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1. IMS Data Acquisition and Microscopy Staining Details 
 
Materials 
Ethanol, acetonitrile (ACN), and acetic acid were purchased from Fisher 
Scientific (Suwanee, GA), xylene was purchased from Acros (Morris Plains, NJ), 
chloroform, 1,5-diaminonaphthalene (DAN), and methanol were purchased from 
Sigma-Aldrich (Milwaukee, WI). Sinapinic acid (SA) was purchased from 
Oakwood Products, Inc (SC) and recrystallized twice with 70% ACN. Conductive 
indium tin oxide (ITO) coated microscope glass slides were purchased from Delta 
Technologies (Stillwater, MN). Cresyl Violet (for Nissl stain) was purchased from 
Electron Microscope Sciences (Hatfield, PA). Milli-Q water was from a Milli-Q 
Advantage A10 Ultrapure Water Purification System (Millipore, Billerica, MA). 
Carnoy’s fluid was prepared from 60 mL of ethanol, 30 mL of chloroform, and 10 
mL of acetic acid. Fresh frozen mouse brain was purchased from Pel-Freez 
Biologicals (Rogers, AZ), and was sectioned using a Leica CM3050 cryostat 
(Leica Microsystems GmbH, Wetzlar, Germany). Frozen tissue sections were 
thaw mounted on cold ITO coated microscope slides. Serial sections were 
prepared for MS imaging and optical imaging.  
 
Sample preparation for imaging mass spectrometry of proteins 
Briefly, mouse brain sections of 12 µm thickness were rinsed with 70% ethanol 
30 s, 100% ethanol 30 s, Carnoy’s fluid 2 min, 100% ethanol 30 s, H2O 30 s, and 
100% ethanol 30 s. The sections were then dried for 10 min under ambient 
conditions and sublimated with sinapinic acid to obtain a coating of 0.2 mg/cm2. 
The SA coated slides were then treated with H2O: acetic acid (1 mL: 50 µL) 
vapor to recrystallize1 the SA coating for 3.5 minutes under 85 °C.  
 
Sample preparation for imaging mass spectrometry of lipids 
Tissue sections of 12 µm thickness were sublimated with DAN to obtain a matrix 
coating of 0.2 mg/cm2 and were then treated with vapor of 
water:methanol:chloroform (40:30:10) at 85°C for 2 min. The procedure is similar 
as in the literature mentioned above, but with 2 min and a total volume of 30 µL 
of liquid. 
 
Nissl staining of tissue sections for microscopy 
Literature reference: 
Histological and Histochemical Methods: Theory and Practice, 4th edition, edited 
by J.A. Kiernan, Publisher: Cold Spring Harbor Laboratory Press; 4th edition 
(March 1, 2008), ISBN-10: 1904842429 
 
 
 
 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Yang, J.; Caprioli, R. M. Anal. Chem. 2011, 83, 5728–5734.	
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Procedure: 
 
1. Dehydrate:  
75% ethanol for 30 sec  
95% ethanol for 30 sec  
100% ethanol for 30 sec  
100% ethanol for 30 sec  
Xylene for 30 sec  
Xylene for 30 sec  
Xylene for 30 sec 
 
2. Rehydrate and stain:  
Xylene for 30 sec  
Xylene for 30 sec  
100% ethanol for 30 sec  
100% ethanol for 30 sec  
95% ethanol for 30 sec  
75% ethanol for 30 sec  
Milli-Q H2O for 30 sec 
Cresyl violet for 10 min 
 
3. Destain:  
Milli-Q H2O 
75% ethanol 30 sec 
95% ethanol 30 sec 
100% ethanol for 30 sec  
100% ethanol for 30 sec  
Xylene for 30 sec  
Xylene for 30 sec  
Xylene for 45 min 
 
4. Coverslip  
 
The stained sections were scanned using a Mirax slide scanner from Zeiss with 
0.33 µm spatial resolution. 
 
