Supporting Information

Cross-Linking Electrochemical Mass Spectrometry for Probing Protein Three-Dimensional Structures

Qiuling Zheng,¹ Hao Zhang^{2*}, Lingying Tong,^{1,3} Shiyong Wu^{1,3} and Hao Chen^{1,3*}

¹Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, ³Edison Biotechnology Institute, Ohio University, Athens, OH, USA 45701, ²Department of Chemistry, Washington University, St. Louis, MO, USA 63130

Table of content

- 1. Schemes showing the reduction of DSP cross-linked products and the experimental apparatus
- 2. Detailed DSP cross-linking experimental procedure
- 3. Tables
- 4. Additional DESI-MS and MS/MS data

Scheme S-1. (a) Structure of DSP; possible cross-linking reaction products and their conversion upon electrochemical reduction: (b) dead-end cross-linked product, (c) intrapeptide cross-linked product and (d) interpeptide product.

Scheme S-2. Schematic showing the apparatus of online electrolytic reduction and online MS analysis of cross-linked products in mixture

Detailed DSP cross-linking experimental procedure

Peptide HCKFWW

A 100 μ L of aqueous peptide solution (100 μ M) was mixed with 1 μ L of 10 mM DSP in DMSO and reacted for 1 h at room temperature. Then, 250 mM NH₄HCO₃ was used to quench the reaction. C18 Ziptip was used for purifying and enriching the modified peptide which was dissolved in MeOH:H₂O (3:2 by volume) containing 0.1% FA to a final concentration of 20 μ M for EC/DESI-MS analysis.

Insulin

A 200 μ L of 100 μ M insulin in 10 mM PBS (pH 7.4) and 20 μ L of 10 mM DSP in DMSO were mixed and reacted for 1 h at room temperature. Then, 250 mM NH₄HCO₃ was used to quench the reaction. The resulting mixture solution was desalted using a 5000 molecular weight cutoff filter. The desalted protein was re-dissolved in MeOH:H₂O (1:1 by volume) containing 1% FA to a final concentration of 20 μ M, and was subject to EC/DESI-MS analysis.

To cross-link denatured insulin, 100 μ L of 100 μ M insulin in 1% formic acid was first mixed with 50 μ L of 8 M urea for denaturation. The mixture was desalted via centrifugation to remove access amount of urea by using a 3000 Da molecular weight cutoff filter and redissolved in 100 μ L of H₂O. A 20 μ L of 10 mM DSP in DMSO was added and reacted for 1 h at room temperature. The resulting mixture solution was desalted using a 5000 molecular weight cutoff filter and the desalted protein was re-dissolved in MeOH:H₂O (1:1 by volume) containing 1% FA to a final concentration of 20 μ M for EC/DESI-MS analysis.

Ubiquitin

A 600 μ L of 200 μ M ubiquitin solution in 10 mM PBS buffer (pH 7.4) and 120 μ L of 10 mM DSP in DMSO were mixed and reacted for 1 h at room temperature. Then, 250 mM NH₄HCO₃ was used to quench the reaction. The resulting mixture solution was desalted using a

5000 molecular weight cutoff filter and was re-dissolved in 25 mM NH₄HCO₃. A 24 μ L of 200 μ M trypsin was added (protein:enzyme=25:1) for overnight digestion. The C18 Ziptip was used for further sample desalting. The desalted protein was re-dissolved in MeOH:H₂O (1:1 by volume) containing 1% FA for EC/DESI-MS analysis to a final concentration of 20 μ M, before EC/DESI-MS analysis.

Calmodulin-Melittin complex

A 3 mL of 20 μ M of calmodulin and melittin in CaCl₂ (80 μ M in PBS, pH 7.4) and 120 μ L of 10 mM DSP in DMSO were mixed and reacted for 1 h at room temperature. Then, 250 mM NH₄HCO₃ was used to quench the reaction. The resulting mixture solution was desalted using a 5000 molecular weight cutoff filter. Then the sample was re-dissolved in 25 mM NH₄HCO₃ and 12 μ L of 200 μ M trypsin was added (protein:enzyme=25:1) for overnight digestion. C18 Ziptip was used for purifying and the mixture was re-dissolved in MeOH:H₂O (3:2 by volume) containing 0.1% FA to a final concentration of 20 μ M for EC/DESI-MS analysis.

Tables

Table S-1. Relative intensity changes of peptide ions after electrolysis (using the peak of the disulfide-free peptide ion $[HCK^3FWW+2H]^{2+}$ as the reference)

Peptide	Peptide ions	m/z	Relative intensity before reduction (%)	Relative intensity after reduction (%)	Relative change of relative intensity (%)
HCKEWW	[P1+2H] ²⁺	540.7	171.80	64.47	-62
ILLE W W	[P2+2H] ²⁺	549.7	42.77	26.91	-37

Table S-2. Solvent accessibilities of N termini and lysine residue of insulin*

Residue	Position	Total	Apolar	Backbone	Sidechain	Ratio (%)	In/Out
G	1 (A Chain)	58.3	27.3	58.3	0.0	66.9	Out
F	1 (B Chain)	163.7	132.3	54.3	109.4	60.7	Out
K	29 (B Chain)	16.2	0.0	16.2	0.0	0.0	In

*Solvent accessibility data was obtained by using online software GETAREA 1.1 for protein surface area calculation and insulin crystal data file ("1APH.pbd") downloaded from Protein Data Bank.

