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The Transmembrane Domain Peptide of Vesicular Stomatitis Virus
Promotes Both Intermediate and Pore Formation during PEG-Mediated
Vesicle Fusion
Tanusree Sengupta,1,2 Hirak Chakraborty,1,2 and Barry R. Lentz1,2,*
1Department of Biochemistry and Biophysics and 2Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill,
North Carolina
ABSTRACT We propose mechanisms by which the transmembrane domain of vesicular stomatitis virus (VSV-TMD) promotes
both initiation of fusion and formation of a fusion pore. Time courses of polyethyleneglycol (PEG)-mediated fusion of 25 nm small
unilamellar vesicles composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine (DOPE), bovine brain sphingo-
myelin, and cholesterol (35:30:15:20 molar ratio) were recorded at pH 7.4 at five different temperatures (from 17�C to 37�C) and
compared with time courses obtained with the same vesicles containing the fusion-active TMD of the G protein of VSV. Multiple
time courseswere fitted globally to a one-intermediate ensemble kineticmodel to estimate the rate constants for conversion of the
aggregated state to an intermediate hemifused state (k1, stalk, or I1) that rapidly transits to an unstable intermediate (I2 state) that
converts to a final fusion pore state with a combined rate k3. The probabilities of lipid mixing, contents mixing, and contents
leakage in the three states were also obtained from this analysis. The activation thermodynamics for each step were consistent
with previously published models of lipid rearrangements during intermediate and pore formation. The influences of VSV-TMD,
hexadecane, and VSV-TMD þ hexadecane on the kinetics, activation thermodynamics, and membrane structure support the
hypothesis that these two agents do not catalyze fusion by a common mechanism, except possibly at the lowest temperatures
examined. VSV-TMD primarily catalyzed initial intermediate formation, although it substantially increased the probability of
contents mixing in the intermediate state. Our results support the hypothesis that the catalytic influence of VSV-TMD on the
initial-intermediate- and pore-forming steps of PEG-mediated fusion derives from its ability to impose a positive intrinsic curvature
and thereby stress small unilamellar vesicle outer leaflets as well as the periphery of intermediate microstructures.
INTRODUCTION
Biological membrane fusion is observed in many vital
intra- and intercellular events, such as viral infection, neuro-
transmission, protein trafficking, and fertilization. Since
membranes with mammalian membrane-like compositions
do not generally fuse spontaneously, membrane fusion is
mediated by protein machinery in living systems. The entry
of enveloped viruses into cells requires the fusion of cellular
and viral membranes triggered by conformational changes
in viral glycoproteins. Based on their molecular architec-
ture, viral fusion proteins fall into one of three classes. In
class I fusion proteins (e.g., influenza hemagglutinin and
paramyxovirus F protein) the post-fusion trimer displays a
six-helix bundle with a fusion peptide at the N-terminus
of the central helices and the transmembrane domains
(TMDs) at the C-terminus of the antiparallel outer helices
existing in the same common membrane postfusion (1,2).
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Class II fusion proteins are composed mainly of b sheets
and their internal fusion peptides are embedded in the ecto-
domain (3). Class III is a comparatively newly identified
group whose members include fusion proteins from rhabdo-
viruses, herpesviruses, vesicular stomatitis virus (VSV), and
baculoviruses. Despite some diversity, all characterized
viral fusion proteins convert from a fusion-competent state
to a state that embeds the fusion peptide in the target mem-
brane, whereas the TMD remains attached to the viral
membrane. The free energy associated with a conforma-
tional change in the fusion protein is proposed to bring
these two membranes into close proximity (4), a condition
required for fusion (5).

Several reports have demonstrated the importance of the
TMD region of viral fusion proteins in the fusion process.
Replacement of the TMD of influenza hemagglutinin (6,7)
and VSV G protein (8) by a glycerylphosphatidylinositol
(GPI) anchor abolished fusion. Several studies showed
that certain residues in TMD sequences of HIV (9–11) or
VSV (12,13) are critical for fusion. All of these studies
demonstrated the importance of viral fusion protein TMDs
to fusion, but in general failed to address the detailed mech-
anisms by which these TMDs promote fusion. Although
some reports pointed to a role of TMD in formation of
http://dx.doi.org/10.1016/j.bpj.2014.03.053
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hemifusion intermediates (6,7,14), others indicate a possible
role later in the fusion process (12,13). Some have suggested
that they might deform the lipids surrounding them, which
would result in dimples and thus favor formation of a stalk
(15,16), whereas others have suggested that they might
occupy interstice space (a region of imperfect acyl-chain
packing at the interface between lamellar and nonlamellar
regions of fusing membranes (17) to stabilize fusion inter-
mediates (13). Here, we present a detailed analysis of the ki-
netics of polyethyleneglycol (PEG)-triggered fusion of an
ensemble of DOPC/DOPE/SM/CH (35:30:15:20) small uni-
lamellar vesicles (SUVs) at pH 7.4 at five temperatures in
the presence of VSV-TMD. The activation thermodynamics
for fusion of these vesicles in the absence of VSV-TMD at
pH 7.4 are reported in an accompanying paper (18) and
are consistent with mechanistic models we proposed earlier
for pH 5 (19) once the altered hydration of DOPE at pH 7.4
is taken into account.

