
Description of Mathematical Model 
 
This document has the details of the mathematical model used for the simulations that are 
discussed in the manuscript titled “Hemoglobinopathies affect the intraerythrocytic 
multiplication of P. falciparum,” by Svetlana Glushakova, Amanda Balaban, Philip G. 
McQueen, Rosane Coutinho, Jeffery L. Miller, Ralph Nossal, Rick M. Fairhurst, and Joshua 
Zimmerberg. The reference numbering in this supplement is independent of that in the main text. 
Also in this supplement, Table 1 refers to a table at the end of this document, and not to the 
Table 1 in the main text. 

Introduction 
 

We state here a theoretical model of the population growth of within-host malaria parasites 
which are exposed to a pyrogenic innate response. The model is based on ideas from theoretical 
ecology describing a population of individual organisms that age at different rates [1, 2], and is 
similar to ones previously used by one of the authors (PGM) in theoretical population studies of 
malaria infections [3-5]. The discussion here follows that in [4] closely, but with some changes 
in notation. 
 
Consider a population of individuals that age while progressing to the next stage of life 
development or senescence.  Not all individuals take the same amount of time to age, and the 
youngest members of the population might be created at a time-varying rate s. This is a time 
delay system which can be difficult to solve, so we here introduce a set of coupled ordinary 
different equations (ODEs) that govern the time evolution of a set of fictitious variables, P1 , P2 , 
P3 , . . . PN; the sum of which is  the total population. The ODEs are chosen so that the rate at 
which individuals leave the population for the next stage (or death) is approximately a normal 
function of time t with mean duration D and variance σ2 = D2N−1. Ignoring environmental 
influences which might cull the population, the ODEs are 

P1′ = s(t) − ΛP1 (where Λ = ND−1) 

   Pn′ = Λ(Pn−1−Pn), 1<n≤N.      (1) 

In this formalism, the quantities D and σ determine N, the total number of components. Thus 
measureable quantities set the properties of the abstract ODE system. (Note that if D = σ, this 
system of equations reduces to a single equation describing exponential decay--see details of 
implementation below.) All population sizes are stated as number per µL of blood. Our model is 
adjusted to fit the natural history of Plasmodium falciparum  

Model: Reproductive Rate of the Parasite 
 
A measurable quantity that constrains the model parameters is the initial reproduction rate of a 
parasite, R0, defined as the average number of descendants an individual parasite would have at 
the beginning of bloodstream infection in the absence of any host response to the parasite. If TDm 
(duration of the merozoite stage) is much less than the duration of the infected RBC stage, then 
[3], 



 
R0 =  IMF ζV0 TDm ( 1 + ζ V0 TDm)-1     (Eq. 2) 

 
Here V0 is the initial density of the RBC population vulnerable to the parasite species, ζ is the 
binding affinity of merozoites to RBCs, and IMF is the average number of merozoites released 
per bursting schizont. (For P. falciparum, V0 = normal basal RBC count = 5x106ml-1.) 
Experimental evidence suggests that TDm is several minutes; we take it as 0.1hr [6]. For this 
study, we take IMF to be either 22 or 26, and we choose ζ so that R0 is 0.9375 times the 
corresponding value of IMF. (A study of the efficiency of invasion of merozoites of the 3D7 
strain of P. falciparum suggests that R0 is 90-100% in many malaria patients. [7]) 
 

Model: Parasite Population Dynamics 
 
Let TDI be the average duration of the infected RBC stage, with standard deviation sIBC. Then NcI 
=  TDI

2/σIBC. is the number of compartments needed to described the IBC development. Let In be 
number of infected RBCs per µl in compartment n. We assume that the intracellular parasites are 
being attacked by an immune response, e.g., via their modification of the RBC membrane, that 
removes them at a rate χ, which has its own dynamics. Then 
 
  dI1,/dt = ζµ ET - (kI  + χ) I1 
 
  dIn,/dt =  kI In-1 - (kI + χ) In,  1 < n < NcI + 1 (Eq.3) 
 
Here kI = NcI/TDI plays a role similar to that of Λ in Eq. 1 ,  µ  is the merozoite density, ζ is the 
binding affinity between the merozoites and vulnerable RBCs, and ET is the total uninfected 
RBC count. We took TDI = 48hr [8]. For each immune and erythropoietic response, we evaluated 
the behavior of the model for several values of σIBC  (given in Table 1). The discussion after 
Equation 2 gives the details on how the value of ζ is set. 
 
 
We use just one compartment for the merozoite stage, due to its short survival time in the blood, 
TDm = σm = 0.1hr [6]: 
 
 dµ/dt = IMF kIINcI – µ( ζ ET + 1/TDm ) + L(t)  (Eq. 4) 
 
where the first term on the r.h.s. of this equation represents the release of merozoites from 
infected rbc’s, and L(t) is the infusion of primary merozoites of the given species from the liver 
into blood, a process that apparently releases104 - 105 merozoites within a hours [9]. In our 
simulations, the initial time (t = 0) corresponds to the release of the first parasite from the liver. 
For simplicity, we took L(t) to be a constant for the first 12 hours such that a total of  0.002 µl-1 
is released, (corresponding to a release of 104 primary merozoites into a blood volume of 
5x106µl), and then zero afterwards.  
 