Table S-3. Relative intensity changes of peptide ions after electrolysis (using the peak of the disulfide-free peptide [LGEDNINVVEGNEQFISASK+2H]²⁺ as the reference)

Ductain	Peptide ions	m/z	Relative intensity	Relative intensity	Relative change of
PTOLEIII			before reduction (%)	after reduction (%)	relative intensity (%)
	1 [P3+2H] ²⁺	769.8	3389.7	1175.68	-65
	2 [P4+3H] ³⁺	775.0	166.2	109.46	-34
Ubiquitin	3 [TITLEVEPSDTIENVK+2H] ²⁺	894.4	214.0	198.65	-7
	4 [P5+2H] ²⁺	948.9	160.3	93.24	-42
	6 [P6+3H] ³⁺	1217.2	14.9	0.00	-100

Table S-4. Relative intensity changes of peptide ions after electrolysis (using the peak of the disulfide-free peptide [VLTTGLPALISWIK+2H]²⁺ as the reference)

Complex	Peptide ions	m/z	Relative intensity before reduction (%)	Relative intensity after reduction (%)	Relative change of relative intensity (%)
Calmodulin-Melittin	1 [P7+3H] ³⁺	744.7	1.65	1.03	-38
	3 [HVMTNLGEKLTDEEVDEMIR+3H] ³⁺	787.4	8.72	8.28	-5
	4 [P8+H] ⁺	849.4	28.92	14.95	-48
	5 [P9+2H] ²⁺	930.5	35.76	14.24	-60
	6 [P10+2H] ²⁺	974.4	50.35	23.20	-54
	7 [EADIDGDGQVNYEEFVQMMTAK+2H] ²⁺	1246.0	11.67	9.90	-15
	8 [VLTTGLPALISW+H] ⁺	1270.7	9.24	9.49	3

Figure S-1. CID MS/MS spectra of (a) $[P2+2H]^{2+}$ (*m*/*z* 549.7); and (b) $[H^{\blacktriangle}CK^{3}FWW+2H]^{2+}$ (*m*/*z* 497.7). The symbol ' denotes a dead-end tag of $-C(O)CH_{2}CH_{2}SSCH_{2}CH_{2}COOH$ and $^{\blacktriangle}$ denotes one reduced tag of $-C(O)CH_{2}CH_{2}SH$.

Figure S-2. (-)-DESI-MS spectra of cross-linked insulin (a) before and (b) after electrochemical reduction (applied potential: -1.5 V).

(a) $[P3+2H]^{2+}$ Figure **S-3**. CID MS/MS spectra of (m/z)769.8), (b) (m/z 717.8); (c) $[P4+EH]^{3+}$ [LIFAGK^{48▲}QLEDGR+2H]²⁺ (m/z)775.0) (d) $[TLSDYNIQK^{63} \ge STLHLVLR+3H]^{3+}$ (*m/z* 740.0); (e) $[P5+2H]^{2+}$ (*m/z* 948.9); and (f) $[AK^{29} \land IQDK^{33} \land EGIPPDQQR+2H]^{2+} (m/z 949.9).$

Figure S-4. CID MS/MS spectra of (a) $[P7+3H]^{3+}$ (*m*/*z* 744.7); (b) $[K^{23} R+H]^+$ (*m*/*z* 391.2); (c) $[VFDK^{94} DGNGYISAAELR+2H]^{2+}$ (*m*/*z* 922.4).

Figure S-5. CID MS/MS spectra of (a) $[P8+H]^+ (m/z \ 849.4)$; and (b) $[G^{1}IGAVLK+H]^+ (m/z \ 745.4)$, (c) $[P9+2H]^{2+} (m/z \ 930.5)$, (d) $[VLTTGLPALISWIK^{21}R+2H]^{2+} (m/z \ 878.5)$, and (e) $[P10+2H]^{2+} (m/z \ 974.4)$.

CID of $[VLTTGLPALISWIK^{21} \land R+2H]^{2+}$ (*m/z* 878.5) (Figure S-5d) produced y_1 , y_2^{\land} , y_3^{\land} , y_4^{\land} , y_5^{\land} , y_6^{\land} , y_7^{\land} , y_8^{\land} , y_9^{\land} , $y_{10}-H_2O^{\land}$, y_{10}^{\land} , y_{11}^{\land} , y_{12}^{\land} , y_{13}^{\land} , $y_{14}^{2+\land}$, b_2 , b_5 , b_6 , and b_{10} , covering the majority of backbone cleavages and locating the modification position at K²¹. P9 (measured mass: 1859.0 Da, see the structure of P9 in Figure 5a inset) is considered as the deadend cross-link precursor because the mass difference between P9 and its reduced product VLTTGLPALISWIK²¹ R (measured mass: 1755.0 Da) is 104.0 Da. The structure P9 is confirmed by CID of $[P9+2H]^{2+}$ (*m/z* 930.5), as shown in Figure S-5c. For P10 (measured mass: 1946.8 Da), it is assigned as the dead-end cross-link of VFDK⁹⁴DGNGYISAAELR (see the structure of P10 in Figure 5a inset), because of the 104.0 Da mass difference between P10 and

the reduced product VFDK⁹⁴ DGNGYISAAELR (measured mass: 1842.8 Da). Upon CID, $[P10+2H]^{2+}$ (*m*/*z* 974.4) yielded *y*₁, *y*₂, *y*₃, *y*₄, *y*₅, *y*₆, *y*₇, *y*₈, *y*₉, *y*₁₀, *y*₁₁, *y*₁₂, *y*₁₃', *y*₁₄', *y*₁₄²⁺', *b*₂, *b*₃, *b*₄', *b*₅', *b*₈', *b*₉', *b*₁₀', *b*₁₁', *b*₁₂', *b*₁₃', *b*₁₄', and *b*₁₅', providing evidence for this assignment (Figure S-5e).