Mass spectrometry and data analysis 
MALDI MS analyses were performed on a Bruker Autoflex Speed MALDI TOF 
mass spectrometer in positive linear mode (proteins) and a Bruker Autoflex 
Speed TOF/TOF mass spectrometer in negative reflector mode (lipids) using 
FlexControl 3.3 software. Approximately 100 shots/spot were acquired with a 1 
kHz repetition rate Smartbeam II Nd:YAG laser. Image acquisition was carried 
out using FlexImaging 2.1 and spectral analysis was performed with FlexAnalysis 
3.3 and MATLAB. 
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2. Registration Process Details 
This section gives a more detailed description of the registration process.  
 
 
1.  Registration of IMS data to experimental histology 
The first registration step maps IMS locations (at 80 and 100 µm resolution for 
lipids and proteins respectively) to the experimentally acquired microscopy image 
of the neighboring Nissl-stained tissue section (0.3 µm res.), further referred to as 
the experiment histology.  
 
While it is common practice in IMS experiments to overlay ion images on a 
neighboring tissue section for visualization purposes, extra care is taken since 
here this alignment will become part of a larger registration pipeline. 
The alignment is based on the use of an affine transformation matrix and 
involves several processing steps: 
• Selecting an m/z that clearly co-localizes with a well defined anatomical 

structure; Here, ion m/z 18411 was selected, which clearly delineated the 
corpus callosum (Figure S-1), a good reference structure for registration. 

• Loading both the ion image (m/z 18411) and the experiment histology into 
MATLAB and selecting landmark points using the cpselect function.  

• Using these landmarks to create the affine transformation matrix that 
determines the registration by employing the MATLAB function cp2tform. 

 
 

 
Figure S-1. Affine registration of m/z 18411 to the experimental histology. 
 
 
 
 
2. Registration of atlas data to reference histology 
The second step registers the anatomical atlas to the microscopy of the 
reference Nissl stain, which is included with the atlas and hereafter referred to as 
the reference histology. The registration from atlas to reference histology is taken 
care of by the Allen Mouse Brain Atlas, which provides these modalities already 
in a registered state, making step 2 for our purposes a straightforward identity 
transformation. Out of the reference stains provided with the atlas, the closest 
structural match to the experiment histology is manually selected, identical to 
how a medical professional would select a reference tissue in the atlas for 
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anatomical interpretation. Alternatively, the closest matching tissue can be 
selected automatically using methods such as those proposed by Abdelmoula et 
al.2 Automatic selection can be helpful in certain situation (e.g. when a large 
number of tissues needs to be registered at once), but is not always desirable 
(e.g. in the case of partially matching tissues due to a skewed cut, where a 
winner-takes-all mechanism may give incorrect results). Since the selection 
needs to happen only once for each IMS experiment, taking care of the spatial 
mapping for potentially thousands of ion images in a single action, the selection 
mechanism is typically not a bottleneck to the interpretation efforts and its 
implementation can be tailored to the particular study at hand. The reference 
stains are all in gray-scale and have been down-sampled to 25 µm resolution. 
 
3. Registration of experimental histology to reference histology 
The registration between the experiment histology and the reference histology is 
the most difficult step in the registration process, as it has to account for tissue 
deformation during extraction and freezing of the brain, and cutting artifacts. As 
can be seen in Figs. S-2 and S-4, the experiment histology has a relatively high 
deformation compared to the reference histology from the Allen Brain Atlas. 
While this may seem problematic for a correct registration of both images, this 
deformation can be accounted for by using non-rigid image registration 
techniques.  
 
 

 
Figure S-2. The experiment histology has a relatively high deformation compared to the 
reference histology in the Allen Brain Atlas. The need for non-rigid registration is 
apparent. 
 
 
Preliminary processing 

• Difference in resolution 
As the reference histology is provided at 25 µm resolution, and the experiment 
histology has a resolution of 0.33 µm, an intermediate resolution of 5 µm is used 
for the registration. Thus, the experiment microscopy picture is down-sampled 
with a factor of 15 and the reference microscopy is up-sampled with a factor of 5, 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  Abdelmoula, W. M.; Carreira, R. J.; Shyti, R.; Balluff, B.; van Zeijl, R. J. M.; Tolner, E. A.; 
Lelieveldt, B. F. P.; van den Maagdenberg, A. M. J. M.; McDonnell, L. A.; Dijkstra, J. Anal. Chem. 
2014, 86, 3947–54.	
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using the imresize function provided in MATLAB. 
• Difference in color scheme 

As the reference microscopy is provided in grayscale, the experiment microscopy 
is converted to grayscale as well. 
 
