
 

Supplementary Information 
 

Disentangling rock record bias and common-cause from redundancy 

in the British fossil record 
 

A.M. Dunhill, B. Hannisdal, M.J. Benton 

  



1. Supplementary Figures 

 

Supplementary Figure 1 | Sleep apnea. (a) Monitored heart rate (H), respiration (R), and blood 
oxygen level (O) in a sleep apnea patient1. (b) The same data sampled at 100 randomly selected 
time steps. (c) AAFT surrogate realization of the data in b. 
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Supplementary Figure 2 | An example of the three significance tests involved in the directional 
IT analysis between two time series. This analysis is performed on the R and O records in 
Supplementary Fig. 1b (i.e. 100 random samples of the original time series). Significance is 
established using 10,000 pairs of surrogate time series (e.g. Supplementary Fig. 1c). (a) IT from R 
to O (R→O ) as a function of the bin size used for gridding the data (in units of standard deviation 
for normalized data). Stippled line represents the 95th percentile of the surrogate IT distribution. All 
IT values are here plotted relative to the surrogate median value. (b) Same as a, but in the opposite 
direction (O→R). (c) Superimposing the IT curves in both directions to highlight the difference in 
the area under the two curves (gray and red shading represent opposite sign). (d) Using the area 
under the IT curve in panel a as an informal measure of total IT (thus ignoring possible scale 
dependence), we see that the IT from R to O (vertical line) is significantly greater than that of 
10,000 surrogate pairs (histogram). (e) Same as d, but in the opposite direction (area under the 
curve in panel b). (f) If one or both of the tests in d and e are significant, then we test whether the 
asymmetry (vertical line; corresponding to the difference between the gray and the red shaded areas 
in panel c) is greater than that of the surrogates (histogram; shading indicating which area is larger), 
suggesting a significant asymmetry of information flow (denoted R > O). 
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Supplementary Figure 3 | Evaluating the robustness of IT between R and O. Values are the 
frequency of significant results (500 iterations, alpha = 0.05) as a function of the number of time 
steps sampled. Solid lines correspond to significant IT in each direction (R→O and O→R), filled 
circles correspond to significant asymmetry between the two (R>O or O>R). Stippled black line 
corresponds to significant Spearman rank-order correlations on first differences (RsΔ). Stippled red 
line represents an index of potential bias due to differences in non-stationarity, which can be plotted 
on the same scale (1 being maximum bias). This low level of bias is unlikely to explain the 
observed IT (see Supplementary Fig. 5). 
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Supplementary Figure 4 | Conditional IT sensitivity analysis. Conditional IT from R to O is 
clearly significant when taking into account their common interaction with H (O ← R | H). The 
conditional IT from H to O given R (O ← H | R) is weaker, but also approaches significance. In 
contrast, the partial Spearman correlation on first differences between O and H given R (O : H | R) 
is significant, whilst the partial correlation between O and R given H is not. 
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Supplementary Figure 5 | Data pre-processing. (a) Upper panel: a pair of unbiased random walks 
with a length of 50 time steps. Middle panel: the same time series after detrending by subtracting a 
best-fit 5th-order polynomial, and normalization. Lower panel: AAFT surrogates of the two pre-
processed time series. (b) IT sensitivity analysis (cf. Supplementary Fig. 3) on pairs of random 
walks after pre-processing. Values represent the frequency of significant IT (i.e. false detection rate 
at alpha = 0.05) for random walks of different length. 
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Supplementary Figure 6 | Environmental proxies. Isotope ratios from marine carbonates2: (a) 
δ18O, (b) δ13C, (c) δ34S, and (d) 87Sr/86Sr. (e) Global estimate of continental flooding3. Black lines 
represent bin-averages using the time bins of the UK Phanerozoic records. 
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Supplementary Figure 7 | Testing for fossil-formation independence in Triassic-Jurassic rocks 
of the Wessex basin. (a) Cumulative thickness of stacked formations (alternating white/grey-
shaded), with the number of reported genera (black bars) indicated at the centre of each formation. 
(b) Average fossil richness K (genera per m) in each formation. (c) Comparing the observed 
volatility of K (black line), measured as the mean absolute deviation (mad) of first differences (ΔK), 
against null distributions for 10,000 shuffles of K (randomly reordering the formation stack while 
keeping the distribution of genera fixed). P-values for the permutation test represent the proportion 
of values in the null distribution (histogram) that exceed the observed volatility. 
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Supplementary Figure 8 | Testing for fossil-formation independence in Triassic-Jurassic rocks 
of the East Midlands basin. (a) Cumulative thickness of stacked formations (alternating 
white/grey-shaded), with the number of reported genera (black bars) indicated at the centre of each 
formation. (b) Average fossil richness K (genera per m) in each formation. (c) Comparing the 
observed volatility of K (black line), measured as the mean absolute deviation (mad) of first 
differences (ΔK), against null distributions for 10,000 shuffles of K (randomly reordering the 
formation stack while keeping the distribution of genera fixed). P-values for the permutation test 
represent the proportion of values in the null distribution (histogram) that exceed the observed 
volatility. 
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Supplementary Figure 9 | Testing for fossil-formation independence in Triassic-Jurassic rocks 
of the Yorkshire basin. (a) Cumulative thickness of stacked formations (alternating white/grey-
shaded), with the number of reported genera (black bars) indicated at the centre of each formation. 
(b) Average fossil richness K (genera per m) in each formation. (c) Comparing the observed 
volatility of K (black line), measured as the mean absolute deviation (mad) of first differences (ΔK), 
against null distributions for 10,000 shuffles of K (randomly reordering the formation stack while 
keeping the distribution of genera fixed). P-values for the permutation test represent the proportion 
of values in the null distribution (histogram) that exceed the observed volatility. 
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2. Supplementary Tables 
 
