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ABSTRACT This article reports on the construction and predictive models for a platform comprised of an engineered tethered
membrane. The platform provides a controllable and physiologically relevant environment for the study of the electroporation
process. The mixed self-assembled membrane is formed via a rapid solvent exchange technique. The membrane is tethered
to the gold electrode and includes an ionic reservoir separating the membrane and gold surface. Above the membrane, there
is an electrolyte solution, and a gold counterelectrode. A voltage is applied between the gold electrodes and the current
measured. The current is dependent on the energy required to form aqueous pores and the conductance of each pore. A
two-level predictive model, consisting of a macroscopic and a continuum model, is developed to relate the pore dynamics to
the measured current. The macroscopic model consists of an equivalent circuit model of the tethered membrane, and asymp-
totic approximations to the Smoluchowski-Einstein equation of electroporation that is dependent on the pore conductance and
the energy required to form aqueous pores. The continuum model is a generalized Poisson-Nernst-Planck (GPNP) system
where an activity coefficient to account for steric effects of ions is added to the standard PNP system. The GPNP is used to
evaluate the conductance of aqueous pores, and the electrical energy required to form the pores. As an outcome of the setup
of the device and the two-level model, biologically important variables can be estimated from experimental measurements. To
validate the accuracy of the two-level model, the predicted current is compared with experimentally measured current for
different tethering densities.
INTRODUCTION
Electroporation is a phenomenon that causes the perme-
ability of a biological membrane to increase in response
to an applied electric field. Electroporation has applications
in electrochemotherapy for anti-tumor treatment, protein
insertion, cell fusion, debacterialization, and gene and
drug delivery (1,2). Designing a stable platform for obtain-
ing reliable experimental measurements of electropora-
tion is an important challenge. This article presents a
believed-novel engineered tethered membrane platform
for measuring electroporation (see Fig. 1). A key feature
of the platform is that the experimentalist can select the
desired density of tethers, the physiological environment,
and membrane composition (3–6). The tethers are included
to mimic the physiological response of the cytoskeletal
supports of real cell membranes. The platform is con-
structed using modified archaebacterial lipids, allowing
the tethered membrane to have a lifetime of several months
(5,7,8).

Another important challenge is to model the dynamics
of electroporation. This article constructs a two-level pre-
dictive model for the dynamics of electroporation, as
Submitted March 6, 2014, and accepted for publication July 30, 2014.

*Correspondence: vikramk@ece.ubc.ca

Editor: Hagan Bayley.

� 2014 by the Biophysical Society

0006-3495/14/09/1339/13 $2.00
observed by the platform that we now briefly outline in
the following.
Macroscopic dynamics

At the highest level of abstraction, the macroscopic dy-
namics of the platform are modeled using the equivalent cir-
cuit model shown in Fig. 2. The conductance of the tethered
membrane is dependent on the population and dynamics
of pore radii. Using asymptotic approximations to the Smo-
luchowski-Einstein equation (9–13), we construct a model
that relates the aqueous pore conductance and electrical
energy required to form a pore to the membrane conduc-
tance. The energy required to deform the tethers is
accounted for by using an energy model identical to that
used for the cytoskeletal network in real cells (14).
Continuum dynamics

At a lower level of abstraction, we use a generalized
Poisson-Nernst-Planck (GPNP) system with a Langmuir-
type activity coefficient. If the activity coefficient is
neglected, then the standard Poisson-Nernst-Planck (PNP)
system results. The GPNP continuum model is effective in
modeling the electrodiffusive dynamics of asymmetric elec-
trolytes, multiple ionic species, and the Stern and diffuse
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FIGURE 1 Overview of the engineered tethered

membrane, model, and measured and predicted

current I(t). The Electronics block represents the

electronic system, which produces the drive poten-

tial between the electrode and counter electrode,

and records the current response I(t). The test

chamber contains the synthetic tethered mem-

brane. The tethered membrane layer is composed

of the lipid components: zwitterionic DphPC

(C20 diphytanyl-ether-glycerophosphatidylcho-

line) (shaded), C20 diphytanyl-diglyceride ether

(open), and benzyl disulfide diphytanyl bis-tetra-

ethyleneglycol (solid). Spacer molecules (i.e.,

benzyl disulfide tetra-ethyleneglycol) are used to

control the spacing between the tethered lipids (cross-hatch fill). The mobile lipid layer (square fill) is composed of the DphPC lipids. For the 100% tether

density, the membrane is composed of a membrane-spanning lipid (structure provided in Krishna et al. (19)) with no spacer molecules. The tethered mem-

brane does not contain any ion channels; therefore, all current passing through the tethered membrane takes place via conducting aqueous pores with an

electrical conductance denoted by Gp.
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electrical double layers (15) that are present in the platform
(16–18). GPNP is used to compute the ionic flux and
potential field for evaluating important electroporation pa-
rameters. The pore conductance is computed from the trans-
membrane potential and the total ionic flux (i.e., current)
through the aqueous pore, and the electrical energy required
to form a pore is computed using the potential field on the
pore boundary, and the Maxwell stress tensor.

In the above two-level model, we will link the macro-
scopic dynamics to the continuum dynamics via the pore
conductance and energy required to form a pore contained
in the Smoluchowski-Einstein equation. Therefore, the
two-level model accounts for the electrodiffusive effects
present in the engineered tethered membrane. As an
outcome of the setup of the device and the two-level model,
important biological parameters for the design of electropo-
ration therapies (i.e., the characteristic voltage of electropo-
ration, ratio of hydrophilic and hydrophobic pore radii, and
the spring constant of tethers) can be estimated from the
model-given experimental measurements.
FIGURE 2 Schematic of the macroscopic lumped circuit model of the

electroporation platform. Re is the electrolyte resistivity, Cm is the mem-

brane capacitance, Gm is the membrane conductance, Cbdl is the electrode

capacitance, Ctdl is the counterelectrode capacitance, and Vm is the trans-

membrane potential. Equation 1 in the main text displays the dynamics

of this model.
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The accuracy of the two-level model proposed in this
article is verified by comparing the predicted performance
with experimental results. Different tethering densities and
lipid compositions are used to validate the accuracy of the
models and exemplify the contribution the tethers and bio-
electronic interface have on the electroporation process.
Specifically, the electroporation parameters of the engi-
neered tethered membrane (19) in Fig. 1 are estimated for
the membrane tether densities of 1 and 10% for the tethered
DphPC lipid bilayer, and the 100% tethered DphPC mono-
layer membrane.
Literature review

Experimental platforms to study electroporation include
synthetic bilayer lipid membranes and in vitro cells
(20,21). However, synthetic bilayer lipid membranes do
not provide a good representation of physiological systems
because the effects caused by the cytoskeletal network are
not present (11,22). Using real cells provides a physiolog-
ical system for validation (23,24); however, it is impossible
to fully define the physiological environment that effects
properties associated with electroporation. This motivates
the need for an engineered tethered membrane platform
that gives the experimentalist control over tethering density,
membrane composition, and physiological environment, un-
like the synthetic lipid membrane- and cell-based platforms.

