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Supplementary Figure 1: Fatty acid production time-course analysis of Tes4 strain. Fatty acid production was
evaluated at 80% v/v oxygen concentration with Tes4 (BL21 (DE3) pET-T4) in 2 ml gas-tight GC vials in an
identical matter as propane production experiments were carried out. Samples were collected; fatty acids were
extracted from the supernatant and analyzed by GC-MS using the method described in the Materials and
Methods. Error bars represent standard deviation (n = 4); details of the plasmids are described in
Supplementary Table 3.
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Supplementary Figure 2: Biologically produced propane and incorporation of 3¢ label. Mass spectra from
cultivation using 20g/L 40% “C labeled glucose versus normal glucose. The +1 m/z fragments 41 and 45 which

are more abundant in the *C sample are highlighted in red.
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Supplementary Figure 3: Propane production time-course analysis of Pro strain. Propane production was
done at atmospheric levels of oxygen with Pro (BL21 (DE3) pET-TPC4; pCDF-ADO; pACYC-petF). Error bars
represent standard deviation (n = 4); details of the plasmids are described in Supplementary Table 3.
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Supplementary Figure 4: Metabolic by-product production time-course analysis of Pro and Tes4Car strains.
(A) Butyrate and (B) butanol production under atmospheric oxygen levels was evaluated, using Pro strain (BL21
(DE3) pET-TPC4; pCDF-ADO; pACYC-petF) and Tes4Car (BL21 (DE3) pET-TPC4). Strain Tes4Car was lacking ADO

and petF enzymes. Error bars represent standard deviation (n = 4); details of the plasmids are described in
Supplementary Table 3.
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Supplementary Figure 5: The effect of increased oxygen concentration on propane production and cell
density of Pro strain. (A) Propane production was evaluated in 2 ml gas-tight vials using Pro strain (BL21 (DE3)
pPET-TPC4; pCDF-ADO; pACYC-petF) and different oxygen concentration (21, 51, 80 and 100% v/v). (B) Cell
density was measured at 600 nm from the same samples (the represented values are multiplied with the
dilution rate). Error bars represent standard deviation (n = 4); details of the plasmids are described in
Supplementary Table 3.
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Supplementary Figure 6: The effect of increased reaction headspace on propane production time of Pro
strain. Propane production was evaluated in 160 ml serum bottles instead of 2 ml vial with an increased
incubation time in a time course analysis using Pro strain (BL21 (DE3) pET-TPC4; pCDF-ADO; pACYC-petF). Error
bars represent standard deviation (n = 4); details of the plasmids are described in Supplementary Table 3.
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Supplementary Figure 7: Effect of reaction vial headspace regeneration on propane production of Pro strain.
Vials opened and resealed at one-hour intervals, with and without blowing the culture with air, followed by 1 h
incubation and propane quantitation using Pro strain (BL21 (DE3) pET-TPC4; pCDF-ADO; pACYC-petF). Error
bars represent standard deviation (n = 4); details of the plasmids are described in Supplementary Table 3.
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Supplementary Figure 8: The effect of increased cell concentration on propane production of Pro strain.
Propane production was evaluated in 2 ml gas-tight vials using Pro strain (BL21 (DE3) pET-TPC4; pCDF-ADO;
pACYC-petF) and different cell concentration (1, 2.5, 5 and 10 times concentrated). Cells were centrifuged and
re-suspended with production media, prior to sealing in gas-tight vials. Error bars represent standard deviation
(n = 4); details of the plasmids are described in Supplementary Table 3.
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Supplementary Figure 9: Propane production time-course analysis of CarAdo strain. Propane was produced
by feeding butyrate under atmospheric oxygen levels, using CarAdo strain (BL21 (DE3) pET28-ADO; pCDF-PPC).
Error bars represent standard deviation (n = 4); details of the plasmids are described in Supplementary Table 3.
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Supplementary Figure 10: The effect of oxygen concentration on butyric acid production of Tes4 strain.
Butyrate production was evaluated at 21, 51 and 80% v/v oxygen concentrations with Tes4 (BL21 (DE3) pET-T4)
in 2 ml gas-tight GC vials with 3h incubation time in an identical matter as propane production experiments
were carried out. Samples were collected; butyrate was extracted from the supernatant and analyzed by GC-
MS using the method described in the Materials and Methods. Error bars represent standard deviation (n = 4);
details of the plasmids are described in Supplementary Table 3.
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Supplementary Figure 11: Propane production of CarAdo strain fed with butyrate under aerobic and
anaerobic conditions. Propane production was evaluated at 23 and 30°C under normal and nitrogen
atmosphere (0% O,), using CarAdo strain (BL21 (DE3) pET28-ADO; pCDF-PPC). Error bars represent standard
deviation (n = 4); details of the plasmids are described in Supplementary Table 3.
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Supplementary Figure 12: The effect of KatE overexpression on propane production. Propane production was
evaluated with Pro (BL21 (DE3) pET-TPC4; pCDF-ADO; pACYC-petF) and ProK (BL21 (DE3) pET-TPC4; pCDF-ADO;
pACYC-petF-katE) strains under 21% v/v and 80% v/v oxygen concentrations. Error bars represent standard
deviation (n = 4); details of the plasmids are described in Supplementary Table 3.
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Supplementary Figure 13: The effect of fpr and KatE overexpression on propane production. Propane
production was evaluated with Pro (BL21 (DE3) pET-TPC4; pCDF-ADO; pACYC-petF) and ProFK (BL21 (DE3) pET-
TPC4; pCDF-ADO; pACYC-petF-fpr-katE) strains under 21% v/v and 80% v/v oxygen concentrations. Error bars
represent standard deviation (n = 4); details of the plasmids are described in Supplementary Table 3.
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Supplementary Figure 14: The effect of KatE overexpression on propane production. Propane production was