Supplementary Table 1| Spearman rank correlation tests between 

sampling proxies, environmental proxies, and palaeodiversity on 

first differenced (Rs∆) data for marine and terrestrial data sets. * 

significant at p < 0.05, ** significant after false discovery rate 

correction using the method of Benjamini and Hochberg4. 

 Marine Terrestrial 

Genera ~ collections Rs∆ = 0.68, p < 0.001** Rs∆ = 0.93, p <0.001** 

Genera ~ formations Rs∆ = 0.66, p < 0.001** Rs∆ = 0.43, p = 0.03* 

Genera ~ outcrop Rs∆ = 0.41, p = 0.02* Rs∆ = 0.41, p = 0.04* 

Collections ~ formations Rs∆ = 0.38, p = 0.03* Rs∆ = 0.35, p = 0.09 

Collections ~ outcrop Rs∆ = 0.25, p = 0.15 Rs∆ = 0.39, p = 0.05* 

Formations ~ outcrop Rs∆ = 0.61, p < 0.001** Rs∆ = 0.78, p < 0.001** 

Genera ~ δ18O Rs∆ = 0.02, p = 0.89 Rs∆ = -0.06, p = 0.78 

Genera ~ δ13C Rs∆ = 0.02, p = 0.9 Rs∆ = 0.16, p = 0.43 

Genera ~ 87Sr/86Sr Rs∆ = 0.35, p = 0.04* Rs∆ = 0.12, p = 0.55 

Genera ~ δ34S Rs∆ = 0.07, p = 0.69 Rs∆ = -0.15, p = 0.48 

Genera ~ sea level Rs∆ = -0.03, p = 0.88 Rs∆ = -0.04, p = 0.86 

Collections ~ δ18O Rs∆ = -0.05, p = 0.78 Rs∆ = -0.09, p = 0.68 

Collections ~ δ13C Rs∆ = 0.02, p = 0.9 Rs∆ = 0.1, p = 0.64 

Collections ~ 87Sr/86Sr Rs∆ = 0.3, p = 0.08 Rs∆ = 0.05, p = 0.82 

Collections ~ δ34S Rs∆ = -0.34, p = 0.05* Rs∆ = 0.002, p = 0.99 

Collections ~ sea level Rs∆ = -0.19, p = 0.29 Rs∆ = -0.09, p = 0.68 

Formations ~ δ18O Rs∆ = 0.14, p = 0.43 Rs∆ = -0.66, p < 0.001** 

Formations ~ δ13C Rs∆ = 0.09, p = 0.59 Rs∆ = -0.13, p = 0.53 

Formations ~ 87Sr/86Sr Rs∆ = 0.49, p = 0.004** Rs∆ = -0.11, p = 0.61 

Formations ~ δ34S Rs∆ = -0.04, p = 0.82 Rs∆ = 0.06, p = 0.79 

Formations ~ sea level Rs∆ = 0.03, p = 0.89 Rs∆ = -0.25, p = 0.22 

Outcrop ~ δ18O Rs∆ = 0.01, p = 0.95 Rs∆ = -0.5, p = 0.01* 

Outcrop ~ δ13C Rs∆ = 0.16, p = 0.38 Rs∆ = -0.08, p = 0.7 

Outcrop ~ 87Sr/86Sr Rs∆ = 0.19, p = 0.28 Rs∆ = -0.07, p = 0.73 

Outcrop ~ δ34S Rs∆ = 0.06, p = 0.74 Rs∆ = 0.13, p = 0.53 

Outcrop ~ sea level Rs∆ = -0.05, p = 0.78 Rs∆ = -0.3, p = 0.14 

 
  



3. Supplementary Methods 
 
The IT approach is described in more detail in Schreiber5, Verdes6, and Hannisdal7,8. Here we 

illustrate the IT analysis and its interpretation with a commonly used example from human 

physiology (Supplementary Fig. 1). Normally, breathing causes variations in the heart rate: when 

we inhale, the heart rate begins to increase, and when we exhale, it decreases. In addition, the heart 

rate responds to the partial pressure of oxygen in the arteries. However, the data in Supplementary 

Fig. 1a come from a patient suffering from sleep apnea1, where breathing is halted during sleep, 

