
Folding-upon-Binding and Signal-on Electrochemical DNA Sensor with High Affinity and Specificity

Andrea Idili^{‡ 1}, Alessia Amodio^{‡ 1,2}, Marco Vidonis³, Jacob Feinberg-Somerson⁴, Matteo Castronovo^{*,2, 3,5}, Francesco Ricci^{*, 1}

¹Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy; ²PhD School of Nanotechnology, Department of Physics, University of Trieste, Via Valerio, 2, 34127, Trieste, Italy; ³Department of Medical and Biological Science and Engineering, University of Udine, Piazzale Kolbe 4, 3310, Udine, Italy; ⁴Interdepartmental, Program in Biomolecular, Science and Engineering, University of California, Santa Barbara, CA 93106 USA; ⁵CRO Aviano - National Cancer Institute, Via Franco Gallini 2, 3308 Aviano, Italy.

Figure S1. The ratio of peak current to SWV frequency (i_p/f) as a function of the inverse of the SWV frequency (1/f) exhibits a maxima at a critical frequency related to the apparent electron transfer rate. Target binding causes a shift in this critical frequency to lower frequencies. This kind of behavior is typical of the signal-off sensors.¹ By courtesy of Prof. K.W. Plaxco.

References

1) White, R. J.; Plaxco, K. W. Anal. Chem. 2010, 82, 73-76.