evaluated with ProF (BL21 (DE3) pET-TPC4; pCDF-ADO; pACYC-petF-fpr) and ProFK (BL21 (DE3) pET-TPC4; pCDF-

ADO; pACYC-petF-fpr-katE) strains under 21% v/v and 80% v/v oxygen concentrations. Error bars represent
standard deviation (n = 4); details of the plasmids are described in Supplementary Table 3.
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Supplementary Figure 15: Propane production time-course analysis of ProFK strain. Propane was produced by
overexpressing Fpr and KatE under atmospheric oxygen levels, using ProFK strain (BL21 (DE3) pET-TPC4; pCDF-
ADO; pACYC-petF-fpr-katE). Error bars represent standard deviation (n = 4); details of the plasmids are
described in Supplementary Table 3.
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Supplementary Figure 16: Propane and butanol production of aldehyde reductase knock-out with fpr and
katE overexpression. (A) Propane and (B) butanol production was evaluated with ProFK (BL21 (DE3) pET-TPC4;
pCDF-ADO; pACYC-petF-fpr-katE) and ProFKAA (BL21 (DE3) AyghD Aahr pET-TPC4; pCDF-ADO; pACYC-petF-fpr-
katE) strains under 21% v/v oxygen concentration at 30, 90 and 180 min time points. Error bars represent
standard deviation (n = 4); details of the plasmids are described in Supplementary Table 3.
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Supplementary Figure 17: Biologically produced heptane and incorporation of 3¢ label. (A) Overlay GC-MS
chromatogram of heptane standard and the product peak of HepFKAA (BL21 (DE3) AyghD Aahr pET-TPC3;
pCDF-ADO; pACYC-petF-fpr-katE) strain. The mass spectra were filtered for m/z 57 using standard and
HepFKAA (Hep+fpr+katE AyghD Aahr) strain. The parameters of the analysis are described in the Materials and
Methods section. (B) Incorporation of **C label in heptane from glucose: lon fragmentation pattern of heptane
(M=100.2 g mol™) produced using TB medium with 20g/L 40% “*C labeled glucose versus normal glucose. The
+1 m/z fragments 44, 58 and 72 which are more abundant in the *C sample are highlighted in red.
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Supplementary Figure 18: The effect of fpr and KatE overexpression on heptane production. Heptane
production was evaluated with Hep (BL21 (DE3) pET-TPC3; pCDF-ADO; pACYC-petF), HepK (BL21 (DE3) pET-
TPC3; pCDF-ADO; pACYC-petF-katE) and HepFK (BL21 (DE3) pET-TPC3; pCDF-ADO; pACYC-petF-fpr-katE) strains
under 21% v/v and 80% v/v oxygen concentrations. Error bars represent standard deviation (n = 4); details of
the plasmids are described in Supplementary Table 3.
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Supplementary Figure 19: The effect of KatE and fpr co-expression on heptane production. Heptane
production was evaluated with HepF (BL21 (DE3) pET-TPC3; pCDF-ADO; pACYC-petF-fpr) and HepFK (BL21
(DE3) pET-TPC3; pCDF-ADO; pACYC-petF-fpr-katE) strains under 21% v/v and 80% v/v oxygen concentrations.
Error bars represent standard deviation (n = 4); details of the plasmids are described in Supplementary Table 3.
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Supplementary Figure 20: The effect of aldehyde reductase knockout on heptane production. Heptane
production was evaluated with HepFK (BL21 (DE3) pET-TPC3; pCDF-ADO; pACYC-petF-fpr-katE) and HepFKAA
(BL21 (DE3) AyghD Aahr pET-TPC3; pCDF-ADO; pACYC-petF-fpr-katE) strains under 21 and 80% v/v oxygen
concentrations. Error bars represent standard deviation (n = 4); details of the plasmids are described in
Supplementary Table 3.