 
Rigid registration 
The experiment histology is first centered and scaled to the reference histology 
using a rigid registration, in order to get a good starting point for the non-rigid 
registration. This is done in MATLAB by selecting landmark points using the 
cpselect function. These landmarks are then used to create the affine 
transformation matrix that determines the registration by employing the MATLAB 
function cp2tform. 
 
 
Non-rigid registration  
The non-rigid registration is performed using the algorithms from the Medical 
Image Registration Toolbox (MIRT) by Myronenko3 . A non-rigid registration 
contains a similarity measure and a transformation model. The similarity measure 
defines how pixels are compared between images, while the transformation 
model determines the types of non-rigid transformations allowed. 
  

•    Similarity measure 
The squared correlation coefficient is used as a similarity measure to compare 
the intensities of pixels across the images. The squared correlation coefficient is 
maximized when the images are linearly related, and is defined as 
  

ECC T( ) =
In ! I( ) Jn ! J "( )n=1

N#( )2
In ! I( )2 Jn ! J

"( )2n=1

N#n=1

N#
 

  
where	
   I  is the intensity mean of image I and J is the intensity mean of image	
   J . 
The medical image processing literature shows that the best choice of similarity 
measure is dependent on the particularities of the data at hand. For these case 
studies, the squared correlation coefficient empirically showed sufficiently good 
results, so no further benchmarking of similarity measures needed to be pursued. 
Further improvements of the registration phase are welcome but not essential to 
the correct functioning of the anatomical interpretation phase, since its 
optimization formulation allows the interpretation output to degrade gracefully as 
the number of registration errors rises. The entire registration procedure was run 
on a desktop computer. 
  
 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  Myronenko, A. Non-rigid Image Registration, PhD. Dissertation, Oregon Health & Science   

University, 2010.	
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•    Transformation model 
As a transformation model we use the Free Form Deformation (FFD), which is a 
popular non-rigid registration model that uses a mesh of control points (example 
in Figure S-3). In this mesh, each control point is connected to its neighbor, and 
each location in between these control points is interpolated via B-spline basis 
functions. The number of admissible transformations is limited by the spacing of 
the control points and by the smoothness of the B-spline basis functions. The 
degree of non-rigid deformation that can be modeled depends on the resolution 
of the mesh of control points, which in turn determines the computational 
complexity. In order to have an optimal trade off between computational 
complexity and admissible deformation, the MIRT uses a hierarchical multi-
resolution approach, as suggested by Rueckert et al.4, in which the resolution of 
the control mesh is increased, along with the image resolution, in a coarse to fine 
fashion. The initial mesh size we use consists of 8x8 control points, with 4 
consecutive hierarchical levels. 
Using the results of the affine registration as a starting point, the experimental 
histology is registered to the reference histology using the above settings. The 
result of the registration can be seen in Figure S-4, which shows very good 
matching despite the relatively large initial deformation. 

 

Figure S-3. The Free Form Deformation registration method uses a mesh of control 
points to register the experimental histology to the reference histology. The number of 
admissible transformations is limited by the spacing of the control points and by the 
smoothness of the B-spline basis functions. 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4	
  Rueckert, D.; Sonoda, L. I.; Hayes, C.; Hill, D. L. G.; Leach, M. O.; Hawkes, D. J. IEEE Trans. 

Med. Imaging 1999, 18, 712–721.	
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Figure S-4. Results of the non-rigid registration process. Despite the high initial 
deformation of the experiment histology (see Fig. S-2), the registered version looks very 
similar to the reference histology. The lower images show examples of using this non-
rigid transformation to register IMS data to the reference histology. 
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3. Automated Anatomical Interpretation Details 
This section gives a more detailed description of the automated anatomical 
interpretation process.  

