, the intercept and rate 
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parameters appeared to trade off in their ability to account for the difference in 

performance between car experts and novices: constraining both the rate and intercept 

parameters within the same model (1I, 1R, 2A, r2 = .9830), t(11)=3.51, p=.0025,  resulted 

in a significant impact on the fit relative to the full model.   

On closer inspection it appeared that the trade-off between the rate and intercept 

parameters may be occurring between different stages in the time-course of object 

processing. Specifically, the intercept-constrained model could better account for the 

longer encoding durations while the rate constrained model could better account for the 

shorter encoding durations. A similar reduction in fit to the early data points was 

observed for the intercept-constrained model (1I, 2R, 2A) in Experiment 1. Given that the 

focus of our study was on the time course of perceptual encoding, the curves were re-

fitted only to the shorter encoding durations where performance was still rising sharply 

(12 ms, 48 ms, 83 ms, 118 ms, and 153 ms) to see if the rate- and intercept-constrained 

models could be distinguished on the basis of their ability to account for performance 

when encoding duration was more limited.  The curve resulting from the model in which 

the rate was controlled, so that it could not vary across the expert and novice groups (2I, 

1R, 2A, r2 = .9877), fitted equally well as the curve resulting from the full model (2I, 2R, 

2A, r2 = .9878), t(4)=.17 p=.436.  However, the reduction in the fit of the curve that 

assumed that the intercept was the same for car experts and novices (1I, 2R, 2A, r2 = 

.9783), relative to the curves that assumed all three parameters differed across the group, 

approached significance, t(4)=1.77 p=.076. In addition, to achieve this fit, the intercept-

constrained model equated the asymptote parameters for experts and novices, which is 
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not consistent with the behavioral performance of the two groups1. Moreover, once the 

fits for the models were adjusted for the number of free parameters (r2
adjusted), the model 

in which the intercept and asymptote varied across experts and novices, but not the rate, 

was associated with the highest r2
adjusted value, even exceeding that for the full model. 

This suggests that the onset of performance for car experts starts approximately 43 ms 

earlier than that among novices (Figure S2).  It also reveals that asymptotic level of 

performance among experts is 1.18 d’ units greater than that among novices.  

 

Figure S2. The performance (d’) for cars among car experts and car novices in 

Experiment 2 was best described by a shifted exponential function that equated the rate of 

approach to asymptote (5.59), but had different performance onsets (intercepts; expert, 12 

ms; novice, 55 ms) and asymptote performance levels (expert, d’=2.46; novice, 1.28) for 

car expert and car novice performance (r2 = .9912, r2
adjusted

 = .9880). 

                                                
1 Notably, the equivalence of the asymptote parameters for the functions describing 
expert and novice performance was a consequence of the restriction placed on the fitting 
procedure that the novice asymptote parameter could not exceed that for experts. 
Therefore, if the fitting procedure were restricted so that the asymptote parameter for 
experts actually exceeded that for novices, as is clearly the case in the observed data, the 
fit would presumably be reduced further. 
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Experiment 3: Curve-fitting Results 

Curve fitting. A curve was fit to the average sensitivity (d’) measures from the upright 

(Expriment 2) and inverted conditions for each of the eight possible models. Constraining 

the asymptote (2I, 2R, 1A, r2 = .8743), t(10)=13.172, p=.036, resulted in a significantly 

worse fit relative to the full model (2I, 2R, 2A, r2 = .9490). Constraining the intercept 

parameter (1I, 2R, 2A, r2 = .9375), t(10)=1.42, p=.199,  or the rate parameter (2I, 1R, 2A, 

r2 = .9360), t(10)=1.51, p=.186, so that they were the same for both upright and inverted 

cars did not affect the fit relative to the full model. Constraining both the rate and 

intercept parameters within the same model (1I, 1R, 2A, r2 = .9347), t(11)=1.123, p=.248,  

also failed to significantly impact the fit relative to the full model.  This suggests that the 

onset of performance for upright and inverted cars is not significantly different, both 

starting at approximately 57-ms (Figure S3).  However, the asymptotic level of 

performance for upright cars is .58 d’ units greater than that for inverted cars.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S3. The performance (d’) for upright and inverted cars among car novices in 

Experiment 3 was best described by a shifted exponential function that equated the rate of 
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approach to asymptote (5.59) performance onsets (intercept; 57 ms), but had different 

asymptote performance levels (upright, d’=1.27; inverted, .67) for upright and inverted 

car performance (r2 = .9347, r2
adjusted

 = .9020). 
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