causing blood oxygen levels to fall, which eventually alerts the brain to resume breathing. Sleep 

apnea may thus disturb the usual patterns of interaction and feedback among the heart rate (H), 

respiration (R), and blood oxygen concentration (O). Intuitively, the anatomically obstructed 

breathing would be considered an important driver of the system in this case, but one that also 

responds to the oxygen "alarm", and the relationship between R and O will be highlighted here.  

 All three time series are sub-sampled at randomly spaced time steps (e.g. Supplementary 

Fig. 1b), in analogy to sparse geological records with only relative age control. In line with common 

practice, we report simple correlations between time series in the form of Spearman rank-order 

correlation after aggressive detrending by first differencing. The IT, on the other hand, involves 

binning the observed amplitudes into histograms of the distribution of possible state transitions, and 

does not use differencing. Certain precautions therefore have to be made when testing for 

significance, including data pre-processing (see below), and the use of amplitude-adjusted Fourier 

transform (AAFT) surrogate data (e.g. Supplementary Fig. 1c). AAFT surrogates are designed to 

preserve both the frequencies (i.e. autocorrelations and power spectra) and amplitudes (i.e. 

correlations and/or noise) of the original data, but to break any causal coupling by randomizing the 

phases of the frequency components9,10. Significant IT is assessed by comparison with a distribution 

of IT values calculated from a large number (e.g. 104) of pairs of surrogate time series. 

 Directional IT analysis between two time series (e.g. R and O) involves three significance 

tests (Supplementary Fig. 2): (1) Is the directional IT from R to O significant (Supplementary Fig. 

2a, d)? (2) Is the directional IT from O to R significant (Supplementary Fig.  2b, e)? (3) If one or 

both, then is the IT in one direction significantly greater than in the opposite direction 

(Supplementary Fig. 2c, f)? Note that the IT varies as a function of the bin size used for gridding the 

data, but for the significance test, we integrate across bin sizes, using the area under the curve as an 

informal measure of the total IT6. In this example, we find that IT is significant in both directions, 

but R→O is significantly greater than O→R (denoted R>O), representing a significantly 

asymmetric, yet bidirectional information flow. This result agrees with the intuitive expectation that 



the obstructed breathing pattern drives the oxygen concentration, but that the breathing 

intermittently responds to low oxygen levels via feedback mechanisms. 