The goal of the anatomical interpretation method is to take a mapped ion image, 
and to decompose that ion distribution pattern into a combination of atlas-
provided anatomical structures, without the need for human intervention. At its 
core, it is a problem of approximating the spatial pattern of an ion with a 
combination of patterns selected from a provided vocabulary of anatomical 
patterns. The algorithm we developed therefore considers the ion image to be a 
sum of contributions from a finite set of anatomical patterns, and uses a least 
squares argument to approach this challenge as a multivariate optimization 
problem. Consider the set of anatomical structure images previously defined in 
the section on correlation-based querying, which contain high values in pixels 
that are a member of the structure and low values in pixels that are not. We 
represent each of those anatomical images !!  as a vector of length ! ∈ ℕ! 
where ! denotes the total number of pixels in the image, or all of them combined 
as  

!! ∈ ℝ!
!

!!!
!  

where ! ∈ ℕ is the total number of anatomical images. Note that the anatomical 
images are positive by construction since they represent membership to an 
anatomical structure. For our examples this formulation can even be simplified to 
!! ∈ [0,1]! !!!

! . Similarly, let the ion image we want to decompose be 
described by a positive vector ! = (!!,… , !!)! ∈ ℝ!

! of length !. Due to the IMS-
atlas link, the anatomical images !! to !! contain the same number of pixels as 
the ion image !. The ion image ! is also positive by construction since its pixels 
encode ion counts. 

The algorithm now seeks the optimal (and smallest) combination of anatomical 
images that, when multiplied by their contribution coefficients, add up to the 
target ion image. It is this optimal profile of intensity contribution coefficients ! 
that answers our anatomical decomposition question. Anatomical images, and 
thus structures, corresponding to high absolute coefficients are important for 
approximating the ion distribution of interest, and are therefore considered part of 
the anatomical interpretation of that ion image. Anatomical structures with low 
absolute coefficients are considered unrelated to the ion image of interest. The 
following linear model is adopted for any ! = 1,… ,! 

!! = !!!!!
!

!!!

+ !! 

where the coefficients  ! = (!!,… ,!!) ∈ ℝ! encode the assumption that the ion 
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image is essentially a weighted sum of the anatomical images/structures, up to 
the residual ! = (!!,… , !!)! ∈ ℝ!. Our implementation uses a classical approach 
to approximate the linear coefficients we are looking for, minimizing the squared 
norm of the residuals, or 

!∗ = argmin
!

!!!!!
!

!!!

− !!

!!

!!!

 

This optimization problem considers the optimal contribution coefficients to be 
the ones that minimize the difference between the measured ion image and its 
approximation using anatomical patterns. However, since the anatomical 
structures are stored in the Allen Mouse Brain Atlas in the form of a hierarchical 
tree, many anatomical patterns are very similar to each other, exhibiting large 
overlap and often differing by only a small sub-area. In the current formulation, 
this could cause multiple similar structures to be selected, dividing that area’s 
contribution among them. This could result in unnecessarily complex anatomical 
interpretations consisting of a large numbers of structures. Instead, we want the 
algorithm to select only the best fitting anatomical structures for its interpretation, 
disregarding similar but less optimal ones, and keeping the total number of 
anatomical structures in the interpretation to a minimum. To accomplish this, we 
introduce an L1 regularization term for an appropriate choice of ! ≥ 0, turning the 
anatomical interpretation into 

!!∗ = argmin
!

!!!!!
!

!!!

− !!

!!

!!!

+ ! !!
!

!!!

 

Similar to the LASSO5 algorithm, the 1-norm makes the optimization problem 
pursue sparsity in the solution of coefficients. This can be interpreted as follows: 
if the optimization problem does not know which solution !∗ to prefer up to a 
numerical quantity, then choose the solution with the smallest 1-norm. Parameter 
! regulates what is meant by such a numerical quantity: if ! is large, a sparse 
solution containing only a few significant anatomical contribution coefficients will 
be preferred over an exact least squares fit of the ion image, while the reverse 
holds true for when ! is small. In our case studies, we set ! = 1. Given the 
number of pixels versus the number of anatomical structures involved in these 
data sets, this setting ensures that approximation of the ion image is more 
important than sparsity in the anatomical interpretation, while the sparsity term 
does keep the anatomical explanation to a minimum if multiple valid 
interpretations exist. 

