
Figure S1 – P120 catenin (and ARVCF) associates with REST/CoREST. 

A. Bacterial MBP, MBP-ARVCF, GST-CoREST, and REST were purified 

conventionally. GST was cleaved from GST-REST using thrombin. The indicated 

proteins were co-incubated, and MBP or MBP-ARVCF precipitated using amylose beads, 

followed by immunoblotting.  

B. P120-catenin associates with REST in HEK293 cells. P120-flag and REST-HA were 

transiently co-expressed in HEK293 cells. Forty-eight hrs post transfection, cells were 

lysed, and REST-HA precipitated , followed by immunoblotting for p120-flag. 

C. P120-catenin associates with CoREST in pluripotent mESCs. Endogenous CoREST 

was precipitated, with REST and p120 co-precipitating from nuclear-fractionated 

pluripotent mESCs. mESCs were differentiated via retinoic acid addition for 2 days after 

embryoid body formation (Note: Plu.=pluripotent ESCs; Dif.= differentiating mESCs). 

D. Endogenous p120 associates with endogenous REST and CoREST in HEK293 cells. 

Using nuclear extracts, CoREST or REST proteins were precipitated and p120 was 

detected by immuno-blotting. 

E. Kaiso does not associate with REST. The indicated proteins were overexpressed in 

AB1 cells using liposome-mediated transfection. 48hrs post transfection, whole cell 

lysates were used and REST was precipitated by anti-HA antibody, followed by immuno-

blotting with anti-CoREST or anti-Kaiso antibodies. 

F. P120 colocalizes with CoREST and REST in AB1 cells. 24hrs post transfection of the 

indicated cDNA expressing vectors, cells were fixed with 4% formaldehyde, and 

incubated with 0.3% TritonX100 to improve antibody permeability. Anti-HA and anti-

myc antibodies were used for immuno-staining, and DAPI was used for counter-staining. 

Scale bar represents 30µm. 

 

Figure S2 – P120 can form a trimetric complex with REST/ CoREST, and p120 

promotes REST protein destabilization, likely through a proteasome-dependent 

mechanism. 

A. CoREST:p120-catenin binding domain mapping. The indicated protein fragments of 

CoREST were expressed using an in vitro transcription and translation system, as 

indicated in Figure 2B, where the results for constructs #1 and #5 are displayed. The 
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CoREST-myc and flag-p120-HA proteins were incubated together, and CoREST-myc or 

flag-p120-HA was precipitated.  

B. The indicated proteins were expressed using an in vitro transcription and translation 

system. RESTΔC represents a carboxyl-terminal deleted mutant of REST (1-983 amino 

acids) in which the putative CoREST binding region is removed. CoREST-myc was 

precipitated by anti-myc antibody. 

C. The indicated protein expressing constructs were transfected using lipofectamine2000 

into AB1 cells and 48hrs post transfection, MG132 was added at 5µM final concentration 

for 2hrs. REST and p120 proteins were detected by immunoblotting using anti-HA and 

anti-myc antibodies, respectively. 

 

Figure S3 - P120 modulates REST/CoREST gene targets in different contexts, as 

shown in mouse ESCs, NIH3T3 cells and in Xenopus laevis embryos. 

A. REST/CoREST gene targets in AB1 mESCs are repressed upon depletion of p120 by 

either of two independent shRNAs. P120 knockdown was confirmed by immuno-blotting, 

and the level of REST target transcripts was assessed by real-time PCR. GAPDH was 

used as an internal control. Error bars represent SD. 

B. Non-targetable p120 expression rescues p120 depletion effect on REST gene targets. 

Non-targetable p120 cDNA (lacking UTR region) plasmid was transfected to shRNA-

mediated control and p120 depleted AB1 cells. 48hrs after incubation, cells were 

harvested and the indicated REST gene targets were tested by real-time PCR. Transcripts 

were normalized to GAPDH. Error bars represent SD. 

C. P120 knockdown decreases known REST/CoREST gene targets in NIH3T3 cells. 

P120-depleted NIH3T3 cells were generated by shRNA-mediated RNAi. Whole cell 

lysates were used for immunoblotting. The REST/CoREST gene target transcripts 

(mash1 and syt4) were tested by semi-qRT-PCR. GAPDH was used as an internal control.  

D. CoREST knockdown rescues p120 depletion effects. CoREST was knocked down by 

siRNA in p120-depleted NIH3T3 cells, and p120 was expressed after liposome-mediated 

transfection in p120-depleted NIH3T3 cells. Seventy-two hrs later, the indicated 

transcript levels were measured by semi-qRT-PCR. Mash1 and syt4 transcripts were 
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normalized by GAPDH and quantified relative to parental values. Whole cell lysates 

were used for immunoblotting to confirm CoREST knockdown.  

E. CoREST expression rescues p120 overexpression effects. P120 was co-expressed with 

CoREST or REST in NIH3T3 cells for 48 hrs, and cells were lysed for immunoblotting 

or RT-PCR. Mash1 and syt4 transcripts were normalized to GAPDH and quantified 

relative to parental values. 

F. P120 mutant (N478A), unable to bind E-cadherin, remains capable of partially 

rescuing, REST/CoREST gene targets in p120 depleted AB1 cells. P120 (wild-type and 

N478A) cDNAs were transfected into shP120 AB1 cells, and 48hrs post-transfection, 

cells were harvested to measure the transcript levels of REST/CoREST gene targets via 

real-time PCR. MiR124 and miR132 transcripts were normalized to GAPDH and error 

bars represent SD. 

