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 Supplemental Material 

 

Explanation of Kinetic Modeling 

We compare the calculated relaxation kinetics of various kinetic systems with the 

experimental results and score similarity.  To determine equilibrium concentrations of all states 

at each temperature, we used a master equation approach. Namely, equilibrium concentrations 

were calculated in a stepwise fashion for a large number of time steps till changes in 

concentration became insignificant (~e-10). 
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Calculating the relaxation transients requires computing relaxation times and amplitudes.  

There are multiple approaches to calculating these values and some are cited here for the 

interested reader.1-5  The approach we used was informed by the method of Bernasconi and is 

based on an eigenvalue decomposition.6  Below we present a trivial example of the approach we 

used.  In reality, the 12 different reaction steps of our model (see Scheme S3 below) requires a 

much more complex version of this method utilizing all 22 relevant rate constants.  The system 

can be minimized, but still leads to a matrix for step S.8 that is 10 by 10.  Consider the simple 

scheme: 

 𝐴 + 𝐵
𝑘!
↔
𝑘!!

𝐶
𝑘!
↔
𝑘!!

𝐷 (S.1) 

whose differential rate equations can be written in terms of the change in concentration with time 

and simplified into two expressions which fully describe the system: 

 !∆!
!"

= − 𝑘!(𝐴!" + 𝐵!" + 𝑘!! ∆𝐴 − 𝑘!!∆𝐷 (S.2) 

 !∆!
!"

= −𝑘!∆𝐴 − (𝑘! + 𝑘!!)∆𝐷  (S.3) 

Where ΔX stands for the change in concentration of a state and Xeq is the concentration of a state 

at equilibrium.  Equations S.2 and S.3 form a system of coupled differential equations that have a 

solution of the general form: 

  

 𝑥! = 𝑥!!"exp  (−𝑡/𝜏!)+ 𝑥!!!exp  (−𝑡/𝜏!) (S.4) 

 𝑥! = 𝑥!!"exp  (−𝑡/𝜏!)+ 𝑥!!"exp  (−𝑡/𝜏!) (S.5) 

We can solve for the constants 𝑥!!", 𝑥!!", 𝑥!!", 𝑥!!", 𝜏!, and 𝜏! by using a standard eigenvalue 

decomposition: 

 𝑋 = 𝐴 𝑥 (S.6) 
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  where 𝑋 =   
!∆!
!"
!∆!
!"

 , (S.7) 

 𝐴 = − 𝑘!(𝐴!" + 𝐵!" + 𝑘!! −𝑘!!
−𝑘! −(𝑘! + 𝑘!!)

 , (S.8) 

 and 𝑥 = Δ𝐴
Δ𝐷  (S.9) 

The eigenvalues to the above problem correspond to relaxation rates (τ in equation S.4), and 

eigenvectors, which transform into the relaxation amplitudes (𝑥!!", 𝑥!!",  etc.). Theoretical 

transients for a system are then generated using equations S.4 and S.5 where each equation yields 

the time-dependent change in concentration of a state of the reaction. The similarity between the 

theoretical and experimental result is presented as a score value (perfect match is zero).  The 

scoring method considers all five of the transients collected at different probe frequencies.  First, 

we calculate an accuracy score for each transient as shown in equation S.10. 

 𝑆𝑐𝑜𝑟𝑒! = 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙! − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑!
!!

!  (S.10) 

Where j is each wavenumber, n is the total number of points in the transient, and i is a given 

point in time.  This method gives a direct measure of how accurately the predicted transient 

matches the experiment and ignores whether the predicted data over- or under-estimates the 

experimental data.  Finally, a composite score for an entire fitting run is compiled as the 

summation of all the transient scores as shown in equation S.11. 

 𝑇𝑜𝑡𝑎𝑙  𝑆𝑐𝑜𝑟𝑒 = 𝑆𝑐𝑜𝑟𝑒!!  (S.11)	
  

The	
  total	
  score	
  is	
  used	
  for	
  comparison	
  between	
  simulation	
  and	
  experiment.	
  	
  The entire 

process is then cycled in a Monte Carlo fashion where one randomly chosen rate constant is 

modified; the transients are recomputed and scored. If the modified rate constant results in a 

better score, signifying a progress, then the modification is saved and repeated. If the 
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modification results in a worse score, then the change is discarded and the procedure restarts. 

The Monte Carlo simulations are run many times to find the optimum rate constant set for a 

given kinetics model. 

We also worked with a few modifications of the main routine outlined above.  In addition to 

inputting a guess set of rate constants for a given kinetics model, we ran calculations where we 

used the random number generator in MATLAB to generate random starting points for the 

Monte Carlo simulations.  The allowed values for these random start points were constrained to 

be within an order of magnitude of the values provided by Zhadin.7  Using random start rate 

constants allowed us to make sure that the score values we were calculating were not local-

minimum, or trap, solutions to the problem, but were in fact the overall lowest scores possible.  

When we performed calculations allowing the activation energies of the system to change as 

well, we simply added the activation energies relevant to the competent encounter complex as 

possible values to be altered in the Monte Carlo process.  Of course, if a change in these values 

led to a worse score, those values were discarded. 