Note that the coefficients are not constrained to positive values in this 
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  Tibshirani, R. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. 
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formulation. This allows the anatomical interpretation to say things like “the ion 
seems to be present in zone A plus zone B minus zone C.” Although it will 
usually result in a more intricate interpretation using lots of little structures, if 
desired, it is possible to constrain the algorithm to only consider additive 
interpretation by setting a positivity constraint on the coefficients in the 
optimization problem. 

Our implementation uses CVX, a package for specifying and solving convex 
programs6, 7 to solve the optimization problem for each ion image we want 
interpreted. The method delivers an approximation of each ion image using 
anatomical patterns, and a set of coefficients that report which anatomical 
structures are involved. A nice feature of the method is that an anatomical 
contribution coefficient tends to be proportional to the ion intensity in that 
anatomical structure, inherently assigning a notion of importance to each 
anatomical zone involved. 

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

6 Grant, M.; Boyd, S. In Recent Advances in Learning and Control; Blondel, V.; Boyd, S.; Kimura, 
H., Eds.; Springer-Verlag Limited, 2008; pp. 95–110. 

7 Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, version 2.0 
beta; 2012. 
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4. Additional Correlation-based Querying Examples 
 
Protein case study examples 
Figure S-5 shows the correlation table that results from the spatial correlation 
analysis between the anatomical structure images and the ion images of the 
peak picked IMS protein data. The y-axis shows all the anatomical structures at 
this depth of the brain (119 in total). The x-axis shows the peak picked m/z 
values. Anatomical structure/ion abundance combinations that have a high 
positive correlation (range ρ= [0.54 0.76]) are shown in dark red. Combinations 
that have a high negative correlation are indicated in dark blue. The other 
combinations exhibit low correlation (|ρ|<0.15).  
 

 

Figure S-5. The correlation table displaying spatial correlation between the anatomical 
structure images and ion images of the peak picked IMS protein data. The y-axis shows 
all the anatomical structures that are present at the depth in the brain that this IMS 
experiment was acquired at. The x-axis shows the peak picked m/z values. Red = high 
positive correlation, blue = high negative correlation, green = low correlation. 
 
Figure S-6 shows an extended overview of the correlation-based queries 
presented in the main paper, including examples of negative and near-zero 
correlation. Ions m/z 6279 and m/z 11247 are two randomly selected ion image 
examples that exhibit low spatial correlation (|ρ|<0.15) with the caudoputamen, 
while ions m/z 11842 and m/z 6961 describe ion images that have high negative 
correlation with the target structure, exhibiting a clear absence of these ions 
therein. The anti-correlating examples demonstrate an interesting feature of the 
algorithm, which is that the anatomical query can be used not only to find ions 
specifically present in the anatomical structure of interest, but that it can also be 
used to search for ions specifically absent from the region of interest. 
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Figure S-7 shows several examples of positively correlated anatomical 
structure/ion image pairs in the protein data set. Example S-7A shows the 
correlation of the pallidum (ventral region) and m/z 4538, which is almost 
exclusively located in this area. The congruence of these relatively small areas 
demonstrates the accuracy of the registration. Figure S-7C shows m/z 18483, 
which is well localized in the corpus callosum. Unfortunately, the corpus callosum 
is currently not available as a separate anatomical area in the Allen Brain Atlas, 
and is a substructure of the fiber tracts and ventricles, which shows high 
correlation with this ion in the current tissue slice. Figure S-7G shows the 
correlation between the lateral septal complex and m/z 9751. From this image we 
can see that m/z 9751 is not exclusively located in the septal complex, but rather 
in multiple anatomical structures. This example emphasizes the need for a multi-
membership approach. 
 