Next, we give a brief review of models for electropora-
tion: Models of the electroporation process employ the
Smoluchowski-Einstein equation derived from statistical
mechanics (11–13) with the pore energy models given in
the literature (9,14,25–30). The pore energy models are con-
structed by assuming the membrane is a dielectric and
elastic continuum (25,31–36). The Smoluchowski-Einstein
equation is numerically prohibitive to solve, and the pore
energy provided in the literature does not include effects
caused by asymmetric electrolytes, multiple ionic species,
and the Stern and diffuse electrical double layers present.
To overcome these limitations, the electroporation model
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presented in this article is constructed using asymptotic
approximations to the Smoluchowski-Einstein equation
and the GPNP for modeling the electrodiffusive dynamics.
To couple the results of the Smoluchowski-Einstein equa-
tion with the experimentally measured current requires an
estimate of the aqueous pore conductance. In Li and Lin
(2), assuming symmetric electrolytes and electroneutrality,
the aqueous pore conductance was estimated via the PNP
system (37).

In the tethered membrane platform, there are electrical
double layers at the surface of the membrane and electrode
contacts (15) that can be modeled using the GPNP (16).
Note that, near a pore entrance, significant nonlinear poten-
tial gradients are present that restrict the current flowing
through the pore; this effect is denoted as the spreading
conductance and is dominant for pore radii significantly
larger than the membrane thickness, causing the pore
conductance to scale proportionally to the pore radius
(2,12,22,38–40). In this article, GPNP is used to predict
the pore conductance. It is found that the pore conductance
scales proportionally to the pore radius for all pore radii,
suggesting that the spreading conductance is dominant as
a result of the electrode in proximity to the membrane sur-
face and the nonlinear potential gradients present.
MATERIALS AND METHODS

The construction and predictive models of the engineered tethered mem-

brane are provided in this section. The accuracy of the models are verified

using experimental measurements of the engineered tethered membrane

with different tethering densities.
Formation of the engineered tethered membrane

The engineered tethered membrane (Fig. 1) is composed of a self-assem-

bled monolayer of mobile lipids, and a self-assembled monolayer of teth-

ered and mobile lipids. The tethered lipids are anchored to the inert gold

electrode via polyethylene glycol chains. Spacer molecules are used to

ensure the tethers are evenly spread over the gold electrode. The intrinsic

spacing between tethers and spacers is maintained by the benzyl disulfide

moieties, which bond the spacers and tethers to the electrode surface.

The ratio of the total number of tethers to spacers, and tether molecules,

in the engineered tethered membrane are given by the tethering density

(i.e., a 10% tether density defines that, for every nine spacer molecules,

there is one tether molecule). In the special case of 100% tethering, the en-

gineered tethered membrane is composed of a tethered archaebacterial

based monolayer with no spacer molecules. As experimentally illustrated

in Heinrich et al. (7), it is not possible to construct a 0% tethered membrane,

because any formed membrane binds to the gold surface. Inasmuch as the

electrolyte reservoir separating the membrane and electrode surface is

required for the normal physiological function of the membrane, and noting

that all prokaryotic and eukaryotic cell membranes contain cytoskeletal

supports with a 1–10% tether density, the inability to construct a 0% teth-

ered membrane does not inhibit the study of the electroporation process in a

physiologically relevant environment.

As shown in Fig. 1, the engineered membrane is supported by a 25 �
75 � 1 mm polycarbonate slide onto which is patterned a 100-nm, sput-

tered-gold electrode array, possessing six 0.7 � 3 mm active areas of mem-

brane, each of which is enclosed in a flow cell with a common gold return
electrode. The formation of the tethered membrane is performed in two

stages, as follows:

The first stage anchors the inner layer of the membrane to the gold

surface via benzyl disulphide groups. The inner layer components are

introduced to the freshly deposited gold surface as ethanolic solutions of

370-mM benzyl disulphide concentrations in engineered ratios of tethers

and spacers. For example, the inner layer solution for the 10% tethering

density is prepared by codissolving benzyl disulphide C20 diphytanyl

bis-tetra-ethylene glycol and benzyl disulphide tetra-ethylene glycol in

the ratio 1:10. The solution is exposed to the coating solution for 30 min

and the electrode is then rinsed in ethanol and air-dried for ~2 min. The

coated slide is immediately assembled into a flow cell cartridge, comprising

six individual membranes with a common large-area gold return electrode

facing the membranes and separated by a 100-mm laminate defining the

flow-cell chamber height.

The second stage of the membrane formation now occurs with the addi-

tion of 8 mL of 3 mM C20 diphytanylether lipids comprising a 70:30 mol

of C20 diphytanylether glycerophosphatidylcholine/C20 diphytanylether

diglyceride being added to each of the flow chambers covering the mem-

brane areas. The solution is incubated for 2 min at 20�C, after which

300 mL of phosphate-buffered saline was flushed through each flow

cell, forming the tethered bilayer. Using this rapid solvent exchange tech-

nique to construct the membrane reduces the defect density as compared

with membranes constructed with the frequently used vesicle-fusion tech-

nique; it allows the engineered membrane to have a lifetime of several

months (5,7,8).

The quality of the bilayer is measured continuously using an SDx

tethered-membranes tethaPod Swept Frequency Impedance Reader oper-

ating at frequencies of 1000, 500, 200, 100, 40, 20, 10, 5, 2, 1, 0.5, and

0.1 Hz and an excitation potential of 20 mV (SDx Tethered Membranes,

Roseville, Sydney). The membrane was equilibrated for 30 min before

the electroporation measurements. The electroporation measurements

were performed using an eDAQ ER466 Potentiostat (eDAQ, Denistone

East, NSW, Australia) and an SDx tethered-membrane tethaPlate Adaptor

(SDx Tethered Membranes) to connect to the assembled electrode and

cartridge. Individual triangular voltage ramps were applied from 0 to

500 mV with a period of 2–10 ms. Waveforms of current versus time

were recorded.
Macroscopic electroporation model of the
engineered tethered membrane

At the highest level of abstraction, the tethered membrane platform is

modeled using a lumped circuit model (4,7,19,41,42). To link the lumped

circuit model to the electroporation dynamics, the conductance of the mem-

brane is modeled using asymptotic approximations to the Smoluchowski-

Einstein equations for electroporation. In subsequent sections, the GPNP,

which constitutes the lower level of abstraction in our two-level model, is

used to refine the pore conductance and electrical energy required to

form a pore (both included in the asymptotic Smoluchowski-Einstein equa-

tion of the macroscopic model).

The tethered membrane platform is composed of three distinct regions:

the electrical double layers at the gold electrodes, the bulk electrolyte reser-

voir, and the tethered membrane. The bulk electrolyte solution is modeled

as completely Ohmic with resistance Re. The electrical double layers

contain a tightly bound region of ions on the order of an atomic radii,

and a diffuse region of length on the order of the Debye-Hückel thickness.