 

Reaction Schemes 

There have been a number studies concerning the kinetic pathway of Michaelis complex 

formation; the pig heart LDH isozyme is the best studied.  An excellent mimic of the substrate 

pyruvate is oxamate (NH2(C2=O)COO-), and the binding kinetics of this to LDH•NADH can be 

studied without consideration of any chemical event.  The results are useful in guiding a kinetic 

model of the Michaelis complex formed with actual substrate.   

The following kinetic scheme fully describes the available data8-10: 
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Scheme S1 

 

The two well-populated ternary complexes are observed directly by characteristic C2=O stretch 

IR bands, which indicate the strength of the hydrogen bonds between the C2=O moiety and polar 

active site residues (see Figure 1).  In addition to the sub-millisecond kinetics associated with 

changing hydrogen bond conformations, sub-millisecond kinetics of the movement of atoms 

within the protein are also observed.11 These two populated conformations are inferred to have 

differing propensities towards chemistry (denoted as ‘active’ or ‘not active’) by the positions of 

the observed IR bands as well as characteristic C4-D stretch positions of NADH bound in the 

two observed populated LDH•NADH•oxamate conformations12-13.  The two populated 

conformations do not interconvert directly but rather through another weakly populated state or 

states (labeled as an encounter complex).   

 Previous to the current study, the best worked out reaction scheme for the binding of 

pyruvate to LDH•NADH to the formation of LDH•NAD+ plus lactate is based on the T-jump 

optical absorption and emission study of  Zhadin et al.7  

Scheme S2 

LDH•NADH +py ⎯→⎯←⎯⎯ LDH•NADH•pyopen ⎯→⎯←⎯⎯

                 LDH•NADH•pyclosed chemistry⎯ →⎯⎯⎯← ⎯⎯⎯⎯
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where LDH•NADH•pyopen denotes a loosely bound pyruvate molecule typically assumed with a 

catalytically critical LDH surface loop (residues 98-110) in an ‘open’ conformation.  Loop 

closure is believed to be the rate limiting step of on-enzyme hydride transfer.  The kinetics 

modeling routine we wrote was given starting concentrations and temperatures that matched the 

experiments, and initially was given rate constants for the final temperature of the jump and 

activation energies that matched the work of Zhadin et al.7  The activation energies were used to 

estimate the lower temperature rate constants in an Arrhenius fashion.  

 

Figure S1:  The IR difference spectrum in the spectral region for pyruvate in [U-15N, -
13C]LDH•NADH•[2-12C]pyruvate - [U-15N, -13C]LDH•NADH•[2-13C]pyruvate.  Gaussian 
deconvolution fits are shown with peaks at 1674, 1679, 1686, and 1703 cm-1.11  This image also 
shows the negative [2-­‐13C]pyruvate	
  carbonyl	
  main	
  peak	
  at	
  1641	
  cm-­‐1	
  and	
  the	
  minor	
  peak	
  is	
  
obscured	
  but	
  visible	
  at	
  1660	
  cm-­‐1. 

 

Figure S1 shows the isotope edited IR spectrum of pyruvate’s C2=O moiety within the 

phLDH•NADH•pyruvate ternary complex.14 The isotope edited IR results indicate that at least 

several ‘closed’ states must be included in any kinetic scheme: LDH•NADH•pruvate1686, 

LDH•NADH•pruvate1679, and LDH•NADH•pruvate1674.”    
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Analysis of Probe Frequencies and Contribution of Individual Sub-states 

We used the fitting parameters from reference 11 to reproduce the component Gaussian peaks 

that make up the equilibrium FT-IR difference spectrum as shown above in Figure S1.  By using 

a simple calculation of the contribution of a given Gaussian divided by the total Gaussian signal, 

we can estimate the contribution of a sub-state at a given probe frequency (see equation S.12).   

Contribution  of  Sub-­‐State  fit    𝑓!(j)  to  Signal  at  Frequency  j  =  
  !! !   
!! !   !

   (S.12) 

This analysis indicates that a single sub-state is dominant at each of our chosen probe 

frequencies. Each column of Table S1 shows that for the corresponding probe frequency a single 

sub-state contributes at least 75 % or more of the observed IR absorbance. 

 
Table S1: Contribution of Each Sub-state to a Given Frequency 

  Probe at 1670 
cm-1 

Probe at 1679 
cm-1 

Probe at 1685 
cm-1 

Probe at 1704 
cm-1 

Contribution of 
1674 cm-1 

Population 
0.95 0.01 0 0 

Contribution of 
1679 cm-1 

Population 
0.05 0.99 0.25 0 

Contribution of 
1686 cm-1 

Population 
0 0 0.75 0 

Contribution of 
1703 cm-1 

Population 
0 0 0 1 
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List of Reaction Schemes Tested 

Original Scheme 

 

 

Extra Michaelis State 

 

 

 

 

Michaelis Dead End State 

 

 

Additional Encounter Complex that Do Not Go On to tightly bound conformations  
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Models where the 1704 cm-1 IR band was assigned to both encounter complexes or just one 

were separately tried. 