VSV, a member of the Rhabdoviridae viruses, enters the
cell via an endocytic pathway and subsequently fuses with
a cellular membrane within the acidic environment of the
endosome (20), where fusion is mediated by a single trans-
membrane viral glycoprotein (G) that is trimeric and forms
the spikes that protrude from the viral surface (21). Earlier
studies showed that mutation of two Gly to Ala (see
sequence in Materials section) in the TMD of this G protein
inhibited fusion in our model system (13) as it did in ex vivo
studies (12). A crude analysis of the initial rates of lipid
mixing (LM) and contents mixing (CM) tentatively sug-
gested that VSV-TMD influenced mainly the final step of
pore formation (CM) as opposed to the step of initial inter-
mediate formation (LM) (13). However, both the initial and
final steps of fusion involve both LM and CM (22,23), so
such a simplified analysis cannot yield mechanistic detail.
In this study, we measured LM, CM, and contents leakage
(CL) at five different temperatures in the presence and
absence of the VSV-TMD peptide, and fitted the data to
our previously well-documented ensemble kinetic model
of the fusion process (19,22). In this way, we determined
the rate constants for the interconversion of states as well
as the probability of observing CM, LM, or CL in each state,
and revealed in detail the effects of VSV-TMD on each step
of the fusion process. In addition, we report the activation
thermodynamics for all steps and use this information to
propose mechanisms by which the VSV-TMD peptide might
catalyze each step. To aid in interpreting the effects of VSV-
TMD on the activation thermodynamics, we also recorded
the effects of VSV-TMD on the membrane bilayer proper-
ties, as well as the fusion kinetics in the presence of both
VSV-TMD and 2 mol % hexadecane (a known interstice-
occupying agent). Finally, we propose possible mechanisms
by which VSV-TMD might catalyze fusion in our model
system, and use our findings to test the previously proposed
hypothesis that VSV-TMD might promote fusion by occu-
pying interstice space (13).
MATERIALS AND METHODS

Materials

TheVSV-TMDpeptidewith sequence (K)KSSIASFFFIIGLIIGLFLVLR(R)

used in this study was synthesized by Invitrogen. Chloroform stock solu-

tions of 1,2-dioleoyl-3-phosphatidylcholine (DOPC), 1,2-dioleoyl-3-sn-

phosphatidylethanolamine (DOPE), and bovine brain sphingomyelin (SM)

were purchased from Avanti Polar Lipids (Birmingham, AL) and used

without further purification. The concentrations of all of the stock

phospholipids were determined by a phosphate assay (24). Cholesterol

(CH) was purchased from Avanti and then purified as described previously

(25). We obtained 2-(4,4-difluoro-5,7-diphenyl-4-bora-3a,4a-diaza-s-inda-

cene-3-dodecanoyl)-1-hexadecanoyl-sn-glycero-3-phosphoethanolamine

(BODIPY530-PE) and 2-(4,4-difluoro-5,7-diphenyl-4-bora-3a,4a-diaza-

s-indacene-3-dodecanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine

(BODIPY500-PC) fromMolecular Probes (Eugene, OR). Terbium chloride

and N-[tris(hydroxymethyl)methyl]2-2-aminoethane sulphonic acid (TES)

were purchased from Sigma Chemical (St. Louis, MO). PEG of molecular

weight 7000–9000 (PEG 8000) was purchased from Fisher Scientific (Fair-

lane, NJ) and further purified as previously described (26). Dodecyl octa-

ethylene glycol monoether (C12E8) was purchased from Calbiochem (La

Jolla, CA). All other reagents were of the highest purity grade available.
Methods

Most methods used in this study have been reported previously and are also

described in an accompanying article (18). VSV-TMD peptide was dis-

solved in trifluoroethanol/water (95:5 vol/vol) mixture. We incorporated

VSV-TMD into SUVs by adding it at a 1:600 peptide/lipid ratio to a chlo-

roform mixture of phospholipids prior to freeze-drying and sonication. This

is the highest mol fraction that could be used to recover intact SUVs.

Because so little peptide could be incorporated, we were unable to reliably

determine the orientation of the peptide in the bilayer without a very expen-

sive custom synthesis of fluorescently tagged peptides. Because the packing

constraints of SUVs are considerable and force other TMD peptides we

have studied to insert roughly asymmetrically, we assume this is the case

for VSV-TMD as well.

Fusion model

We analyze our data in terms of a sequential, multistep model that was pre-

viously described in detail (19,22). In our experiments, SUVs are brought

rapidly into close contact (the aggregation rate is 10-fold higher than the

rate of any fusion event) by addition of PEG to form an aggregated state

(referred to as the A state in our model). This avoids the complication of

vesicle diffusion in our data analysis. The A state converts to a fusion inter-

mediate (I) state at a rate k1. This involves a change in system topology,

since contacting or cis bilayer leaflets merge during this step (hemifusion;

see Fig. S3 in the Supporting Material). Finally, the I state converts slowly

(rate k3) to a final fusion pore (FP) state, an event that also occasions a

change in system topology. Experimentally, we track the process by moni-

toring LM between vesicle membranes, CM between vesicle compartments,

and CL from the vesicle compartments, all of which can occur in the A, I, or

FP state with probabilities ai (CM), bi (LM), and li (CL), where i is 0 for the

A state, 1 for the I state, and 3 for the FP state. Because of the normalization

conditions used and experimental observations, a total of seven parameters

(two ki, a, and b, and three li) are required to describe three double-

exponential curves, which guarantees that the model will not be underdeter-

mined as long as all three data sets are analyzed globally. The probabilistic

quantities a and b, as well as the leakage rates li, are required because our

kinetic model describes the passage of an ensemble of vesicles through

thermodynamic states leading to fusion. Individual fusing vesicle pairs or

aggregates are not identical structurally, and they do not travel through

phase space in concert. In our ensemble measurements, we average over

many events that occur between vesicles brought rapidly into close contact
Biophysical Journal 107(6) 1318–1326
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by addition of PEG. To obtain kinetics from single-event studies, one must