SUPPLEMENTARY TABLES

Supplementary Table 1: Biologically produced hydrocarbons and properties of gaseous fuels

Biologically relevant alkanes/alkenes Physical state at STP  Boiling point References

Methane Gas -161°C 1

Ethane Gas -89°C 2

Propane Gas -42°C This study

Pentane Liquid 36°C 3

Heptane Liquid 98°C This study

Octane Liquid 121°C 4

Nonane Liquid 151°C 4

Undecane Liquid 196°C 5

Dodecane Liquid 216°C 4

Tridecane Liquid 235°C 4,5,6,7

Tetradecane Liquid 254°C 4

Pentadecane Liquid 271°C 6

Pentadecene Liquid 268°C 5,6,7

Hexadecane Liquid 287°C 6

Hexadecene Liquid 285°C 6

Heptadecane Solid 316°C 6

Heptadecene Liquid 300°C 5,6,7

Fuel Ideal work of liquefaction Higher heating value  Work to liquefy per available energy
(kJ/kg) (kJ/kg) % (J/))

H, 12019 141800 8.48

CH, 1091 55530 1.97

CsHg 140.4 50322 0.28

The ideal work of liquefaction, values obtained from Barron et al.® (Table 3.1, p. 63), is a theoretical estimate of
the amount of work that is needed to liquefy the gas. The higher heating value is an estimate of the total
energy released upon complete combustion®. The theoretical work required to liquefy the gas is compared to
the total energy available upon combustion.



Supplementary Table 2: List of bacterial strains. The abbreviations containing Pro and Hep refer to strains
producing propane, heptane respectively; Tes4 is producing butyrate; TesCar is producing butanol; CarAdo is

referred to the strain used in the butyrate feeding study for propane production.

Strain Host Plasmids

Tes3 E. coli BL21 (DE3) pET-T3

Tes4 E. coli BL21 (DE3) pET-T4

Tes4Car  E. coli BL21 (DE3) pET-TPC4

Pro E. coli BL21 (DE3) pET-TPC4; pCDF-ADO; pACYC-petF

ProF E. coli BL21 (DE3) pET-TPC4; pCDF-ADO; pACYC-petF-fpr
ProK E. coli BL21 (DE3) pET-TPC4; pCDF-ADO; pACYC-petF-katE
ProFK E. coli BL21 (DE3) pET-TPC4; pCDF-ADO; pACYC-petF-fpr-katE
ProFAA E. coli BL21 (DE3) AyghD Aahr pET-TPC4; pCDF-ADO; pACYC-petF-fpr
ProKAA E. coli BL21 (DE3) AyghD Aahr pET-TPC4; pCDF-ADO; pACYC-petF-katE
ProFKAA E. coli BL21 (DE3) AyghD Aahr pET-TPC4; pCDF-ADO; pACYC-petF-fpr-katE
CarAdo E. coli BL21 (DE3) pET28-ADO; pCDF-PPC

Hep E. coli BL21 (DE3) pET-TPC3; pCDF-ADO; pACYC-petF

HepF E. coli BL21 (DE3) pET-TPC3; pCDF-ADO; pACYC-petF-fpr
HepK E. coli BL21 (DE3) pET-TPC3; pCDF-ADO; pACYC-petF-katE
HepFK E. coli BL21 (DE3) pPET-TPC3; pCDF-ADO; pACYC-petF-fpr-katE
HepFAA  E. coli BL21 (DE3) AyghD Aahr pET-TPC3; pCDF-ADO; pACYC-petF-fpr
HepKAA  E. coliBL21 (DE3) AyghD Aahr pET-TPC3; pCDF-ADO; pACYC-petF-katE
HepFKAA E. coli BL21 (DE3) AyghD Aahr pET-TPC3; pCDF-ADO; pACYC-petF-fpr-katE



