Identification of Electric-Field-Dependent Steps in the Na⁺,K⁺-Pump Cycle

Laura J. Mares,¹ Alvaro Garcia,^{2,6} Helge H. Rasmussen,^{2,6} Flemming Cornelius,³ Yasser A. Mahmmoud,³ Joshua R. Berlin,⁴ Bogdan Lev,⁵ Toby W. Allen,⁵ and Ronald J. Clarke^{1,*}

¹School of Chemistry, University of Sydney, Sydney, Australia ;²Department of Cardiology, Royal North Shore Hospital, Sydney, Australia; ³Department of Biomedicine, University of Aarhus, Aarhus, Denmark; ⁴Department of Pharmacology and Physiology, University of Medicine & Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey; ⁵School of Applied Science, Royal Melbourne Institute of Technology University, Melbourne, Australia; and ⁶Kolling Institute, University of Sydney, Sydney, Australia

> 20

10

7:25

-1.2

-10

< -20

> 20

10

7:25

-<u>1.2</u>5 -<u>2.5</u> -5

-10

-20

> 20

10

7:55

=1:25 =2:55 -5

-10

-20

> 20

10

5 7:25

-1.25 -5

-10

-20

20

20

15 -15 -20 -10 -5 0 5 10 15 20 $z(\rm{\AA})$

Figure S1. Electrostatics due to the binding of 2 K^+ ions to the for the 2ZXE structure. Projections (in the plane, y=0) of the dielectric constant (relative permittivity), electric field and electrostatic potential are shown in the first, second and third columns, respectively. Panels a, b and c show values computed for $\varepsilon_p = 10$, while panels g, h and i show results for $\varepsilon_p = 2$. Rows 2 and 4 are zoomed views of rows 1 and 3, respectively. Contours are not evenly spaced but correspond to the tick marks on the right hand colour bars. Values for the electric field are limited to the range $-20:20 \ 10^7 \text{ V/m}$, with lower values lover shown as -20and higher values as 20. Values for the electrostatic potential are truncated to 200mV, with higher values shown as 0.2V.

Figure S3. Average value of the electric field across the membrane outside the protein. Results are shown for the *z*-component (left) and the magnitude of electric field (right) as a function of *z*. The two curves per system correspond to the two different values of ε_p (EpsP) used. Vertical lines indicate the boundaries of the membrane interfacial region.