record many traces of events that follow initiation of fusion between

docked membranes (vesicles attached to other vesicles or to membranes)

and then analyze the time probability distributions (dwell-time distribu-

tions) to distinguish distinct events and obtain their characteristic times

(rates). Elsewhere (27), we describe in detail the relationship between

the ensemble approach and a well-documented single-event study of

fusion of docked vesicles (28), and show that pictures of fusion obtained

by the two methods are consistent. Although both approaches have advan-

tages and disadvantages, ensemble measurements have the advantage of

requiring much shorter experiment times. This allowed us to examine the

influence of many variables (e.g., pH (18) and fusion peptides (27)) on

the kinetics and activation thermodynamics for each step of the fusion

process by performing experiments at five different temperatures (17�C,
22�C, 27�C, 32�C, and 37�C). It also allowed us to collect precise data,

in that all experiments were repeated twice for any given sample and

then repeated for three different sample preparations at a given temperature.

The kinetic parameter values are the averages of all these determinations.

In an accompanying article (18), we document the kinetics and activation

thermodynamics of PEG-mediated fusion of the DOPC/DOPE/SM/CH

(35:30:15:20) SUVs used in our experiments at pH 7.4. In addition, we

explore the role of pH in determining the mechanism of each step of the

fusion process, as well as the influence of hexadecane on each step. Detailed

descriptions of the ensemble kinetic model, the kinetic parameters for the

control vesicles, and the equations used to obtain the activation thermody-

namics are also given in that work.
FIGURE 1 Effect of VSV-TMD peptides on the kinetics of (A) LM, (B)

CM, and (C) CL during 5 wt % PEG-mediated SUV fusion at 22�C. Time

courses are shown for peptide-free vesicles (green) as well as vesicles con-

taining VSV-TMD (red) at a P/L ratio of 1:600. The black lines are the best

fit of the data obtained using the one-intermediate model (18). To see this

figure in color, go online.
RESULTS

Effect of VSV-TMD on PEG-mediated fusion

Fig. 1 shows in red the time courses of LM, CM, and CL for
SUVs containing VSV-TMD at a peptide/lipid ratio of 1:600
at 22�C and pH 7.4 as compared with data obtained with
control vesicles (green) (18). Data obtained at each temper-
ature were analyzed globally according to a single-interme-
diate model. Kinetic parameters obtained at 22�C and 37�C
are summarized in Table 1 and parameters obtained at other
temperatures are presented in Table S1. When compared
with results obtained with control vesicles lacking VSV-
TMD (18), the results show that VSV-TMD had no substan-
tial effect on the extent of LM (FLM) or CM (FCM) or on the
probability of LM in the intermediate state (b). It had the
greatest effects on the rate of initial intermediate formation
(k1), the rate of leakage from unfused vesicles (l0), and the
probability of CM in the intermediate state (a). VSV-TMD
also increased k3 slightly at low (but not high) temperatures
and had moderate effects on leakage rates l1 and l3. To
understand the role of VSV-TMD in promoting the rate of
I formation and the extent of pore formation, we examined
the activation thermodynamics of I formation and the nature
of pore formation from I.
Effect of VSV-TMD on the activation
thermodynamics of PEG-mediated fusion

We similarly determined the temperature dependence of the
activation free energy for formation of the I1 state and FP
state in the presence of VSV-TMD at pH 7.4 and compared
Biophysical Journal 107(6) 1318–1326
the results with the activation thermodynamics of control
DOPC/DOPE/SM/CH (35:30:15:20 ) (18). Fig. 2, A
and C, show the change in activation free energy associated
with the presence of VSV-TMD in vesicle membranes
(DDG�

i ¼ DG�
i;peptide � DG�

i;control) for formation of the I
state and FP state, respectively. The changes in activation
enthalpy (DDH�

i ) and activation entropy (TDDS
�
i ), as plotted

in Fig. 2, B and D, for formation of the I state and FP state,
respectively, were obtained as derivatives of DDG�

i as
described elsewhere (18,19). The signs of DDH�

i and rela-
tive magnitudes of TDDS�i define whether the catalytic
effect was entropic (TDDS�i >DDH

�
i > 0) or enthalpic

(DDH�
i <TDDS

�
i < 0). The insets in Fig. 2, B and D, show

the changes in activation heat capacity (DDCp�i ) associated
with the presence of VSV-TMD. The temperature depen-
dence of DDCp�i reflects the nonlinear dependence of
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DDH�
i and TDDS�i on temperature. There are substantial

similarities but also differences between the changes in
activation thermodynamics due to VSV-TMD associated
with the first and second steps. Among the similarities,
DDCp�1 and DDCp�3 both switch from positive to negative
with increasing temperature. The most noticeable difference
is that VSV-TMD catalyzes step 1 entropically (i.e.,
TDDS�1>DDH

�
1>0) over the entire temperature range,

whereas it catalyzes step 3 enthalpically (i.e., DDH�
3<

TDDS�3<0). This difference indicates that VSV-TMD cata-
lyzes steps 1 and 3 by different mechanisms, as discussed
below.
Combined catalytic influence of hexadecane and
VSV-TMD