 However, the results described above (Supplementary Fig. 2) represent a single, random 

sampling of the system, and we would like to know how robust this result is to the sampling. A 

sensitivity analysis is performed by varying the number of time steps sampled, N, over a relevant 

range (in this case from N=10 to N=150 samples). For each value of N, the original time series 

(Supplementary Fig. 1a) are iteratively sampled (500 iterations) by selecting N uniformly random 

time steps. In each iteration, the three IT significance tests (Supplementary Fig. 2) are performed on 

the sampled data. The sampling robustness of the IT can then be evaluated by tracking the 

proportion of significant results (frequency of detection, or statistical sensitivity) for each value of 

N (Supplementary Fig. 3). Note that because the values are frequencies, the third significance test is 

plotted in both directions (R>O and O>R, although these are mutually exclusive in a single analysis.  

As sampling approaches 100 time steps, IT between R and O becomes invariably 

significant, in both directions (Supplementary Fig. 3), suggesting a two-way interaction. However, 

significant R>O is detected with increasing frequency, indicating a dominant directionality of 

information flow, consistent with the interpretation given above. Spearman rank-order correlation 

on first differences is rarely significant (Supplementary Fig. 3), because the relationship is not linear 

or monotonic.  

 Still, the relationship between R and O might be spurious, if both were driven by a third 

variable, such as H. This is tested by conditioning the IT on a third variable (analogous to a partial 

correlation): is the IT between R and O still significant when we take into account any common 

interaction with H (O ← R | H)? The answer is yes (Supplementary Fig. 4), implying that R 

contains information (not found in H) that is useful for predicting changes in O. Conditional IT 

(CIT) from H to O also approaches significance beyond mutual interaction with R (O ← H | R), 

suggesting that both R and H contain information useful for predicting O, but the former is typically 

significantly stronger (to reduce clutter, the significance of the difference is not plotted here). Partial 

correlations on first differences give the opposite result in this case (Supplementary Fig. 4).  

 Because of the non-symmetric nature of the IT, the pairwise IT results may be required to 

interpret the CIT: If there is some asymmetry (not necessarily significant) favouring Y→X over 

X→Y, then, even if pairwise Z→X and Z→Y are equal, Y←Z | X will be greater than X←Z | Y 

(i.e. Y will be a stronger conditioning variable than X). We refer to this effect when describing CIT 

results in the main paper (see Results section). 

 This example is instructive for several reasons: (i) cardiorespiratory physiology is a complex 

system near to one's heart, with multiple interacting components, non-linearity, and feedbacks; (ii) 

IT has the potential to quantify relative strength and directionality of coupling without recourse to 



mechanistic model assumptions; (iii) standard correlations are of little use or potentially misleading 

in this case; (iv) IT requires only relative age control, as is often the case with stratigraphic data; (v) 

IT can detect non-trivial interactions with relatively sparse data.  

 The use of AAFT surrogates helps avoid false positive results that may stem from frequency 

bias in the IT7,10. However, when analyzing a pair of time series, the IT may still be sensitive to 

large differences in the degree of non-stationary in the two time series. To evaluate whether or not 

differences in non-stationarity could be a contributing factor to the directional asymmetry, we used 

the KPSS test11 to calculate a test score (1 if the null hypothesis of stationarity is rejected, 0 if not) 

over all possible lags K. A bias index was defined as the sum of the absolute values of the 

difference between the two KPSS test score vectors, divided by K (a similar index was proposed in 

Hannisdal et al.12). Thus, a maximum bias value of 1 means that one time series is stationary at all 

lags, whereas the other time series is non-stationary at all lags, representing a maximum possible 

bias. Conversely, a bias value of 0 means that both series are either fully stationary, or non-

stationary at the exact same lags, representing a minimum possible bias.  

 To reduce non-stationarity, all time series are pre-processed by detrending (subtracting a 

best-fit polynomial or spline), and power transformation (log, or Box-Cox). The data are also 

normalized (mean = 0, standard deviation = 1), which enables quantitative comparison of IT in both 

directions, and allows the data gridding bin size to be conveniently expressed in units of standard 

deviation (Supplementary Fig. 2a-c). The effectiveness of data pre-processing can be illustrated 

with random walks (red noise, or AR(1) processes), which are typically highly non-stationary 

(Supplementary Fig. 5). Even after pre-processing, some differences remain (e.g. red stippled line in 

Supplementary Fig. 5b), and these are typically present also in the surrogates, but a bias value of 

~0.1 or lower has not been found to induce spurious asymmetry in the IT. 
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