G. P120 knockdown leads to increased repression of REST/CoREST gene targets in 

Xenopus laevis embryos. We micro-injected 10 ng of morpholino antisense-

oligonucleotide directed against xp120-catenin (p120MO) or standard-control 

morpholino (ConMO) into both embryonic cells at the 2-cell stage and harvested the cells 

at the gastrula stage (stage 11). Xenopus calbindin and Xenopus mash1 transcripts were 

measured by RT-PCR, and Xenopus histone H4 was used as an internal control. 

 

Figure S4 - P120 modulates the neuronal differentiation (retinoic acid promoted) of 

mESCs. 

A and B. We used a standard retinoic acid (RA) mediated neuronal differentiation 

method. In brief, p120-depleted and control-depleted mESCs were plated on bacterial 

culture dishes in differentiation media (DMEM with 10% FBS, not including LIF and 

beta-mercaptoethanol). Four days later, embryoid bodies that had formed were incubated 

with RA for an additional 2 days before being harvested. The neural stem/progenitor 

markers (sox1 and nestin) (A) and the transcripts of three REST/CoREST gene-targets 

(calbindin, mash1, and miR-124) (B) were measured using real-time PCR. All transcripts 

were normalized to GAPDH. (Note: RA0 = 4-day-old embryoid bodies; RA2 = 4-day-old 

embryoid bodies + 2-days RA treatment) 
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Table S1. Primer sequences. 
 

qPCR primers     

mGAPDH-F TCGTCCCGTAGACAAAATGG 

mGAPDH-R TTGAGGTCAATGAAGGGGTC 

mNeuro D1 -F GAGGCTCCAGGGTTATGAGA 

mNeuro D1 -R ACTCATCTGTCCAGCTTGGG 

q-mSyt4-F AATGAGGTGATTGGACGGTTG 

q-mSyt4-R AGTGCCCCCCACCGC 

q-mMash1-F TCGTCCTCTCCGGAACTG AT 

q-mMash1-R TAGCCGAAGCCGCTGAAG 

mNanog-F GGTTGAAGACTAGCAATGGTCTGA 

mNanog-R TCCAGATGCGTTCACCAGATAG 

mOct4-F TGCTGAAGCAGAAGAGGATCAC 

mOct4-R CAGATGGTGGTCTGGCTGAA 

mSox2-F AGATGCACAACTCGGAGATCAG 

mSox2-R TCATGAGCGTCTTGGTTTTCC 

mFoxA2-F GGCACCTTGAGAAAGCAGTC 

mFoxA2-R GACATACCGACGCAGCTACA 

mSox1-F AGATGCACAACTCGGAGATCAG 

mSox1-R GAGTACTTGTCCTTCTTGAGCAGC 

miR-9-1-F GGGTTGGTTGTTATCTTTGGTTATC 

miR-9-1-R AGACTCCACACCACTCATACAGC 

miR-124a-F CTCTGCGTGTTCACAGCGG 

miR-124a-R CTCTTGGCATTCACCGCGTG 

miR-132-F CTCCAGGGCAACCGTGGCTTTC 

miR-132-R TGGCTGTAGACTGTTACCTCCGGTTC 

mGAD1-F AACAAACACGGGTGCAATTT 

mGAD1-R TCACCCTCGATTTTTCAACC 

mSyn1-F CCACAGGGTATGTTGTGCTG 
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mSyn1-R GCCCAGATGGTTCGACTACA 

mMap2-F GCTGGTGGTATGTTCTGGCT 

mMap2-R TACCGGTTCCTCAGCTTGTC 

mDcx-F TTCAGGACCACAAGCAATGA 

mDcx-R GGAAACCGGAGTTGTCAAAA 

mBra-F GAGCCTCGAAAGAACTGAGC 

mBra-R CAGCCCACCTACTGGCTCTA 

mTubb3-F AGTCCCCTACATAGTTGCCG 

mTubb3-R AGTCAGCATGAGGGAGATCG 

 

RT-PCR primers 

   

mMash1 RT-F GGAACTGATGCGCTGCAAACGCCG 

mMash1 RT-R GTTGGTAAAGTCCAGCAGCTCTTGTT 

mCalbindin RT-F GTTTCGTGTATCCTTTAGCTAGTGTGT 

mCalbindin RT-R TCTAAAGTCACTGCTTCCAAATACGTGC 

mSyt4 RT-F GGTGTTGGCCAAGTTTTCATAAGATATTC 

mSyt4 RT-R GCTACCCTTCTTATGATGAGACTGTATC 

 

ChIP-qPCR primers 

   

ChIP-mSyt4-3UTR-F CAAACAACCCCCAAAACAAC 

ChIP-mSyt4-3UTR-R CAAGGAGACACAGCCTCACA 

ChIP-mCal-3UTR-F GGGGAAACTGGGTAGATGGT 

ChIP-mCal-3UTR-R GCCTGCCTCTGTTTTCCATA 

ChIP-miR124a3 5UTR-F CCCTTTCTGGAGGAATGACA 

ChIP-miR124a3 5UTR-R ATCAACAGAAACCCGTGGAG 

ChIP-miR124a3-F ACCCCAGAGAAATGGGGTAG 

ChIP-miR124a3-R AAAGTGATCACCGCCTTCAC 

ChIP-mGAPDH-F CTGCAGTACTGTGGGGAGGT 

ChIP-mGAPDH-R CAAAGGCGGAGTTACCAGAG 

ChIP-mGAD1-F CGCACCTGCAGTGAACACC 
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ChIP-mGAD1-R AAGACTTCAGCACCGAGGACA 

ChIP-mSyt4-F ACTTGCTCACCGAATTCCAC 

ChIP-mSyt4-R GAAGAGCCAACAGGAACAGG 

ChIP-mCal-F CCACCTGCTGCTTCCTAGAC 

ChIP-mCal-R CCGCACCCAGTTCTCTGTAT 
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