Fig. 3 illustrates how VSV-TMD and hexadecane influence
fusion individually and in each other’s presence. One can
see the very minimal catalytic influence of hexadecane on
step 1 at low temperatures (18) in Fig. 3 A by comparing
DG1* for control (C) versus hexadecane-containing vesi-
cles (;). VSV-TMD catalyzes step 1 over the entire temper-
ature range (B). Of particular note is the fact that
hexadecane interferes with the catalytic effect of VSV-
TMD at the highest two temperatures examined (6), where
hexadecane itself has a catalytic effect. As shown in Fig. 3 C
and elsewhere (18), both hexadecane and VSV-TMD cata-
lyze step 3 over the entire temperature range, but hexade-
cane enhances the catalytic influence of VSV-TMD only
at the two lowest temperatures examined (Fig. 3 B). At
the highest temperature, hexadecane has a greater catalytic
influence than VSV-TMD, and the effect of both together
is indistinguishable from that of hexadecane alone
(Fig. 3 B). Clearly, the effect of hexadecane on the catalytic
influence of VSV-TMD varies substantially with tempera-
ture for both steps 1 and 3, with the mechanism of hexade-
cane’s influence differing from that of VSV-TMD at high
temperatures, but perhaps being similar at low temperatures.
Effect of VSV-TMD and hexadecane on bilayer
properties

We examined the influence of VSV-TMD on the bilayer
properties of SUVs in the absence and presence of
2 mol % hexadecane. We explored the bilayer properties
using three different fluorescent probes that report on dif-
ferent regions and properties of the membrane: C6NBDPC,
DPH, and TMA-DPH. Because C6NBDPC partitions be-
tween its own micelles and membranes, its fluorescence life-
time components reveal the partition coefficient between
these two phases, with the mol fraction of C6NBDPC in
the membrane providing a partition coefficient that is sensi-
tive to the free volume within membrane outer leaflets (29).
The tD2O/tH2O ratio of TMA-DPH is not altered by the pres-
ence of either VSV-TMD or hexadecane at any temperature
Biophysical Journal 107(6) 1318–1326



FIGURE 2 Temperature dependence of changes

in activation free energy (DDG�
i ), activation en-

tropy (TDDS�i ), and activation enthalpy (DDH�
i )

of control vesicles induced by the presence of

VSV-TMD peptide. (A and C) Activation free

energy (DDG�
i ) versus temperature for steps 1

and 3, respectively. (B) TDDS�1 (solid line) and

DDH�
1 (dotted line) for intermediate formation.

(D) TDDS�3 (solid line) and DDH�
3 (dotted line)

for pore formation. Insets show the temperature

dependence of changes in activation heat capacity

(DDCp�i ) in the presence of the peptide for each

step. Coefficients of the polynomials obtained

from the raw plots of DG� versus T for the vesicles

containing TMD are given in Table S2. The plots in

B and D were obtained from those in A and C by

differentiation.
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(Fig. S1), so exposure of its amine group to water remains
unaltered by these two perturbants. Except at the lowest
temperature examined (17�C), neither VSV-TMD nor hexa-
decane ordered the bilayer interior, and even at this temper-
ature the ordering effects were barely significant (Fig. S2).
The lifetime of C6NBDPC is sensitive to the polarity of its
environment, which one can alter either by altering the
extent of water penetration to the probe or by relocating
the probe. Normally, C6NBDPC is located just below the
interface region of the bilayer (30), but bilayer perturbation
can cause it to penetrate deeper (29). The temperature de-
pendencies of the mol fraction and fluorescence lifetime
of C6NBDPC in control SUVS (C) and in membranes con-
taining VSV-TMD (B) or hexadecane (;), or both VSV-
TMD and hexadecane (6) are presented in Fig. 4, A
and B, respectively. VSV-TMD occupied the bilayer free
volume at all temperatures, but its space-filling ability was
greatest at the three lowest temperatures and decreased
with temperature (Fig. 4 A). It reduced surface packing at
all temperatures (Fig. 4 C) and promoted water penetration
into the headgroup region (Fig. 4 D). Consistent with these
effects, the NBD moiety of C6NBDPC was in a less polar
environment in the presence of VSV-TMD (i.e., either pro-
tected from water or penetrating deeper into the bilayer;
Fig. 4 B). In summary, VSV-TMD seems to occupy the
bilayer space in such a way that it spreads headgroups,
which increases positive curvature stress. This could reflect
a tilt of the VSV-TMD helix relative to the bilayer normal or
simply a mismatch of protein structure with lipid packing.
Since the native VSV-TMD appears to be a helix bent at
the helix-breaking GXXXG sequence (13), and the peptide
we used has sufficient nonpolar residues (20) to span the
bilayer, the latter explanation is most likely.

Hexadecane produced no change in the polarity of the
NBD environment (Fig. 4 B), but did reduce the bilayer
Biophysical Journal 107(6) 1318–1326
free volume at all but the lowest temperature, and its ability
to do so increased and then decreased with increasing tem-
perature (Fig. 4 A). It did not influence interfacial order and
water penetration at low temperatures, but increased interfa-
cial order (Fig. 4 C) and decreased water penetration into the
interface with increasing temperature (Fig. 4 D). The tem-
perature dependence of hexadecane’s structural influence
(Fig. 4) suggests different hexadecane conformational en-
sembles at low and high temperatures, i.e., aligned with
acyl chains and having little influence on membrane struc-
ture at low temperature, but having an increasingly broad
conformational ensemble with increasing temperature. At
the highest temperatures examined, this conformational
ensemble appears to increase the acyl-chain cross section
deep in the bilayer sufficiently to decrease water penetration
of the interface (Fig. 4 D) and order the interface (Fig. 4 C),
i.e., to produce an intrinsic negative curvature.