 

 
 
Figure S-6. (Panel A) Example of an anatomical query, finding ions specific to the 
caudoputamen. The anatomical structure image of the caudoputamen is given as input 
and the correlation table returns the spatial correlation to this structure for each ion 
image. Two examples of ion images that positively correlate with the target anatomical 
structure are displayed on the left. Examples of no correlation are shown in the middle, 
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with examples of negative correlation on the right. (Panel B) Example of an ion query, 
finding anatomical regions in which m/z 7841 is highly expressed. The ion image of m/z 
7841 is given as an input and the correlation table returns the spatial correlation to this 
ion image for all the anatomical regions. Two examples of anatomical structure images 
that positively correlate with the target ion image are displayed on the left. Examples of 
no correlation are shown in the middle, with examples of negative correlation on the 
right.  
 
 

 
Figure S-7. Examples of positively correlating anatomical structure/ion image 
combinations. In each image the anatomical structure image is shown on the left and the 
correlating ion image is shown on the right. 
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Lipid case study examples 
 
Figure S-8 shows the correlation table for the lipid data (negative mode) with the 
atlas data. It shows areas of high positive, high negative, and low correlation. 
Figure S-9 displays several examples of anatomical structure/ion abundance 
combinations with high positive correlation.  
 
 
 

 
Figure S-8. The correlation table resulting from the spatial correlation analysis between 
the anatomical structure images and the ion images of the peak-picked IMS lipid data. 
The y-axis shows all the anatomical structures that are present in the tissue slice. The x-
axis shows the peak-picked m/z values. Red = high positive correlation, blue = high 
negative correlation, and green = low correlation. 
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Figure S-9. Examples of several positively correlating lipid ion images. In each image 
the anatomical structure image is shown on the left and the correlating ion image is 
shown on the right. 
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5. Additional Automated Anatomical Interpretation 
Examples 
 

 

Figure S-10. Examples of automated anatomical interpretation applied to the protein-
focused IMS case study. When an ion image is given as input (left), the interpretation 
method provides an optimal anatomical explanation for the observed ion pattern (right), 
using the library of provided anatomical structures. Specifically, the ion intensity pattern 
is decomposed without user intervention into an optimal combination of contributing 
anatomical structures from the atlas. The interpretation method provides (i) the closest 
approximation of the measured ion image using atlas structures (middle), and (ii) a linear 
combination of the contributing anatomical structures, specifying name, reference 
location, and contributing intensity or weight in the interpretation (right). This 
visualization shows for each ion image the most contributing anatomical zones, 
preceded by their weight, which signifies their relative importance in the overall 
anatomical interpretation. Negative weights indicate a relative decrease of the ion in 
those areas. (panel A) Ion m/z 9750 is highly expressed in the medial septal complex 
and the lateral septal complex. (panel B) Ion m/z 11312 is specifically absent in the 
pallidum. This is indicated by its negative contribution coefficient or weight, and is also 
clearly visible in the ion image. The empirical ion distributions show good congruence 
with the boundaries of the anatomical structures defined in the atlas, indicating good 
spatial mapping between the data sources, and strong biological signals in IMS 
measurements also in the protein-focused case study. 
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6. Sparsity in Automated Anatomical Interpretation 
 
From the equation of the convex optimization formulation (p. S-10), it is clear that 
!  is the only parameter in the anatomical interpretation model. Parameter 
!  controls how much emphasis is placed on the approximation of the measured 
ion pattern versus the simplicity (sparsity) of the anatomical explanation. This 
parameter functions essentially as a dial that allows the user to choose whether a 
broad overview anatomical interpretation is provided, capturing the major 
anatomical trends of the ion pattern, or whether a more detailed interpretation is 
returned, that breaks those larger anatomical zones into more precise sub-zones. 
The !  dial of the algorithm has a range from 0% sparsity (closest approximation, 
most detailed anatomical interpretation) to 100% sparsity (approximation of only 
the broader trends, less complex anatomical interpretation). 
 