In P. falciparum malaria, the intraerythrocyte parasites sequester onto blood vessel walls during 
the second phase (last 24 hours) of intraerythrocyte development. Sequestered parasites can 



readily release large numbers of merozoites that attack neighboring RBCs [10]. Thus, in our 
model we consider the IBC compartments to include sequestered as well as freely-circulating 
infected red blood cells. 
 

Model: Erythrocyte Population Dynamics 
 
The RBC development chain is divided into three parts. The dynamics of the youngest 
erythrocytes, the reticulocytes, is described by  
 

dR1/dt = ES(t) - kR R1 - ζµ R1 
 
dRn/dt = kR (Rn-1 - Rn) - ζµ Rn,  1 < n <  NcR + 1   (Eq. 5) 

 
Correspondingly, we write for mature red blood cells: 
 

dM1/dt =  kR RNcR - kM M1 - ζµ M1 
 
dMn/dt =  kM (Mn-1 - Mn) - ζµ Mn,  1 < n < NcM + 1   (Eq. 6) 

 
and for senescent red blood cells: 
 

dS1/dt =  kM MNcM - kS S1 - ζµ S1 
 
dSn/dt =  kS (Sn-1 - Sn) - ζµ Sn,  1 < n < NcS + 1   (Eq. 7) 

 
(We separate the senescent stage from the mature stage to allow for possible models of P. 
malariae infections in which mainly senescent erythrocytes are attacked.) Here, kR =  NcR/TDR, 
kM = NcM/TDM, and kS = NcS/TDS, where the TDR, TDM, and TDS are the durations of the respective 
red blood cell stages, and NcR, NcM, and NcS are the respective numbers of compartments used for 
each stage (as set by Eq. 2 above). ES(t) is the rate of new RBC production at time t. Based on 
physiologically reasonable values [11], we took TDR = 36 hr with σ = 6 hr,  TDM = 2796 hr with σ 
= 168 hr, and TDS = 48hr with σ = 12 hr. The total uninfected red blood cell count, ET, is equal to 
the sum of all the R, M, and S compartments. If ET drops below 3x106  µl-1 (i.e. 0.6 x the basal 
count of a typical healthy adult), then we assume that the host dies of catastrophic anemia. 
Studies of RBC or hemoglobin levels in patients with P. falciparum infections suggest that the 
red blood cell count can collapse to similarly low fractions of the basal count [12, 13]. 
 

Model: Erythropoietic Response 
 
The dynamics for the marrow RBC source depend on the host response to losses of uninfected 
RBCs. Let Φ = ES0 - dET/dt  - δζµ ET, where ES0 is the basal rate of RBC production (which 
maintains a healthy basal count of 5x106µl-1), and ζ and µ  are as indicated above in equations 3 
and 4. The use of the factor δ is a simplistic way to account for the dyserythropoietic effects 
during infection. [14] We model the dynamics of ES(t) with the following ODE: 
 



 
dES/dt = λES (Φ - ES(t)), ESMN < Φ < ESMX 

           
   = λES(ESMX – ES(t)), Φ > ESMX 
 

  = λES(ESMN – ES(t)), Φ < ESMN  (Eq. 8) 
 
ESMX is the maximum RBC production rate, and 1/λES is a response time to changes in the rate of 
RBC loss. For a healthy compensatory response to RBC loss [11], ESMX/ES0 = 5 and 1/λES = 
48hr. ESMN is a minimum production rate; with dyserythropoiesis, the RBC production rate 
would be driven to ESMN. The parameter δ was varied between 0 and 10; (see Table 1). 
 

Model: Immune Response Dynamics 
 

We considered the pyrogenic innate response often observed in malaria: fast-activating but short-
acting [5, 15].  We assumed that this response is triggered when the merozoite level exceeds a 
threshold density Th, producing an actuator component A. The actuator in turn produces an 
attacker that removes the intracellular parasites at a rate χ. The whole response is self-limiting so 
that χ does not exceed a maximum value χMax. The dynamics are described by 
 
  

dA/dt = FBA FBK ( Θ(µ - Th) – λA A0) - λA A 
 

   dχ/dt = FBK  λχ (A – A0) – λχ A 
          (Eq. 9) 
 
where Θ(x) = x if x > 0, zero otherwise, and  
 
 FBA = ( 1 – ( A – A0) Δ AMax

-1 )  Θ(ΔAMax – A + A0)  
 

FBK = ( 1 – χ χMax
-1)  Θ(χMax – χ)   

 
The self-amplication parameter a is set to 10, and the background actuator level A0 is set to  
0.1µl-1. The FB factors enforce self-limiting feedback. The parameter ΔAMax limits the growth of 
the actuator and is set to 10µl-1. We took 1/λA = 1 hr, and 1/λχ = 2 hr. This model innate response 
emulates the cytokine dynamics reported in malaria patients for the chosen values for a , A0 ,  λA , 
and   λχ. [5, 15] Parameters Th and are χMax varied from simulation to simulation; see Table 1. 
The range of values indicated in Table 1 for Th and are χMax is the range found to encompass the 
magnitude and time series of parasitemia that is seen in neurosyphilis patients with Plasmodium 
falciparum [16]. 
  