Of greatest interest was the combined effect of hexade-
cane and VSV-TMD. At the lowest temperature (290 K),
hexadecane did not significantly reduce the bilayer free vol-
ume in the presence or absence of VSV-TMD (Fig. 4 A).
With increasing temperature, the volume-reducing effects
of hexadecane and VSV-TMD became increasingly addi-
tive. Given what we have observed regarding their individ-
ual influences, this is not surprising, since they should alter
packing in different parts of the bilayer at these tempera-
tures (with hexadecane occupying space deep in the bilayer
and VSV-TMD doing so in the upper regions). This is espe-
cially evident in the temperature dependence of TMA-DPH
anisotropy (Fig. 4 C) and lifetime (Fig. 4 D), where the sur-
face-expanding influence of VSV-TMD and the surface-
contracting effect of hexadecane completely nullify each
other at high temperature. Whereas hexadecane had no
effect on the polarity experienced by the NBD probe, hexa-
decane enhanced the probe-shielding effect of VSV-TMD



FIGURE 3 (A and B) Temperature dependence of the free-energy barrier

for formation of (A) I1 state (DG
�
1) and (B) pore formation (DG�

3) for control

vesicles (C), vesicles in the presence of VSV-TMD (B), vesicles contain-

ing 2 mol % hexadecane (;), and vesicles containing 2 mol % hexadecane

in the presence of VSV-TMD (6).
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(Fig. 4 B). This is consistent with VSV-TMD disrupting
interfacial packing but also filling the bilayer space and pro-
moting penetration of the NBD probe to deeper regions of
the bilayer, where hexadecane would fill the hydrophobic
space and reduce polarity.

To summarize, the individual and combined effects of
VSV-TMD and hexadecane support the hypothesis that hex-
adecane aligns with acyl chains at low temperatures and has
little influence on bilayer structure except to occupy space,
whereas it appears to alter membrane structure with
increasing temperatures and disproportionately occupies
the interior hydrophobic space. VSV-TMD, on the other
hand, has the same membrane-altering influence at all tem-
peratures, namely, filling space but disrupting interfacial
packing and promoting water penetration into the interface.
These observations highlight the different space-filling abil-
ities of a flexible agent such as hexadecane, which is free to
locate in different regions of the bilayer, as opposed to the
more rigid VSV-TMD, which adopts a bent but roughly he-
lical (~50%) conformation in a membrane (13).
DISCUSSION

We have found that a sequential, two-intermediate model
for fusion is able to account for the ensemble kinetics of
the fusion process for a variety of membrane systems
(19,22,31,32) over a range of temperatures (19). Our
ensemble kinetic treatment is based on the expanded stalk
structural model for fusion (33) as modified to treat the
highly curved, space-encapsulating membranes of SUVs
(17). The model is illustrated in Fig. S3. Based on earlier ob-
servations (19,27), formation of an initial fusion intermedi-
ate (I1 in Fig. S3) was proposed to occur through an unstable
transition state (TS1) in which acyl chains are somewhat
exposed to the dehydrated interbilayer space, thereby dis-
rupting water-water and water-headgroup interactions in
that space. Coarse-grained (34) and all-atom (35) MD sim-
ulations support this proposal. These observations also sup-
port the hypothesis that the final step of the fusion process
(FP formation) involves passage through another unstable
transition state (TS3), which is distinguished from the I2
semistable intermediate (Fig. S3) only by the probability
of coordinated multilipid fluctuations in which lipids from
both the cis and trans leaflets of the I2 intermediate cooper-
atively enter the highly unfavorable interstice region (17) of
this semistable intermediate (19,27). In this work, we ask
whether the effects of VSV-TMD on the kinetics and activa-
tion thermodynamics of the fusion process at pH 7.4, as well
as on the measured bilayer structure, can be interpreted in
terms of these mechanistic pictures of the individual steps
of the fusion process.
Step 1: initial intermediate formation

The catalytic effect of VSV-TMD on step 1 was substantial,
with k1 being increased by 64% at 22�C and by 76% at 37�C
(Tables 1 and S1). Catalysis by VSV-TMD was entropic
(TDDS�1>DDH

�
1>0) over the entire temperature range

(Fig. 2 B), implying that the presence of VSV-TMD either
increased the number of energetically closely spaced micro-
structures in the transition state (TS1) leading to the stalk in-
termediate or stabilized a few microstructures in state A.
The positive DDCp�1 at low temperature is consistent with
increased water ordering in TS1 due to increased acyl-chain
migration into the interbilayer space. The fact that DDCp�1
became increasingly negative with increasing temperature
(Fig. 2 B, inset) is consistent with the expected reduction
of water ordering by hydrocarbon with increasing tempera-
ture and with hexadecane decreasing the width of the energy
distribution in TS1. According to our membrane structural
measurements (Fig. 4, C and D), VSV-TMD does not
appear to accommodate well to the packing of acyl chains
and thus disorders and permits water entry into the interface,
thereby increasing positive curvature stress in contacting
outer leaflets of SUVs at all temperatures. This should
encourage escape of acyl chains into the interbilayer space,
Biophysical Journal 107(6) 1318–1326



FIGURE 4 Effect of VSV-TMD, hexadecane, and hexadecaneþ TMD on the temperature dependence of (A) the mol fraction of C6NBDPC in membranes,

(B) the lifetime of C6NBDPC in membranes, (C) TMA-DPH anisotropy, and (D) the fluorescence lifetime of TMA-DPH in membranes. Control SUVs (C)

are compared with membranes containing hexadecane (;), TMD peptide (B), and both hexadecane and TMD (D).
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an event that is also consistent with the observed
TDDS�1>DDH