The Stern layer and diffuse charge layers are modeled using an overall

capacitance of Ctdl and Cbdl for the counterelectrode and electrode, respec-

tively. The tethered membrane is modeled as a uniformly polarized struc-

ture such that the charging dynamics of the membrane are represented by

a capacitance Cm. The tethered membrane conductance Gm(t,Vm) is both

time-dependent and membrane-voltage-dependent, with Vm denoting the

transmembrane potential. The dependency of Gm is a result of the process

of electroporation that takes place to generate/destroy aqueous pores in the
Biophysical Journal 107(6) 1339–1351
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membrane. The excitation potential Vs(t) applied across the two electrodes

closes the circuit. The equivalent circuit model of the tethered membrane

platform is given in Fig. 2.

The governing dynamics for the lumped circuit model of the tethered

membrane (Fig. 2) are given by

dVm

dt
¼ �

�
1

CmRe

þ Gm

Cm

�
Vm � 1

CmRe

Vdl þ 1

CmRe

Vs;

dVdl

dt
¼ � 1

CdlRe

Vm � 1

CdlRe

Vdl þ 1

CdlRe

Vs;

I ¼ 1

Re

ðVs � Vm � VdlÞ:

(1)

Here Cdl is the total capacitance of Ctdl and Cbdl in series. Given Vs(t), the

circuit parameters Ctdl, Cbdl, Re, Cm, and the membrane conductance Gm

can be estimated from the measured current I(t). However, for drive poten-

tials<~50 mV, the membrane conductance is approximately constant and is

assumed at its equilibrium value Go such that Gm(t,Vm) z Go. The circuit

parameters Go, Re, Ctdl, Cbdl, and Cm remain constant and are independent

of the electroporation phenomenon; they are only necessary to model the

dynamics of the double-layer charging and electrolyte resistance (refer to

Results and Discussion for further information).

For transmembrane potentials >50 mV, the membrane conductance Gm

can be modeled by

Gm ¼
XPNðtÞR
i¼ 1

GpðriÞ;

dri
dt

¼ � D

kBT

vWðrÞ
vri

for ri˛f1; 2.PNðtÞRg;

dN

dt
¼ ae

�
Vm

Vep

�20
@1� N

No

e
�q

�
Vm

Vep

�21
A:

(2)

In Eq. 2, a is the pore creation rate coefficient, Vep is the characteristic

voltage of electroporation, No is the equilibrium pore density at Vm ¼ 0,

and q ¼ (rm/r*)
2 is the squared ratio of the minimum energy radius rm, at

Vm ¼ 0 with r* the minimum energy radius of hydrophilic pores (43–46).

The parameters a, Vep, No, and g are estimated by fitting the measured cur-

rent response I to the predicted current response from Eqs. 1 and 2, given

the drive voltage Vs. The classical free energy model for a hydrophobic

aqueous pore W, in Eq. 2, in the membrane consists of four energy terms:

the pore edge energy g, the membrane surface tension s, the electrostatic

interaction between lipid heads, and the transmembrane potential energy

contribution Wes(r,Vm). The pore energy W in Eq. 2 is given by Neu and

Krassowska (9),

Wðr;VmÞ ¼ 2pgr � psr2 þ
�
C

r

�4

þWesðr;VmÞ þWm;

(3)

with the energy contribution from the mechanobiological properties of

the tethers included as Wm. The linkages of the tethers to the membrane

are analogous to springs and act to restrain the enlargement of aqueous

pores. This is similar to the experimentally measured results in Chang

and Reese (47), which suggests that irreversible electroporation cannot

create pores that are larger than the cytoskeletal network anchors. Modeling

the mechanical properties of the membrane as an elastic continuum and

assuming a permanent tethered network anchorage, the effect of the tethers

is accounted for via the energy required to deform the Hookean springs—
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formally, the energy contribution can be modeled usingWm¼ 0.5 Ktr
2, with

Kt denoting the spring constant of the tethers (14). Note that the energy

model for tethers is identical to that of the cytoskeletal network presented

in Kanthou et al. (48), Teissié and Rols (49), Rols and Teissié (50), and

Rosazza et al. (51).

The derivation of Eq. 2 is based on making physiologically relevant

approximations to the Smoluchowski-Einstein equation for electroporation.

The Smoluchowski-Einstein equation governs the distribution of pores as a

function of their radius r and time t (11–13). If we denote n(r,t) as the pore

density distribution function, then the Smoluchowski-Einstein equation is

given by

vn

vt
¼ D

vr

v

�
n

kBT

vW

vr
þ vn

vr

�
þ SðrÞ; (4)

where D is the diffusion coefficient of pores, kB is the Boltzmann constant,

T is the temperature,W is the pore energy, and S(r) models the creation and

destruction rate of pores. Making the physiologically relevant assumption

that diffusion term (i.e., vn/vr) in Eq. 4 is negligible, and the characteristic

timescale ofW is longer than 0.1 ms, the process of electroporation can then

be modeled by Eq. 2. Note that Eq. 2 has been used by several authors for

modeling DNA translocation into cells (23,24,43–46).

How can we experimentally verify that the formed membrane does not

contain significant defects? Possible membrane defects include patches

with the gold electrode directly exposed to the bulk electrolyte, or with por-

tions of bilayer sandwiched together. Using the measured current response

resulting from an excitation potential <50 mV, we can compute the mean-

squared error (MSE) between the predicted current from Eq. 1 and the

experimentally measured current. If a significant MSE is obtained, then

the model of a homogeneous membrane Eq. 1 is not suitable and the mem-

brane is concluded to contain inhomogeneities (i.e., defects). A major

concern when performing electroporation experiments is the detection of

the catastrophic voltage breakdown of the membrane, causing separated

areas of membrane to degrade. This effect can be detected by a high

MSE and a significant increase in the estimated membrane conductance

Cm resulting from the electrode surface capacitance coming into contact

with the bulk electrolyte. Typical values for membrane capacitance and

conductance are 0.5–1.3 mF/cm2 and 0.5–2.0 mS for an intact 1–100% teth-

ered membrane with surface area 2.1 mm2.
GPNP continuum model for the electrodiffusive
dynamics in the engineered tethered membrane

The GPNP model presented in this section constitutes the lower level

of abstraction in the two-level model proposed in this article. The

GPNP is used to compute the potential and ionic flux necessary for

evaluating the pore conductance Gp, and the electrical energy of an

aqueous pore Wes in the membrane, both contained in the macroscopic

model Eq. 2.