Supplementary Table 3: Detailed plasmid list used for the experiments

Plasmid name Protein Organism Protein Organism Protein Organism
pET-T3 TE3 Anaerococcus tetradius
pET-T4 TE4 Bacteroides fragilis
pET-TPC3 TE3 Anaerococcus tetradius Sfp Bacillus subtilis (strain 168) CAR Mycobacterium marinum
pET-TPC4 TE4 Bacteroides fragilis Sfp Bacillus subtilis (strain 168) CAR Mycobacterium marinum
pET28-ADO ADO Prochlorococcus marinus
pCDF-ADO ADO Prochlorococcus marinus
pCDF-PPC PetF Synechocystis sp. PCC 6803 Sfp Bacillus subtilis (strain 168) CAR Mycobacterium marinum
pACYC-PetF PetF Synechocystis sp. PCC 6803
pACYC-PetF-KatE PetF Synechocystis sp. PCC 6803 KatE Escherichia coli

PACYC-PetF-Fpr-KatE PetF Synechocystis sp. PCC 6803 Fpr Escherichia coli KatE

Escherichia coli



Supplementary Table 4: Optimization of the culture conditions. Various culture conditions and expression
parameters were optimized for propane production using the strain Pro (BL21 (DE3) pET-TPC4; pCDF-ADO;
pPACYC-petF). The selected default conditions (right column) were used in the assays for analyzing the
performance of the propane and heptane pathways in this study. The inducer concentration and cell density (*)
varied between some experimental setups.

Conditions Tested parameters Optimal/Default
Cell density at induction (ODggonm) 0.25,0.5,1,2 0.5-0.9 *

IPTG concentration 0.05mM, 0.25mM, 0.5mM, ImM 0.25-1 *
Induction temperature 21°C, 30°C, 37°C 30°C

Induction time 2h, 4h, 6h 4h

Glucose concentration 5g/L, 10g/L, 25g/L 20g/L

Reaction culture volume in 2.1ml vial 0.25ml, 0.5ml, 1ml 0.5ml

Reaction cell density (concentration) 1x, 2x, 5x, 10x 4x

Reaction temperature 21°C, 30°C, 37°C 21°C

Reaction time 1h, 2h, 4h, 6h, 19h 3h



Supplementary Table 5: Oligonucleotide primers used in the experiments. Please refer to Materials and
Methods for more details

Primer Sequence

Tes3 FW ACTTCACCATGGGCTAAGGTACCTAATTAATTAAAAAGGAG

Tes3 RE ACCATCAAGCTTTTTAATTAATTACACGTTAGTTTTAATTTTCCCCAAAC

Tes4 RE ACCATCAAGCTTTTTAATTAATTAAACAAATTTCACTTTGGCGC

Yghd_del_FW GCAGATCGTTCTCTGCCCTCATATTGGCCCAGCAAAGGGAGCAAGTAATGATTCCGGGGATCCGTCGACC
Yghd_del_RE CGAAAACGAAAGTTTGAGGCGTAAAAAGCTTAGCGGGCGGCTTCGTATATTGTAGGCTGGAGCTGCTTCG
Ahr_del_FW GCCCTGCCATGCTCTACACTTCCCAAACAACACCAGAGAAGGACCAAAAAGTGTAGGCTGGAGCTGCTTCG
Ahr_del_RE GAATATGTGCGAAAGAGGGCAGCGCCTCAGATCAGCGCTGCGAATGATTTATTCCGGGGATCCGTCGACCTG
KatE_FW ATATCCTAGGTCATGAGGAGGTTTGGAATGTCGCAACATAACGAAAAGAACCCAC

KatE_RE ATATCCTAGGTCAGGCAGGAATTTTGTCAATCTTAGGAA

Fpr_FW AATATTAAGCTTTAAATGATTGAAGGAGGAAAAAATGGCTGATTGGGTAACAGGCAAAGTC

Fpr_RE AATATTCCTAGGTTACCAGTAATGCTCCGCTGTCATATGG

ADO_BamHI_FW  ATATGGATCCGCGCGGCAGCCA

ADO_AvrlI_RE ATATCCTAGGTTAAGAAACCAGGGCCGCTGCG
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