�
1>0 and increasingly negative DDCp�1 with

increasing temperature.
We note that VSV-TMD’s catalytic influence on step 1 is

entropic at all temperatures at pH 7.4 (Fig. 2 B), whereas
that of hexadecane is entropic only at moderate tempera-
tures and is enthalpic or inhibitory at high temperatures
(18). This difference suggests that hexadecane and VSV-
TMD have different mechanisms of action. Support for
this proposal derives from the different mutual and individ-
ual effects of hexadecane and VSV-TMD on DG�

1 as plotted
in Fig. 3 A as a function of temperature. Based on our mem-
brane-structure measurements, VSV-TMD and hexadecane
appear to alter bilayer structure in opposite ways at higher
temperatures, with hexadecane reducing positive curvature
stress and VSV-TMD increasing it (Fig. 4). At low tem-
perature, where hexadecane has little influence on bilayer
structure, it does not influence catalysis by VSV-TMD
(Fig. 3 A). However, as temperature increases, the catalytic
influence of hexadecane actually reduces the catalytic influ-
ence of VSV-TMD (Fig. 3 A). We propose that VSV-TMD
catalyzes step 1 by increasing positive curvature stress in
SUVouter leaflets in state A, whereas hexadecane decreases
the outer-leaflet curvature stress of SUVs but catalyzes step
1 by promoting hydrocarbon-water contact in the TS1 inter-
mediate (18). This hypothesis offers an explanation for the
competing effects of VSV-TMD and hexadecane on step 1
(Fig. 3 A).
Biophysical Journal 107(6) 1318–1326
Step 3: conversion of intermediate to an FP state

The second semistable intermediate of the fusion process
(I2 in Fig. S3), which is detected at pH 5, is not detected
at pH 7.4 because the free energy of the I2 intermediate
should increase at pH 7.4 due to reduced SUV outer-leaflet
positive curvature stress at this pH (17,18). Thus, we pro-
pose that pores form at pH 7.4 by expansion of a stalk inter-
mediate (I1, stalk radius ¼ rS a 0) via an unstable second
intermediate (I2) with an expanded trans-membrane contact
(ETMC) geometry to an ETMC geometry with a critical
stalk radius (rS*) at which transient pore expansion is
more likely than pore reversal (see Fig. S3 for a detailed dis-
cussion of this proposal). The presence of VSV-TMD did
not cause a reappearance of the second intermediate, so
fusion at pH 7.4 is discussed in terms of a two-step process
in the presence or absence of VSV-TMD (Tables 1 and S1).

We previously suggested that VSV-TMD might cata-
lyze pore formation by occupying hydrophobic space and
lowering the energy associated with the mismatch between
lamellar and nonlamellar geometries (13) (interstice energy
(17)). Hexadecane is known to lower this energy (36). At the
lowest temperatures, hexadecane apparently aligns with
acyl chains in hemifused cis leaflets, thereby contributing
a positive intrinsic curvature that further destabilizes the
ETMC circumference (18,27). However, with increasing
temperatures, hexadecane apparently catalyzes pore forma-
tion by lowering interstice energy and promoting expansion
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of ETMC microstructures at both pH 5 (19) and 7.4. At
pH 7.4, DDH3* for hexadecane varies from negative at the
lowest temperatures to positive at intermediate temperatures
and negative at the highest temperatures (18). If the catalytic
influence of VSV-TMD on step 3 at pH 7.4 reflects its ability
to fill interstice space and increase rS toward rS*, the activa-
tion thermodynamics and catalytic influence of hexadecane
and VSV-TMD should be similar, especially at higher tem-
peratures. However, these were similar only at lower tem-
peratures. In this temperature range (290–300 K), DDH3*
for VSV-TMDs was more than twice as negative as that
for hexadecane (compare Fig. 2 B with Fig. 4 F of our com-
panion article (18)). In addition, VSV-TMD’s influence was
clearly enthalpic at all temperatures, whereas that of hexa-
decane at pH 7.4 was less enthalpic and varied from en-
thalpic to entropic and then to enthalpic with increasing
temperature (18). The simplest interpretation is that hexade-
cane and VSV-TMD catalyze pore formation by somewhat
different mechanisms. The variation of hexadecane’s cata-
lytic influence with temperature likely reflects the variation
of its conformational ensemble with temperature, i.e., being
more aligned with acyl chains at lower temperatures, but
being disordered and occupying hydrophobic interior space
within the membrane at high temperatures (18,19,27). This
suggests a possible interpretation of the observation that the
catalytic effects of VSV-TMD and hexadecane were not
additive at lower temperatures (Fig. 3 B). Thus, it may be
that hexadecane and VSV-TMD catalyze pore formation
by similar mechanisms at low temperature (i.e., they align
with acyl chains and increase curvature stress at the
ETMC circumference), but the influence of VSV-TMD is
much greater than that of hexadecane, so that when both
are present, the influence of VSV-TMD dominates. At
higher temperatures, the catalytic influences of VSV-TMD
and hexadecane were again both enthalpic. We interpret
the enthalpic influence of VSV-TMD at this temperature
as still reflecting its ability to increase curvature stress in
hemifused cis leaflets at the ETMC circumference. On the
other hand, it is likely that the influence of hexadecane in
this temperature range is to increase the ETMC circumfer-
ence by increasing the stalk radius (18,27). We conclude
that VSV-TMD and hexadecane catalyze fusion by different
mechanisms, except at lower temperatures, where the ability
of VSV-TMD to increase curvature stress at the ETMC
circumference is much greater than that of hexadecane.

