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Figure S1 

 

 

Figure S1. Sequences identities and structures of the three TGF- isoforms. A. Sequence identities and 

(similarities) between the mature domains of TGF-s from different vertebrate species. B Structures of 

the three TGF- isoforms. Structure of TGF-1 was determined by NMR
1
, while that of TGF-2 and 

TGF-3 were determined by crystallography
1-3

. Monomers are shaded in alternate shades of brown, 

green, or purple. Disulfide bonds that form the four internal disulfides in each monomer, as well as the 

interchain disulfide, are depicted as balls-and-sticks and are shaded yellow. Backbone RMSDs between 

isoforms, as calculated using the program Superpose
4
, are indicated below the structures of the three 

isoforms. 
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Figure S2 

 

Figure S2. NMR relaxation and H secondary shifts of TGF-1 and TGF-3. A, B. {
1
H}-

15
N NOEs of 

TGF-1 (A) and TGF-3 (B).  C, D. H secondary shifts for TGF-1 (C) and TGF-3 (D). {
1
H}-

15
N 

NOE and H secondary shift plots for TGF-1 were generated from the data reported by Hinck, et. al
1
. 

{
1
H}-

15
N NOE and H secondary shift plots for TGF-3 were generated from the data reported by 

Bocharov, et. al
5, 6

. 
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Figure S3 

 

 

 

Figure S3. SDS-PAGE analysis of the purified TGF-beta homodimers. Samples were prepared with and 

without 100 mM DTT in the sample buffer and then run on a 12% tricine-SDS gel. 
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Figure S4 

 

Figure S4. NMR evidence for stable -helix between residues 57 – 68 in TGF-313. A. Sample strips 

from a three-dimensional 
15

N-edited NOESY spectrum of 
15

N-TGF-313 in 87% H2O, 6% dioxane-d8, 

and 2% methanol-d3 at pH 2.9. Spectrum was recorded at 40 °C at a proton frequency of 600 MHz.  

NOESY mixing time was 120 ms. B. Short- and medium-range NOEs observed in the 3D-
15

N-edited 

NOESY spectrum described in A. Height of bars for dNN and dN NOEs indicate relative intensities. 

Dashed bars for dNN NOEs indicate it was not possible to ascertain whether an NOE was present or not 

due to 
1
H resonance overlap of adjacent amides. Shown also are the Ca and Cb secondary shifts and 

secondary structures probabilities calculated using the program PECAN
9
. C and C secondary shifts 

were calculated by subtracting the random coil C and C chemical shifts reported by Wishart 
10

 from 

those measured.  
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Figure S5. Structures of TGF-1 and TGF-3 complexed to the ectodomains of the TGF- type I and type 

II receptors, TRI and TRII. A. Structures of the 1:2:2 TGF-1:TRI:TRII (left) and 1:2:2 TGF-

3:TRI:TRII (right) complexes as determined by crystallography
7, 8

.  B. Superposition of the structures 

of the 1:2:2 TGF-1:TRI:TRII and 1:2:2 TGF-3:TRI:TRII complexes. Structure of the TGF-

1:TRI:TRII complex is shaded as in panel a, while the structure of the TGF-3:TRI:TRII complex 

is shaded gray. 
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Table S1.  Measured 
15

N backbone amide T1 and T2 relaxation times for 

residues in regular regions of secondary structure in TGF-1 and TGF-313 

    

Protein Nitrogen Frequency 

(MHz) 

T1 (ms) T2 (ms) 

    

TGF-1 50.68 722 ± 7 72.1 ± 0.8 

TGF-313 70.95  1116 ± 66 60.0 ± 7.0 

    

 

 

 

Table S2.  Calculated 
15

N backbone amide T1 and T2 relaxation times for 

residues with typical degree of backbone flexibility in structurally ordered 

parts of proteins (Lipari-Szabo S
2 

= 0.85) 

    

c (ns) Nitrogen Frequency 

(MHz) 

T1 (ms) T2 (ms) 

    

11.7 ns 50.68 MHz 743 75.0 

12.2ns 50.68 MHz 765 72.7 

12.7 ns 50.68 MHz 797 69.6 

11.7 ns 70.95 MHz 1180 65.4 

12.2ns 70.95 MHz 1224 62.9 

12.7 ns 70.95 MHz 1269 60.5 
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