To compute the potential and ionic flux, the GPNP continuum model

must account for the electrodiffusion dynamics of ions in the engineered

tethered membrane system. In the engineered tethered membrane platform

there exists asymmetric electrolytes, multiple ionic species, and the Stern

and diffuse electrical double layers at the surface of the electrodes and

membrane. The electrodiffusion dynamics that takes these into account in

the platform can be modeled by the GPNP given by (16)

vci

vt
¼ �V ,

�
Ji
�
;

Ji ¼ �DiVci � Fziquimc
iVf� DiciV In

 
1�

XN
i¼ 1

NAa
3
i c

i

!
;

(5a)
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V , ðεVfÞ ¼ �
X

Fzici: (5b)

i

In Eq. 5a, Ji is the concentration flux; ci is the concentration; f is the elec-

trical potential; Di is the diffusivity; N is Avogadro’s number; a is the
A i

effective ion size; and um
i is the ionic mobility, with i denoting the ionic spe-

cies. In Eq. 5b, F is Faraday’s constant where the superscript defines the

chemical species i, q is the elementary charge, zi is the charge valence,

and ε is the electrical permittivity. Note that forXN

i¼ 1
NAa

3
i c

i � 1;

the steric effects are negligible in Eq. 5 and the standard PNP formulation

can be used to model the electrolyte dynamics.
Initially, stable pores that form in the membrane are approximately cylin-

drical (43). As expansion occurs, the pores become toroidal in shape. This

toroidal structure is in agreement with the estimated hydrophobic pore

shape obtained from molecular dynamics simulations (52–54). Here, we

consider the toroidal pore structure illustrated in Fig. 3 to compute the

conductance of a pore. To solve Eq. 5 in the pore structure in Fig. 3 requires

that the material parameters and boundary conditions in Uw, Um, Ur, vUm,

vUw, vUe, and vUec be defined. The diffusion coefficient Di in Eq. 5a is

spatially dependent, inasmuch as the tethering reservoir has a lower diffu-

sion than the bulk electrolyte solution with no tethers present. The spatially

dependent diffusion coefficient is given by

DiðxÞ ¼
�
Di

r if x˛Ur

Di
w if x˛Uw:

(6)

The dielectric permittivity in Eq. 5b is spatially dependent, as�

εðxÞ ¼ εw if x˛UrWUw

εm if x˛Um:
(7)

The membrane surface is assumed to be perfectly polarizable (i.e., block-

ing) such that the normal ionic flux vanishes at the surface of the membrane.
FIGURE 3 The aqueous pore is modeled as rotationally symmetric about

the axis of rotation (dotted line) with dimensions given by r, lr, hr, hm, and he
for the cylindrical and toroidal geometries. The tethered membrane plat-

form is modeled with three distinct regions: the electrolyte solution Uw,

the electrolyte reservoir Ur, and the membrane Um. The electrode-electro-

lyte interface (thick black line) is denoted by vUe and vUec for the electrode

and counterelectrode, respectively. vUm denotes the interface between the

membrane and electrolyte solution. The boundary conditions vUw and

vUr define the ambient conditions of the electrolyte and membrane. The

potentials at each electrode are defined by fe and fec, respectively. The

electrolyte has an electrical permittivity εw and the membrane an electrical

permittivity εm. The electrical force acting on the membrane is denoted by f

and is defined in Oldham (15). The value n is the normal vector pointing

from the membrane domain to the electrolyte domain.
There are no surface reactions present at the gold electrode-electrolyte

interface; therefore, we have a no-flux boundary condition present at the

gold surface. Formally, these no-flux interface and boundary conditions

are given by

n , Ji ¼ 0 in vUmWvUeWvUec; (8)

with n the normal vector pointing into the electrolyte solution and Ji defined

below Eq. 5. To ensure the well-posedness of the Poisson equation Eq. 5b,

the internal boundary conditions on the membrane-electrolyte interface are

satisfied by the following (55):

fm � fw ¼ 0 in vUm;

εmVfm , n� εwVfw , n ¼ 0 in vUm:
(9)

Next, it is necessary to model the Stern layer at the electrode surface

given by Cs. This is modeled using the boundary conditions

Csðfe � fÞ þ εwn ,Vf ¼ 0 in vUe;

Csðfec � fÞ þ εwn ,Vf ¼ 0 in vUec;
(10)

with fe and fec as the prescribed potentials at the respective electrodes. The

ambient boundary conditions of the axisymmetric pore are given by

ci ¼ cio in vUwWvUr;

n ,Vf ¼ 0 in vUhm;
(11)

with co
i as the initial concentration (refer to Fig. 3).

The expressions in Equation 5, with material parameters Eqs. 6 and 7,

boundary conditions Eqs. 8–11, and pore geometry given in Fig. 3,

are used to estimate the ionic flux Ji and the electric potential f. The

values Ji and f are both used to evaluate the pore conductance Gp and

the electrical energy required to form a pore Wes contained in the macro-

scopic model Eq. 2.
Refining the macroscopic model using the
continuum GPNP model

Having detailed the two-level model above, we are now ready to link the

macroscopic and continuum models. The macroscopic and continuum

models are linked via the pore conductance Gp and electrical energy

required to form a pore Wes. In this section we evaluate Gp and Wes using

the computed ionic flux Ji and voltage potential f from the GPNP defined

in Eq. 5. To compare with previous models of Gp proposed in the literature,

Appendix A provides a relation between the Gp model in this section and

the electroneutral model (EM) presented in Li and Lin (2). Appendix B

provides a comparison between the Wes estimated using the GPNP model,

and previous estimates of Wes using the EM, and Laplace model (LM) in

Neu et al. (29).

The current through the pore is obtained by integrating the total ionic flux

from Eq. 5 over the minimum radius of the pore, which is defined later in

Fig. 5. The current and associated pore conductances are given by

Ip ¼ F
X
i

Zr

0

Ji2prdr;

Gp ¼ Ip
Vm

;

(12)

where Ji and Vm are computed using Eq. 5 with the material properties

defined by Eqs. 6 and 7, the boundary conditions Eqs. 8–11, and geometry

given in Fig. 3.
Biophysical Journal 107(6) 1339–1351
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To evaluate Wes, the force causing a displacement of the pore structure

must be computed. Consider the pore structure presented in Fig. 3. The

pore boundary is assumed to only expand in the radial direction r. If we

denote F(r) as the total force acting on the pore boundary of radius r,

then the electromechanical energy can be computed using (29,56,57)

WesðrÞ ¼ �
Zr

0

FðrÞdr: (13)

F(r) is computed using the Maxwell stress tensor for the pore geometry in
Fig. 3. The electric field induces a stress on the membrane surface given by

the Maxwell stress tensor T (29,57–64)

T ¼ ε

�
1

2

		Vf		2I � Vf5Vf

�
: (14)

In Eq. 14, I denotes the identity matrix,5 is the dyadic product (i.e., Vf5

Vf¼ VfVfT), and ε and f are defined below Eq. 5. The stress on the mem-
brane from the electrolyte pw, and the stress on the electrolyte from the

membrane pm are

pw ¼ �Twn ¼ �εw

�
1

2

		Vfw

		2I � Vfw5Vfw

�
n;

pm ¼ Tmnþ f ¼ �εm

�
1

2

		Vfm

		2I � Vfm5Vfm

�
nþ f ;

(15)

where f is the stress induced from all other elastic properties of the mem-

brane (65–67). Note that f denotes the electrical force density acting on
the membrane surface.