We tested these interpretations by considering the effects
of hexadecane and VSV-TMD on the total extent of CM
(fCM) and the probability of CM in the intermediate (a).
Hexadecane increased the total extent of CM (fCM), whereas
VSV-TMD did not (Tables 1 and S1). In addition, whereas
both hexadecane and VSV-TMD increased the probability
of CM in the intermediate (a), hexadecane was more effec-
tive in this regard (Tables 1 and S1). We note that the total
amount or extent of CM that occurs in the FP state
[ð1� aÞ � fCM] was the same for both perturbants (~0.15;
Table 1). According to our hypothesis for VSV-TMD action,
it achieves catalysis not by reducing interstice energy but by
increasing positive curvature stress at a fixed ETMC diam-
eter (rS), i.e., by increasing the probability of CM earlier in
the fusion process (i.e., it should increase a but not fCM, as
observed). By contrast, hexadecane promotes fusion by
increasing the radius of the ETMC intermediate, which in-
creases the number of fluctuations that can lead to transient
pores before final pore formation (i.e., increasing a and
fCM). These observations support our hypothesis regarding
the fundamentally different ways in which hexadecane and
VSV-TMD catalyze fusion: VSV-TMD destabilizes the
ETMC intermediate periphery at smaller stalk radii (i.e., it
moves rS* to smaller rS), and hexadecane promotes expan-
sion of the ETMC intermediate to a point where it has a
much larger periphery and thus an increased number of fluc-
tuations that can form pores (i.e., it expands rS toward rS*).
CONCLUSIONS

The data and analysis presented here for PEG-mediated
fusion of DOPC/DOPE/SM/CH SUVs at pH 7.4 are all
consistent with the hypothesis that VSV-TMD catalyzes
step 1 of the fusion process by occupying the upper bilayer
space to facilitate acyl-chain excursions into the interbilayer
space, thereby promoting the conversion of closely opposed
monolayers to stalk intermediate microstructures, and cata-
lyzes step 3 of the fusion process by occupying the upper
bilayer space so as to increase curvature stress at the periph-
ery of expanded intermediate microstructures. We previ-
ously proposed that this stress promotes correlated lipid
fluctuations into interstice regions to produce transiently
stable pores (19). In addition, we have shown that VSV-
TMD promotes stable pore formation by a mechanism quite
different from that proposed for hexadecane (18).

Finally, although hexadecane and VSV-TMD share
similar activation thermodynamics for initial intermediate
formation at low temperature, it appears that they do not
share a common mechanism for catalyzing this step of
fusion at any temperature, with VSV-TMD enthalpically
destabilizing the contacting bilayers of the A state, and
hexadecane entropically stabilizing the water-hydrocarbon
environment of the TS1 state (18). This is in contrast to
the previous suggestion that VSV-TMD might act by filling
the interstice space, as does hexadecane at higher tempera-
tures (13).
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Table S1. Different kinetic parameters of the fusion reaction in PC/PE/SM/CH (35/30/15/20) 
membrane system in presence of 2% hexadecane, VSV-TMD and hexadecane + VSV-TMD at 
different temperatures. 

  

 
Samples 

k1 × 
103 
(sec-1) 

k3 × 103 
(sec-1) 

α β λ0 ×104 λ2 ×104 λ3 ×104 fCM fLM 

17°C_con 10.0±  
0.5 

1.08± 
0.05 

0.16± 
0.01 

0.49± 
0.01 

2.67 ±0.04 2.06± 0.02 0.52±0.06 0.15± 
0.01 

0.38± 
0.01 

17°C_vsv 19.3±  
0.6 

2.27± 
0.02 

0.41± 
0.01 

0.58± 
0.01 

5.49 ± .08 3.06± 0.03 0.57±0.15 0.24± 
0.01 

0.43± 
0.01 

17°C_hex 11.1± 
0.6 

1.54± 
0.04 

0.57± 
0.01 

0.41± 
0.01 

3.25 ±0.11 2.51± 0.05 0.21 ±0.22 0.35± 
0.01 

0.40± 
0.01 

17°C_hex+
vsv 

22.0± 
 0.6 

2.65± 
0.04 

0.58± 
0.01 

0.60± 
0.01 

11.36±0.23 3.85± 0.07 0.42±0.17 0.33± 
0.02 

0.39± 
0.01 

27°C_con 21.5±  
0.9 

2.22 ± 
0.02 

0.25± 
0.01 

0.62± 
0.01 

3.81± 0.10 3.00± 0.05 0.77±0.23 0.26± 
0.01 

0.46± 
0.02 

27°C_VSV 40.0 ± 
1.0 

3.06 ± 
0.04 

0.49± 
0.01 

0.69± 
0.01 

11.82±0.36 5.45± 0.03 0.74± 0.15 0.28± 
0.01 

0.47± 
0.02 

27°C_hex 
 

27.5± 
1.2 

2.63± 
0.03 

0.70± 
0.03 

0.72± 
0.03 

15.86±0.27 5.37± 0.07 5.01±0.21 0.41± 
0.02 

0.44± 
0.03 

27°C_hex+
vsv 

37.2 ± 
1.1 

2.96 ± 
0.05 

0.63 ± 
0.02 

0.62± 
0.02 

29.55±0.36 5.75± 0.09 5.57±0.23 0.39± 
0.03 

0.42± 
0.01 

32°C_con 33.1±  
0.7 

2.65 
±0.05 

0.32± 
0.01 

0.72± 
0.01 

9.42± 0.31 4.69± 0.07 0.79± 0.25 0.36± 
0.01 

0.45± 
0.01 

32°C_VSV 75.0 ± 
1.0  

3.28 
±0.04 

0.51± 
0.01 

0.75± 
0.01 

27.37±0.32 7.10 ± 
0.04 

9.26 ±0.23 0.35± 
0.02 

0.45± 
0.01 

32°C_hex 48.5± 
1.2  

3.57± 
0.06 

0.64± 
0.02 

0.75± 
0.02 

36.44±0.55 7.55± 0.13 3.45 ±0.23 0.41± 
0.02 

0.44± 
0.01 

32°C_hex+
VSV 
 

57.9 ± 
1.1 
 

3.34± 
0.07   

0.64± 
0.01  

0.74± 
0.01 
 

51.94±0.04  6.81± 0.09   7.54±0.51          0.40 
±0.01    

0.44± 
0.03         
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  y0  ai  bi ci 