Which level of interpretation complexity is preferable is dependent on the 
particular purpose that the anatomical interpretation will serve. If it is meant for 
human consumption, it is often not preferable to have a very intricate 
interpretation using twenty or more anatomical labels. Instead, a medical 
professional typically wants a broad breakdown into the five or six major 
anatomical zones involved, unless they have a particular case-study reason to 
request otherwise. If the interpretation is to be used as annotations for a 
computational follow-up (e.g. classification or clustering that includes anatomical 
labels as extra information), there is little reason not to go for highly detailed 
interpretations since the computer will easily handle these. Regardless of the 
particular use case, the same model is capable of delivering these 
interpretations. 
Given these examples, it is clear that there is not one particular ‘best’ value for !, 
since the best value for one application is not necessarily the best for another. 
We therefore prefer to provide the user access to this dial, so that he/she may 
determine directly which sort of interpretation complexity is desired for a 
particular use case. However, note that the ability to request different levels of 
complexity in an anatomical interpretation does not jeopardize the analytical 
accuracy of the interpretation. This is because a less complex anatomical 
interpretation (higher !) is directly related to a more complex interpretation (lower 
! ) in the sense that large anatomical zones are simply broken down into 
subdivisions that allow for a more granular description. As such, changing !  only 
changes the complexity of the list of anatomical labels involved, it does not 
change which anatomical space is tied to the ion pattern. 
 
For the proof-of-concepts and introduction of the multivariate model and 
algorithm in this paper, we have set !  to one since it allows us to demonstrate the 
capabilities of the algorithm sufficiently to make our point. Due to the dimensions 
of our data sets (and in fact most MALDI IMS data sets) a !  of one ensures that 
the sparsity is secondary to the approximation. It basically ensures that only if 
two equally close anatomical interpretations are available, the sparser one wins. 
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Another note is that due to the speed and parallelism of the algorithm, it is 
perfectly feasible to explore multiple !s and determine the ‘optimal’ !   for a 
particular data set and application. In fact, this is the common approach to setting 
such parameters in the optimization literature. An example of this is the use of 
‘optimal trade-off curves’ in Boyd and Vandenberghe8. 
 
With regards to comparing anatomical interpretations between different ion 
images, it is also good to note that the !  parameter is equal across all the 
hundreds of ion images within an IMS experiment. This makes these 
interpretations directly comparable regardless of the particular value of !, an 
advantage not available from human interpretation (where the level of 
interpretation complexity is a free-floating variable, subjectively controlled at 
best). 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8  S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 
Cambridge, UK, 2004. 
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7. Automated Anatomical Interpretation and the 
Structure of Annotation Labels 

 
With section S-6 discussing the role of sparsity in the anatomical interpretation, it 
is valuable to also have a closer look at the structure of the AMBA and 
specifically how the structure of the annotations in the AMBA pertains to the 
interpretation. As mentioned in the manuscript on page 6-7, the AMBA is 
organized in a hierarchical fashion. This annotation structure sometimes does not 
accurately reflect the region subdivisions encountered in nature, and since the 
anatomical interpretation method can only work with the anatomical annotations 
provided by the atlas, an optimal interpretation sometimes returns more 
anatomical zones than would be expected at first sight. 
 
Below, we illustrate this hierarchical subdivision of the atlas with several 
screenshots (Fig. S-11 to S-13), taken from the interactive atlas viewer available 
on the AMBA website9. As an example, these figures show that the isocortex is 
hierarchically first sub-divided into “radial” sections, and only at a deeper level do 
these radial structures get split further into concentric sub-divisions. The 
hierarchical annotation structure prevents the AMBA from providing a single 
named annotation that represents all concentric regions of the isocortex as one, 
regardless of the radial locations involved. As such, the automated anatomical 
interpretation method does not have a concentric radial-independent sub-division 
pattern available in its vocabulary of anatomical structures, and can only 
represent such a structure as a combination of concentric sub-divisions of radial 
sub-divisions. Studies such as Ko et al.10 on the other hand show that in biology 
a concentric radial-independent division exists in the mouse brain, and such a 
division can also be seen in ion image m/z 7841 of Figure 4.B (the intensity of the 
ion is higher in the outer-most concentric layer of the brain). 
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9	
  http://atlas.brain-map.org/	
  
10 Ko, Y.; Ament, S. A.; Eddy, J. A.; Caballero, J.; Earls, J. C.; Hood, L.; Price, N. 
D. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 3095–100. 
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Figure S-11: Primary somatosensory area 
 
 