The membrane is assumed to be at local mechanical equilibrium at the

pore surface such that f ¼ (Tw – Tm)n. Therefore, to maintain local equilib-

rium the total force acting on the pore boundary, F(r) is given by

FðrÞ ¼
Z
S

n , ðpw � pmÞdS; (16)

with pw and pm defined in Eq. 15, and the surface S and normal vector n

given in Fig. 3. Given f computed using Eq. 5, we can compute F(r) using
Eq. 16. Substituting F(r) into Eq. 13 gives the electrical energy contribution

to pore formation in the membrane, which includes electrical double layer

and electrodiffusive effects caused by asymmetric electrolytes.

Note that for narrow cylindrical pores, vf/vrz 0 and vf/vzz Vm/hm on

S. Substituting into Eqs. 15 and 16, we see that F(r,Vm) f Vm
2, with Vm as

the transmembrane potential. The proportionality of F(r,Vm) f Vm
2, which
Biophysical Journal 107(6) 1339–1351
also implies Wes(r,Vm) f Vm
2, is critical for the derivation of the electrical

energy required to form a pore in Pastushenko and Chizmadzhev (22), Neu

et al. (29), and Abidor et al. (68). This allows the computation of F(r,Vm)

using a single instance of F(r) for a given transmembrane potential Vm to

estimate the proportionality constant.
RESULTS AND DISCUSSION

In this section, the predictive accuracy of the two-level
model is verified using experimental measurements of teth-
ered DphPC membranes with a tethering density of 1, 10,
and 100%. The numerical methods and model parameters
are provided in the Supporting Material.
Numerically predicted aqueous pore
conductance and electrical energy required to
form a pore

Numerical estimates of the aqueous pore conductance Gp

and electrical energy required to form a pore Wes are per-
formed using the GPNP, PNP, EM, and LM models defined
in the Materials and Methods.

In Fig. 4 the estimated pore conductance computed using
the GPNP, PNP, and EM models is presented. As seen, the
pore conductance predicted using the GPNP follows a Gp

f r relationship. For membranes with sufficiently large
electrolyte baths and pore radii (i.e., electrolyte bath is hun-
dreds of nanometers thick and r> tm), the pore conductance
follows Gp f r (2,12,22,40), in agreement with the
spreading conductance derived from Laplace’s equation in
Newman (39) and Dickens (69). Note that the effect Gp f
r for r< tm and hr ¼ 4 nm is only predicted when the effects
caused by asymmetric electrolytes, finite ion size, and Stern
and diffuse layers are accounted for. In Fig. 4 A, the GPNP
and PNP models produce differing conductance estimates as
a result of the steric effects present. Recall that forXN

i¼ 1
NAa

3
i c

i � 1

the steric effects are negligible, and the estimated conduc-
tance using the GPNP and PNP models would be identical.
FIGURE 4 Numerically predicted pore conduc-

tance Gp, defined in Eq. 12. (A) Predicted pore

conductance Gp, computed using the GPNP, PNP,

and EMmodels. (B) PredictedGp for different teth-

ering reservoir diffusivities. The geometry of the

pore is given in Fig. 3, and the parameters of the

governing equations and boundary conditions are

provided in Table S1 in the Supporting Material.
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As seen by comparing the estimated conductance Gp

in Fig. 4 A, the assumption of electroneutrality causes a
noticeable decrease in the computed conductance Gp. As
mentioned in the Introduction, the pore conductance Gp

may be dominated by the spreading conductance, which fol-
lows a Gp f r proportionality, when the electrolyte solution
is sufficiently geometrically constrained. From Fig. 3, the
tethering reservoir is hr ¼ 4 nm, and from Fig. 4 A we see
that Gp f r; therefore, we conclude that the conductance
of an aqueous pore in the engineered tethered membrane
is dominated by the spreading conductance. As the diffu-
sivity in the tethering reservoir, Dr, decreases, the pore
conductance decreases, as seen in Fig. 4 B. This is expected,
inasmuch as fewer ions can flow through the pore as a result
of reduced ion mobility.

Fig. 5 compares the computed electrical energy required
to form a pore using the GPNP, PNP, EM, and LM defined in
the Materials and Methods. For small pores below 1 nm all
the models provide similar estimated for Wes, as seen in
Fig. 5 A. The PNP and EM models provide a significantly
lower estimate of Wes compared to the GPNP and LM
models for large pore radii above 4 nm. The discrepancy
between the estimated Wes is a result of the assumption of
negligible steric effects in the PNP model, and the assump-
tion of negligible steric effects and electroneutrality in the
EM model. Note that although the GPNP and LM models
provide similar predictions of Wes, the LM assumes negli-
gible steric effects, electroneutrality, and steady-state cur-
rent (i.e., Vci ¼ 0), which results in the estimated voltage
distribution on the surface of the membrane to differ with
the voltage distribution predicted from the GPNP. Qualita-
tively, at the surface of the membrane, the GPNP model
has the interface condition from Eq. 9 such that εmVfm ,
n ¼ εwVfw , n; however, the interface condition for the
LM model in Eq. 18 causes εmVfm , n s εwVfw , n on
the surface.

This results in the LM overestimating the voltage poten-
tial when compared with the GPNP. From Eq. 15, the over-
estimated potential causes the computed Wes to be larger
when using the LM model as compared with the GPNP
model. As discussed, the assumption of Wes(r,Vm) f Vm

2

is typically invoked to simplify the computation of Wes(
r,Vm) (22,29,68). From Fig. 5 B, we compute Wes(r,Vm)
explicitly for several transmembrane potentials, and find
that the proportionality follows a fractional power law.
This illustrates the importance of including effects caused
by electrodiffusion. As illustrated in Fig. 5 C, reducing the
diffusion coefficient in the tethering reservoir Dr causes a
slight reduction in the estimated Wes. In comparing Fig. 5
B with Fig. 5 C, the main contribution to the change in
Wes results from a change in transmembrane potential.
Experimental verification of predictive models

Below the predicted pore conductance Gp (Eq. 12), the elec-
trical energy Wes value (Eq. 13) and the electroporation
FIGURE 5 Numerically predicted electrical en-

ergy Wes, Eq. 13, required to form an aqueous

pore. (A) Comparison of the predicted Wes

computed using the GPNP, PNP, EM, and LM

models defined in the Materials and Methods for

the transmembrane potential of Vm ¼ 500 mV.

(B) Estimates of Wes computed using the GPNP

for the transmembrane potentials listed. (C) Esti-

mates of Wes computed using the GPNP for Vm ¼
500 mV for different tether reservoir diffusivities.

The parameters of the governing equations and

boundary conditions can be found in Table S1.
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model (given by Eqs. 1 and 2) are used to predict the current
response of the engineered tethered membrane. The pre-
dicted current response is compared to experimentally
measured data to validate the accuracy of the model. Note
that all electroporation processes were reversible, and did
not cause permanent damage to the membrane.