  
Control  

 
First Step 

4762.4 ± 
 651.7 
 

-47.90 ±  
6.52 

0.16 ± 
 0.022  

-2x10-4 ±  
2.42 × 10-5 

 
 Control  

 
Second Step 

1412.6 ± 
 89.86 
 

-13.72 ± 
 0.89 

0.045 ± 
 0.003 

-4.83× 10-5 ±  
3.33× 10-6 

 
VSV-TMD  

 
First Step 

-3090.89 ± 
200.63 
 

30.74 ± 
 10.07 

-0.10 ± 
 0.04  

1x10-4 ±  
7.43× 10-5 

 
VSV-TMD 

 
Second Step 

-1771.52 ± 
142.33 
 

17.89 ±  
4.28 

-0.06 ± 
0.01 

6.72× 10-5 ±   
1.29× 10-5 

 
Table S2.  Parameters obtained by fitting the plot of ∆𝐺!∗ vs. temperature (Figure 2) using the 

equation 
2* 3

0,( / )i i i i iG kcal mol y aT bT cTΔ = + + + for the fusion of control vesicles and vesicles 

prepared in presence of VSV-TMD (Figure 4). The same parameters were used to obtain *
iT SΔ (

2 32 3i i ia T bT cT− − − ); *
iHΔ ( 2 3

0, 2i i iy bT cT− − ), and *
iCpΔ ( 22 6i ibT cT− − ).       
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Figure S1.  Plot of ratio of lifetime of TMA-DPH in membrane made in D2O and H2O buffer in 
control membrane (●) and membrane containing VSV-TMD (○) (L/P=600/1), 2% hexadecane 
(▼) and both hexadecane and VSV TMD (∆) at five different temperature. 
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Figure S2.  Effect of TMD, hexadecane, and hexadecane + TMD on acyl chain packing of 
membranes.  DPH fluorescence emission anisotropy of control vesicles (●) and vesicles 
containing VSV (○), hexadecane (▼) and both hexadecane and VSV (∆) different species are 
shown at different five temperatures (lipid: probe = 200:1). 
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Figure S3.  Our kinetic model (see Diagram) derives from the expanded-stalk structural model of Siegel 
for lamellar to non-lamellar phase transitions as applied to membrane fusion. We adapted this model in 
order to calculate the activation free energy path for the transition of an initial hemi-fused state (I1, initial 
intermediate) between two highly stressed SUVs to a second semi-stable state (I2) from which a fusion 
pore state (FP) can form.  Two free energy minima confirmed the two-step nature of the fusion path as 
depicted in our model and as detected experimentally.  The geometries (labeled in green) of the predicted 
intermediates are shown for intermediate structures derived from minimization of the free energies of 
structures at fixed stalk radii (1).  Unstable “transition states” are labeled in blue and semi-stable 
intermediate “states” in purple.  The “reaction coordinate” for this diagram is the “stalk radius” (rs) that is 
illustrated in the “dimpled stalk” diagram and is defined as “0” when the two merged cis- leaflets first 
touch. Since our experiments are performed on vesicle ensembles, each “state” is a thermodynamic state 
and does not correspond to a single structure.  In the context of the large-scale mechanical computation, 
the first state encountered as rs increases is I1, which is commonly called the stalk, but occurs at a slightly 
larger stalk radius than the stalk.  The driving force for evolution of the system along its reaction 
coordinate is a reduction in positive curvature stress that overcomes an increase in unfavorable interstice 
energy as rs increases.  “Interstices” are regions at the edge of the hemi-fused region (shaded regions in 
figure) for which lamellar and non-lamellar lipid packing conflict.  Because water-hydrocarbon 
interactions are required to compensate for this mismatch, this leads to an unfavorable “interstice” free 
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energy.  The evolution from I1 to I2 proceeds through a trans-membrane contact (TMC) first described by 
Siegel that provides an unstable transition state to reaching the I2 semi-stable intermediate, which 
corresponds to a slight minimum in free energy in a geometry described by Siegel as an “extended trans-
membrane contact” (ETMC).  The depth of the I1 and I2 free energy minima as well as the height of the 
TS2 barrier are all subject to variation with the particular natures of different membrane systems (e.g., 
composition, pH, vesicle diameter, etc.).  Thus, the membrane system DOPC/DOPE/SM/CH that we 
examine here passes through two intermediates when fusing at pH 5 but only one at pH 7.4, as we report 
here.  The TS2 transition state is the only one appropriately predicted by the materials-scale materials 
model.  The first and third steps involve changes from 2-compartment, to hemi-fused, to single-
compartment topologies that require molecular rearrangements that cannot be described in terms of 
materials-scale mechanical models.  We have used measured activation thermodynamics for each step and 
measured membrane structural properties to suggest possible mechanistic models for these molecular 
rearrangements, and here ask whether these are consistent with observations made in the presence VSV-
TMD.  The ΔG1* and ΔG3* magnitudes shown are illustrative of but not exact matches to experimental 
values obtained for k1 and k3.  

 

This figure has been adapted from the Supplemental Material of (2) with permission of the publisher (cell 
Press). 
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