 
Figure S-12: Primary somatosensory area, nose (a radial sub-area of the “Primary 
somatosensory area” parent shown in the previous figure) 
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Figure S-13: Primary somatosensory area, nose, layer 2/3 (a concentric sub-area 
within a radial sub-area of the “Primary somatosensory area”) 
 
This example shows that ions specific to a concentric layer of the brain, but not 
specific to a radial sub-division of that brain, are difficult to approximate using the 
AMBA. The AMBA essentially forces a non-hierarchical anatomy structure into a 
hierarchical representation, and as a result loses some of the parent-daughter 
region relationships. This is an example of a biological region that can be easily 
recognized, but is not explicitly represented in the atlas and therefor hard to label 
with a single name. This sort of biological region cannot be captured adequately 
using a univariate approach, and this example further illustrates the need for 
multivariate interpretation algorithms capable of handling multi-membership 
properly. 
  
With a multi-membership aware interpretation method, such as the one 
developed in this paper, there are currently two ways of handling these types of 
regions: 

1. Complement the AMBA with additional patterns that group sub-patterns in 
different combinations (could be done exhaustively). For our proof-of-
concept demonstrations we wanted to use the AMBA as-is, so this option 
is not explicitly discussed here. 

2. Use the regularization parameter ! of our method as a dial that can be set 
to “make the interpretation as specific as possible” (which would grab the 
cortical layers specifically) or “make the interpretation high-level” (which 
would grab the overall encompassing region), as discussed in section S-6. 

 
It is valuable to note that due to the speed and parallelism of the interpretation 
method, it is perfectly feasible to collect interpretations using multiple 
regularization parameter values (from global all the way to very specific). It would 
just require storing more anatomical membership tables, but would be a means 
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of ‘auto-discovering’ the sub-categorizations that have been lost due to the 
hierarchical structure of the AMBA. 
 
In short, although the hierarchical structure of the AMBA is a feature external to 
our method, our interpretation method provides the parameter to either ask for an 
interpretation of a particular kind (from global to more specific), or the speed and 
performance to interrogate the same IMS measurement from a bunch of different 
viewpoints and collect the data for assessment in a later phase. 
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8. Automated Anatomical Interpretation of Non-
Conforming Ion Images  

 
This section describes how the automated anatomical interpretation method 
handles ion images that do not conform to anatomy, or that do not exhibit uniform 
intensity distribution within known anatomical structures.  
The interpretation method we developed finds for each empirically acquired ion 
image in an IMS experiment, the best possible approximation using only the 
vocabulary of reference anatomy patterns in the atlas. This means that for each 
ion image in the IMS experiment, there is a measure of ‘distance’ between the 
measured ion image and its approximation using anatomy from the atlas. This 
distance is expressed in terms of ion counts, and is implicitly provided by our 
algorithm for each individual ion species in the study. These distances can be 
directly compared across all ion images in an IMS experiment. 
 
Two possible scenarios unfold: 
 

1 Small distance between ion image and anatomical approximation: 
The spatial distribution of this ion can be well approximated using the atlas 
⇒ strong automated anatomical interpretation of this ion species is 
possible using the standard anatomy provided by the atlas. 
 

2 Large distance between ion image and anatomical approximation: 
The spatial distribution of this ion cannot be well approximated using the 
atlas 
⇒ the anatomy atlas does not provide the tools to adequately describe the 
spatial distribution of this ion species.  
 

In other words, the automated anatomical interpretation algorithm can be used as 
an automated filter that separates ion species that conform to known anatomy 
from those ion species that deviate from known anatomy. 
 
This means that the algorithm we describe here does not only provide a means 
for automated anatomical interpretation of ion images, but implicitly also provides 
a means of discovering which ion species deviate substantially from known 
histology. As such, our method can be used to automatically detect which ion 
species are distributed into subdivisions, subareas, or gradients within 
anatomical regions that according to the atlas are supposed to be homogeneous. 
Essentially, our method gives an automated anatomical interpretation for those 
ions that can be explained using the atlas, and additionally highlights those ions 
in which the IMS measurements show patterns that cannot be explained by 
known anatomy (e.g. disease-specific chemical patterns, previously unknown 
chemical subdivisions within tissue areas, etc.). 