From Eqs. 1 and 2, if the drive potential Vs is applied and
the resulting current is Is, then if the drive potential �Vs is
applied the resulting current must be �Is if only the process
of electroporation is present. For all the tethering densities
and membrane compositions tested, this relation was
observed in all experimental current measurements. We
therefore concluded that the only process present is that of
electroporation. The drive potential Vs(t) used to produce
the results in Figs. 6 and 7 is defined by a linearly increasing
potential of 100 V/s for 5 ms proceeded by a linearly
decreasing potential of �100 V/s for 5ms.

The experimental measurement and predicted voltages,
pore radii, membrane resistance, and current are presented
in Fig. 6 for the 10% tethered DphPC bilayer membrane.
From Fig. 6 A, the experimentally measured and numeri-
cally predicted currents are in excellent agreement. As
seen in Fig. 6 B, the application of the voltage excitation
immediately causes an increase in the double-layer voltage
Vdl as a result of the charge increase in the charge distribu-
tion at the electrode surface. The transmembrane potential
Vm simultaneously increases as a result of the excitation po-
tential. The increase in Vm results in the formation of pores.
Biophysical Journal 107(6) 1339–1351
As seen in Fig. 6 C, a dramatic change in the resistance re-
sults after the application of the drive potential. In Fig. 6 D,
the maximum radius rmax and mean radius r are provided to
illustrate the spread in pore radii. As Vm increases, pores are
generated and expand according to Eq. 2. From Eq. 2, all
pores diffuse to the minimum-energy pore radius given by
vW/vri ¼ 0 with an advection velocity proportional to D/
kBT. As seen in Fig. 6 D, generated pores rapidly expand
to the minimum-energy pore radius inasmuch as the spread
between rmax and r is negligible. This allows the number of
pores N, from Eq. 2, to be computed using the relation

N ¼ 1

�

RmGpðrmaxÞ
�

with Gp given in Fig. 4 A.
The results of the predictive model are in excellent agree-

ment with the measured current (see Fig. 6). How are the
model parameters in Eqs. 1 and 2 selected, and how sensi-
tive is the predicted current response to errors in the model
parameters? The parameters Go, Cm, Cdl, and Re are intrinsic
to the measurement platform and remain constant indepen-
dent of the electroporation phenomenon; however, they are
necessary for predicting the current response of the tethered
membrane. Therefore, a single impedance measurement is
made to computeGo, Cm,Cdl, and Re for each tethered mem-
brane (refer to the Supporting Material for the impedance
data). This single measurement can be viewed as a form
of calibration because these parameters will not change in
FIGURE 6 The measured and predicted current,

voltage potentials, membrane resistance, and pore

radii for the drive potential Vs(t), defined at the

beginning of this section, for the 10% tether den-

sity DphPC bilayer membrane. (A) Measured and

predicted current; (B) predicted transmembrane

Vm and double-layer potential Vdl defined in

Eq. 1; (C) estimated membrane resistance; and

(D) estimated maximum rmax radius, and mean

pore radius r. All predictions are computed

using Eqs. 1 and 2 with the parameters defined in

Table S2.



Electroporation in an Engineered Membrane 1347
subsequent electroporation experiments. The electropora-
tion parameters g, s, C, and D are obtained from the
literature (9,13,43,44,70,71). To estimate the important pa-
rameters Vep, a, q, and Kt, current response measurements
are used.

Because a and q are not dependent on the tether density,
only a single measurement was used to estimate these pa-
rameters, and found to be consistent with what has been
determined in DeBruin and Krassowska (23,72) and Glaser
et al. (70). To gain insight into the sensitivity of the pre-
dicted current response to variations in model parameters,
Table S2 in the Supporting Material provides the uncertainty
associated with each parameter. The uncertainty is
computed by finding the range in which the parameter can
vary and still have the predicted current response from
Eqs. 1 and 2 and be in good agreement with the experimen-
tally measured current. Specifically, the electrolyte resis-
tance Re has a negligible effect on the current response
because the membrane conductance and capacitive charging
dominate the current flow. The initial jump in current at the
start of the triangular drive potential is dominated by Cm.
The slope of the current preceding the initial jump at
0.5 ms in Fig. 6 B is proportional to Go.

At 2 ms, there is a deviation from the linear current
response as a result of the electroporation process. The dou-
ble-layer capacitance Cdl dominates the current response as
the triangular drive potential decreases. As expected, Cm,
Rm, and Cdl can be determined accurately. The electropora-
tion parameters a and No have a large uncertainty because
dN/dt, given by Eq. 2, is exponentially dependent on Vm,
Vep, and q, and linearly dependent on No and a. Given that
Gm is dependent on N, it is expected that the uncertainty
of a and No is larger than Vep and q. The tether spring con-
stant Kt has a large uncertainty because effects caused by Kt

are only pronounced in the current response if large pores
(i.e., r >> rm) are present. As seen in Fig. 6, because the
pore radii are only slightly larger than rm, the current is
dominated by the nucleation and destruction of pores.

Fig. 7 provides the experimental current measurement and
the predicted current and membrane resistance Rm ¼ 1/Gm

for the 1 and 10% DphPC bilayer, and the 100% DphPC
monolayer membrane. In comparing the resulting current
among the 1, 10, and 100% tethered cases (Fig. 7 A), we
see that as the tethering density increases, the effects of elec-
troporation decreases. This is an expected result, inasmuch
as the tethers provide structural support hindering the nucle-
ation of pores reducing the equilibrium pore density No and
increasing the characteristic voltage of electroporation Vep.
As seen in Fig. 7 B, the resistance begins to change at
~1 ms when the transmembrane potential reaches a suffi-
ciently high value to cause the nucleation of pores. The esti-
mated spring constant Kt for the 1, 10, and 100% tethering
densities are 0, 2 5 0.5, and 20 5 4 mN/m, respectively.
For the 1% tether density, the spring constant is negligible,
as expected. For the 100% tethering case, pores cannot
expand as a result of the spring constant Kt, therefore the
decrease in resistance is primarily a result of pore nucleation
and destruction governed by Eq. 2. For the 100% tether den-
sity membrane, it may be the case that all pores in the mem-
brane are hydrophilic, inasmuch as the tethers may prevent
the transition from the hydrophilic to the hydrophobic struc-
ture. If only hydrophilic pores are present, the membrane
resistance would be dominated by the nucleation of pores
and not the dynamics of the pores.

Note that the molecular structure of the aqueous pores
cannot be reliably inferred using continuum theory models
and would require the use of molecular dynamics or similar
noncontinuum models. Interestingly, for the 1% membrane
structures, the resistance begins to decrease at 9.2 ms, and
for the 10% membrane, at 9.4 ms after the initial application
of the drive potential Vs(t) (defined at the beginning of this
section). This is a result of the charge accumulation in the
electrical double layers at the gold electrode surface, Vdl,
discharging causing an increase in the magnitude of the
transmembrane potential Vm. This illustrates the importance
of including electrical double-layer effects when modeling
gold electrodes.