 

 

Best Scheme, Additional Dead-End Encounter Complex 

Models where the 1704 cm-1 IR band was assigned to both encounter complexes or just one 

were separately tried. 

 

 

Kinetic Parameters of Solutions Shown in Figure 4 

We present below the solutions that were generated from our modeling routine for the rate 

constants used to generate the solutions shown in the main text of the article.  The reaction 

schemes shown in the article and above do not display all the reaction steps included in the 

calculations.  This was done for simplicity.  Below we display a reaction scheme showing all the 

reactions steps considered in the calculations. 
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Scheme S3 

 

LDH + NADH
S0⎯ →⎯← ⎯⎯ LDH • NADH + Py1710 S1⎯ →⎯← ⎯⎯ LDH • NADH •Pyopen

S3⎯ →⎯← ⎯⎯ LDH • NADH •Py
1685
closed

S6⎯ →⎯← ⎯⎯

                                                    !S2                                                        
S4⎯ →⎯← ⎯⎯ LDH • NADH •Py1679 S7⎯ →⎯← ⎯⎯

                                   LDH • NADH •Py
1704
open                                              

S5⎯ →⎯← ⎯⎯ LDH • NADH •Py1670 S8⎯ →⎯← ⎯⎯
S6⎯ →⎯← ⎯⎯
S7⎯ →⎯← ⎯⎯ LDH • NAD+ • lacclosed

S9⎯ →⎯← ⎯⎯ LDH • NAD+ • lacopen
S10⎯ →⎯⎯← ⎯⎯⎯ LDH • NAD+ + lacopen

S11⎯ →⎯⎯← ⎯⎯⎯ LDH + NAD+

S8⎯ →⎯← ⎯⎯
 

 

Table S2: Kinetic Parameters of Solutions Shown in Main Text 

Mechanism Step Figure 4A 
Rate 

Constants 
(M-1s-1 or s-1 

as 
appropriate)a 

Figure 4A 

ΔG‡ (J/mol)b 

Figure 4B Rate 
Constants (M-1s-1 

or s-1 as 
appropriate)a 

Figure 4B ΔG‡ 

(J/mol)b 

S0 5.6 x 107 41400 5.0 x 107 41400 

S-0 75 81170 75 81170 

S1 2.0 x 107 23800 5.0 x 107 23800 

S-1 1750 67360 1500 67360 

S2 N/A N/A 1.4 x 108 100000 

S-2 N/A N/A 3100 33000 

S3 6100 10900 9.5 10900 

S-3 21 -10500 75 -10500 

S4 57 10900 3200 10900 

S-4 99 -10500 330 -10500 

 

LDH + NADH
S0⎯ →⎯← ⎯⎯ LDH • NADH + Py1710 S1⎯ →⎯← ⎯⎯ LDH • NADH •Pyopen

S3⎯ →⎯← ⎯⎯ LDH • NADH •Py
1685
closed

S6⎯ →⎯← ⎯⎯

                                                    !S2                                                        
S4⎯ →⎯← ⎯⎯ LDH • NADH •Py1679 S7⎯ →⎯← ⎯⎯

                                   LDH • NADH •Py
1704
open                                              

S5⎯ →⎯← ⎯⎯ LDH • NADH •Py1670 S8⎯ →⎯← ⎯⎯
S6⎯ →⎯← ⎯⎯
S7⎯ →⎯← ⎯⎯ LDH • NAD+ • lacclosed

S9⎯ →⎯← ⎯⎯ LDH • NAD+ • lacopen
S10⎯ →⎯⎯← ⎯⎯⎯ LDH • NAD+ + lacopen

S11⎯ →⎯⎯← ⎯⎯⎯ LDH + NAD+

S8⎯ →⎯← ⎯⎯
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S5 6200 10900 11000 10900 

S-5 20 -10500 3500 -10500 

S6 4300 58990 4000 58990 

S-6 100 52300 290 52300 

S7 4300 58990 7900 58990 

S-7 490 52300 700 52300 

S8 38000 58990 16000 58990 

S-8 690 52300 9.5 52300 

S9 470 61500 470 61500 

S-9 940 61920 940 61920 

S10 1.2 x 105 8368 1.1 x 105 8368 

S-10 3.0 x 107 1130 3.0 x 107 1130 

S11 560 8790 540 8790 

S-11 6.2 x 107 5020 6.1 x 106 5020 

a Values were rounded to 2 significant figures for clarity. 

b Values are presented as what was used in calculations. 

 

Estimation of kcat for Our Model 

To estimate kcat for the model presented in Scheme 2 of the main paper with the kinetic 

parameters listed in Table S2 above we modified the master equation program discussed above 

for the theoretical studies for analysis of the system by the method of initial rates.   The 

concentration of phLDH (1 nM) and NADH (100 mM) was kept constant while the 

concentration of pyruvate was varied.  The time-dependent change in lactate concentration was 
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recorded and an initial rate was fit for each pyruvate concentration.  The data was then plotted 

and fit in the Lineweaver-Burke method to determine kcat.  Figure S2 below summarizes these 

results. 

 

  

Figure S2: Lineweaver-Burke plot to determine kcat of our proposed model. 
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