Note also that when using Eqs. 1 and 2 for estimating the
effects of electroporation for rapidly changing drive poten-
tials, the double-layer capacitance in Eq. 1 can become
time-dependent (16). In such cases, the dynamics of the
time-dependent capacitance can be estimated using the
FIGURE 7 Experimentally measured and

numerically predicted current I(t) (A), and mem-

brane resistance Rm ¼ 1/Gm (B) for the drive

potential Vs(t) defined at the beginning of this sec-

tion. The tethering densities 1 and 10% correspond

to the DphPC bilayer, and the 100% corresponds

to the DphPC monolayer. All predictions are

computed using Eqs. 1 and 2 with the parameters

defined in Table S2.
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GPNP model defined in Eq. 5, using the method outlined in
Wang et al. (16) with the electroporation model developed
in this article. The thickness of the membrane can be esti-
mated using hm ¼ εmAm/Cm, with Am ¼ 1.2 mm2, the area
of the membrane surface; and εm and Cm as given in Table
S1 and Table S2. For the 1, 10, and 100% membranes, we
obtain a thickness of 3.54, 3.54, and 3.40 nm, respectively.
These values are in excellent agreement with the results of
neutron reflectometry measurements of similar DphPC-
based tethered membranes (7). As seen, the thickness of
the tethered DphPC membrane is approximately constant
between the 1 and 10% tether densities. The 100% DphPC
monolayer is slightly thinner than the 1 and 10% DphPC-
bilayer membrane. The reduction in thickness between the
100%, and the 1 and 10%, is a result of the combined effect
of an increased tether density and the dibenzyl group that
binds the phytanyl tails in the tethered DphPC monolayer.

In Fig. 8, the experimentally measured current as well as
the current obtained from our two-level predictive model I(t)
is displayed for several different linearly increasing and
decreasing drive potentials. As seen from Fig. 8, A–D, there
is excellent agreement between the experimentally
measured and numerically predicted current. For small-
magnitude drive potentials, one would expect the membrane
resistance to remain constant, inasmuch as the effects of
electroporation, governed by Eqs. 1 and 2, are negligible.
Indeed from Fig. 8, A and D, we see that the electroporation
effects are negligible for drive potentials from 50 to 80 V/s
Biophysical Journal 107(6) 1339–1351
for the 1-ms rise, and 10–40 V/s for the 5-ms rise. The
reason the 5-ms rise (Fig. 8, A and C) has larger relative
electroporation effects, as compared with the 1-ms rise
(Fig. 8, B and D), is that the nucleation and dynamics of
pore radii evolve for a longer period of time at a sufficiently
high transmembrane potential.

As expected, the magnitude of the current response
for the 10% tethered membrane, Fig. 8, A and B, is less
than the current response for the 10% tethered membrane,
Fig. 8, C and D, because of the tethers hindering the nucle-
ation and expansion of pores. The estimated electrical dou-
ble-layer capacitance used to compute the current for the
10% membrane is Cdl ¼ 65 nF, and that for the 1% tether
density is Cdl¼ 39 nF. In reference to Table S2, the expected
value is Cdl ˛[118,137] nF. Despite this minor discrepancy,
the estimated current, using the model given in Eqs. 1 and 2,
is in excellent agreement with the experimentally measured
current.
CONCLUSION

The construction and two-level predictive model for an
engineered tethered membrane is presented in this article.
The self-assembled membrane provides a stable platform
for reproducible experiments in electroporation. The two-
layer model presented reveals several interesting features
regarding how the Stern and diffuse double layers,
and tethers, effect the electroporation process. The model
FIGURE 8 Experimentally measured and

numerically predicted current response I(t) for

the 10% tethering density DphPC membrane

(A and B) and 1% tether density DphPC membrane

(C and D). (A and C) Drive potential Vs(t) is

defined by 1 ms linearly increasing with a rise

time of 50–500 V/s in steps of 50 V/s proceeded

by a linearly decreasing potential of �50 to

�500 V/s in steps of �50 V/s for 1 ms. (B and

D) Drive potential Vs(t) is defined by a 5-ms line-

arly increasing potential for 10–100 V/s in steps

of 10 V/s proceeded by a linearly decreasing po-

tential of �10 to �100 V/s in steps of �10 V/s

for 5 ms. The numerical predictions are computed

using Eqs. 1 and 2 with the parameters defined in

Table S2.
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proposed in this article predicts that the electrical energy
required to form a pore is proportional to the transmembrane
potential to a fractional power, and the pore conductance is
proportional to the radius of the pore. As shown, the exper-
imental results compare favorably with the results computed
from the predictive models.
APPENDIX A: ELECTRONEUTRAL MODEL OF
PORE CONDUCTANCE

Assuming electroneutrality, i.e.,X
i

zici ¼ 0

and no steric effects ai ¼ 0 (2), the governing equations of fw, the electrical

potential in the electrolyte solution, Uw, can be derived by substituting the

time derivative of Eq. 5b into Eq. 5a for charge neutrality. The resulting

elliptic equation is given by

V , ð2Vfþ VkÞ ¼ 0;

2 ¼ PN
i¼ 1

�
qzi
�2
Di

kBT
ci;

k ¼ PN
i¼ 1

qziDici;

(17)

with the parameters defined below from Eq. 5. The boundary conditions of

Eq. 17 at the electrode surfaces vUe and vUce, and at the ambient boundary

vUw, vUhm, and vUr, are given by Eqs. 10 and 11, respectively (see also

Fig. 3). In the membrane domain Um, the electrostatic potential fm is gov-

erned by Laplace’s equation for electrostaticsV , (εmVf)¼ 0. The interface

conditions between the domains Uw and Um are given by

n ,Vfw ¼ 0 in vUm;

fm ¼ fw in vUm:
(18)

From the continuity of potential on vUm from Eq. 18, there exists a surface

charge on the membrane given by rs ¼ εmn , Vfm � εwn , Vfw; therefore,

the system of equations from Eq. 17 with boundary conditions from Eq. 18

implicitly includes the membrane surface charge rs (2,29,73).

We denote the governing equations from Eq. 5a with ai¼ 0 coupled with

Eq. 17, the material parameters defined by Eqs. 6 and 7, and the boundary

conditions Eqs. 8, 10, 11, and 18 given as the electroneutral model (EM).

Given the solution of the EM system of equations, the conductance Gp,

Eq. 12, can be estimated.
APPENDIX B: ELECTRONEUTRAL AND LAPLACE
MODEL OF ELECTRICAL ENERGY REQUIRED TO
FORM A PORE

Assuming electroneutrality, i.e.,X
i

zici ¼ 0

and no steric effects ai ¼ 0, the electric potential f can be computed using

the EM, defined in Appendix A. Given f from the EM, F(r) is computed

using Eq. 16. Substituting F(r) into Eq. 13 gives Wes, the electrical energy
required to form a pore. If steady-state current (i.e., Vci ¼ 0) is also

assumed (29), the electrical potential f is governed by Laplace’s equation

V , (εVf) ¼ 0 with ε defined by Eq. 7, and the interface and boundary con-

ditions defined by Eqs. 10, 11, and 18. We denote this as the Laplace model

(LM). Given f from the LM, an estimate ofWes can be computed using the

same method as for the EM above.
SUPPORTING MATERIAL

Two tables, two figures, and supplemental information are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(14)00803-0.
SUPPORTING CITATIONS

References (74–78) appear in the Supporting Material.
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TABLE S1: Parameter Values for Gp and Wes Numerical Predictions
Symbol Definition Value

cNa|t=0 Initial Na+ concentration 321.45 mol/m3

cK|t=0 Initial K+ concentration 13.39 mol/m3

cCl|t=0 Initial Cl− concentration 334.84 mol/m3

aNa Na+ effective ion size 4 Å
aK K+ effective ion size 5 Å
aCl Cl− effective ion size 4 Å
DNa

w Na+ electrolyte diffusion coefficient in Ωw 1.33× 10−9 m2/s
DK

w K+ electrolyte diffusion coefficient in Ωw 1.96× 10−9 m2/s
DCl

w Cl− electrolyte diffusion coefficient in Ωw 2.07× 10−9 m2/s
εw Electrolyte electrical permittivity 7.083× 10−10 F/m
εm Membrane electrical permittivity 1.771× 10−11 F/m
F Faraday constant 9.6485× 104 C/mol
Cs Stern layer capacitance 1 pF
kB Boltzmann constant 1.3806488× 10−23 J/K
T Temperature 300 K
φe Electrode potential 100-500 mV
φec Counter electrode potential 0 mV
lr Tether reservoir length 400 nm
hr Tether reservoir height 4 nm
hm Membrane thickness 4 nm
he Electrolyte height 60 nm

In Table S1, the concentrations match those used in the electrolyte solution of the engineered tethered membrane. The choice of
effective ion size (i.e. solvated ionic radius) is based on the mobility measurements reported in (7, 8). The diffusion coefficients of
the ions and electrical permittivities of water and biological membrane are provided in (6). The geometric parameters hr and hm are
selected to match the experimentally measured results obtained from neutron-reflectometry measurements of similar engineered tethered
membranes reported in (1).



TABLE S2: Parameter Values for Current Predictions
Symbol Definition Value

γ Edge energy 1.8× 10−11 J/m
σ Surface tension 1× 10−3 J/m2

C Steric repulsion constant 9.67× 10−15 J1/4 m
D Radial diffusion coefficient 1× 10−14 m2/s
α Creation rate coefficient 1 Gs−1

[
10 Ms−1 − 0.1 Ts−1

]
q q = (rm/r∗)2 with the symbols defined below Eq. 17 2.46±0.07
DphPC Membrane Tether Density: 1% 10% 100%
G0 Initial membrane conductance 1.67±0.3 µS 0.91±0.04 µS 0.43±0.03 µS
Cm Membrane capacitance 10.5±0.8 nF 10.5±0.7 nF 11.0±0.2 nF
Re Electrolyte resistance 3.5±2 kΩ 3.5±2 kΩ 5.0±3.0 kΩ
Cdl Total electrode double-layer capacitance 136.3±6 nF 136.3±8 nF 118.2±8 nF
Vep Characteristic voltage of electroporation 430±5 mV 430±5 mV 580±10 mV
No Equilibrium pore density G0/Gp(rm) 1068 [120-15k] 582 [90-10k] 275 [42-43k]
Kt Spring constant 0 N/m 2±1.5 mN/m 20±15 mN/m
DphPC Membrane (Reservoir Double-Layer Effect) Tether Density: 1% 10%
G0 Initial membrane conductance 1.00±0.1 µS 1.00±0.1 µS
Cm Membrane capacitance 14.6±0.1 nF 16.0±0.4 nF
Re Electrolyte resistance 1.0±0.5 kΩ 1.0±0.5 kΩ
Cdl Total electrode double-layer capacitance 65±3 nF 39±2 nF
Vep Characteristic voltage of electroporation 366±6 mV 400±5 mV
No Equilibrium pore density G0/Gp(rm) 641 [100-2k] 641 [100-50k]
Kt Spring constant 0 N/m 2±1.5 mN/m



S1 Impedance Measurement of Tethered Membrane
For a low voltage (i.e. below 50 mV) sinusoidal potential defined by Vs(t) = Vo sin (2πf), where f is the frequency of excitation and
Vo is the magnitude of excitation, the impedance of the engineered tethered membrane is given by:

Z(f) = Re +
1

Go + j2πfCm
+

1

j2πfCdl
(S1)

with the parameters Re, Go, Cm, Cdl defined in Eq. 1. In Eq. S1, j denotes the complex number
√
−1. To test the quality of the formed

membrane we utilize impedance measurements of the membrane and estimate the parameters in Eq. S1. The numerically predicted and
measured impedance values are provided in Fig.S1 and Fig.S2. As seen, the predicted impedance is in excellent agreement with the
experimental measured impedance and is consistent with a membrane containing negligible defects as discussed in the paper.
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Figure S1: The measured and predicted impedance of the 10% tether density DphPC bilayer membrane. All predictions are computed
using Eq. S1 with the parameters defined in Table S2 of the Supporting Material.
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Figure S2: The measured and predicted impedance of the 1% tether density DphPC bilayer membrane. All predictions are computed
using Eq. S1 with the parameters defined in Table S2.

S2 Numerical Methods
The numerical estimate of I(t) is computed using Eq. 1 and 2 assuming there are a finite number of possible pore radii using the
algorithm presented in (2, 3). The governing equations Eq. 5 with boundary conditions Eq. 8-11, are solved numerically with the com-



mercially available finite element solver COMSOL 4.3a (Comsol Multiphysics, Burlington, MA). To solve the GPNP and PNP models
the COMSOL modules Transport of Diluted Species and Electrostatics are utilized; and to solve the EM model the modules Nernst-
Planck and Electrostatics are utilized. The simulation domain is meshed with approximately 270,000 triangular elements constructed
using an advancing front meshing algorithm. The GPNP and PNP are numerically solved using the multifrontal massively parallel
sparse direct solver (4) with a variable-order variable-step-size backward differential formula (5). Eq. 12 is used to compute the pore
conductance with the integration done in the region defined in Fig. 3. The conductance is computed for a finite number of equally spaced
radii between 0.5-10 nm with a step-size of 0.25 nm. The steady-state conductance Gp, Eq. 12, is estimated when the percentage change
in conductance between successive steps (i.e. |(Gp(ti+1)−Gp(ti))/Gp(ti)|) is less then 1%. The total force acting on the toroidal pore
F (r), Eq. 16, is computed using the results from the conductance computation. Substituting F (r) into Eq. 13, the total electrical energy
required to form the pore Wes is computed.
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