Sampling the parameter space 

The values of several model parameters were varied from simulation to simulation, either 



because the parameters vary strongly from patient to patient, or their values are not known. Table 
1 lists all these parameters, and the range of plausible values from which the values for 
simulation were chosen. For a given value of number of merozoites released per bursting 
schizont, p, the Latin hypercube algorithm [17] was used to sample among the relevant 
parameters in the following manner. Let p1, p2, . . . pM be the parameters varied for given model 
class and divide the plausible range for each pn into ten equal intervals. We define a 10 × M 
matrix M, the columns of which consist of a random ordering of the integers 1 through 10, with 
no integer repeated in a column. The integers are associated with the parameter intervals as 
follows: integer k = Mi,n labels interval k for parameter pn. The first simulation uses values of 
p1, p2, . . . pM chosen randomly within the intervals labeled by M1,1, M1,2, . . . M1,M. The 
second simulation uses values chosen randomly within the intervals labeled by M2,1, M2,2, . . . 
M2,M. This procedure is repeated until values in the intervals labeled by M10,1, M10,2, . . . 
M10,M are used. The order of the integers in each column are scrambled to repeat the procedure 
again. Thus, for a given p, we used 1000 randomized version of M so that there would be a total 
of 10000 simulations. We used the Latin hypercube algorithm to attempt uniform sampling of 
the parameter space for a class of models, although with so many variable parameters the 
sampling will not be perfect. 

Model: Simulation Strategy 
 
The system of ordinary differential equations was solved using the fifth-order Runge-Kutta-
Fehlberg algorithm with adaptive stepsize control for time integration, [18, 19] so that the 
difference between the fourth- and fifth-order solutions for each component of the system was 
less than one part in 106. 
 
If at any point either (1) the merozoite count, (2) the total infected red blood cell count, or (3) the 
total uninfected RBC count ET fell below 1 in a total blood volume of 5x106ml, the values of all 
compartments that contributed to that particular count were reset to zero. As stated above, the 
simulation stopped if ET dropped to under 3x106µl-1. 
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Table 1: Values of Parameters Varied from Simulation to 
Simulation 
 
Parameter Equation 

where used 
Range in values 

δ 8 0 - 10 
Log(σIBC x hr-1) 3 Log(0.3)- Log(5.9) 
Log(Th x µl) 9 Log(10-5) – Log(10) 
Log(χMax x hr) 9 Log(0.05) – Log(50)  

 
 



Supplementary Material 

 

Figure S1. Predicted effect of intraerythrocytic multiplication factor (IMF) on the onset of 

detectable parasite densities by thick blood smear examination. (A) The fraction of simulations 

for which MaxIBC exceeds the threshold of detectable parasite density (10/µL) in routine thick 

blood smear examination, in different parts of the immune‐parameter space at 6 and 10 days 

after primary release. The 10,000 simulations done for each IMF value are binned by their values 

of threshold density of merozoites that trigger the response, Th, and maximum killing rate of 

infected erythrocytes, χMax. The horizontal extent of the blocks shows the bin size Th, and the 

vertical extent shows the bin size χMax. The gray‐scale code used to specify the fraction values is 

shown in the inset. 

 

Table S1.  Representative hematological parameters from subjects with hemoglobinopathies. 

 



Figure S1 



SUPPLEMENTAL TABLE 1. REPRESENTATIVE HEMATOLOGICAL   PARAMETERS   FROM   SUBJECTS   WITH   HEMOGLOBINOPATHIES

Subject WBC RBC HGB HCT MCV MCH MCHC RDW Platelet count
K/μL M/μL g/dL % fL pg g/dL % K/μL

#1, HbSS 5.43 2.63 (L) 10.8 (L) 30.5 (L) 116.0 (H) 41.1 (H) 35.4 17.5 (H) 295

#2, HbSS 5.83 1.98 (L) 9.0 (L) 25.9 (L) 129.9 (H)*4  45.0 (H)*          34.6* 15.2 (H) 348

#3, HbAS 9.48 4.27 12.2 35.7 83.6 28.6 34.2 13.5 307

#4, HbAS 6 4.6 (L) 13.4 (L) 39.6 (L) 86.1 29.1 33.8 12.2 179

#5, HbAS 3.48 (L) 4.47 13.3 38.5 86.1 29.8 34.5 13.6 236

#6, α-Thal trait 5.01 5.54 14.2 44.1 79.6 25.6 (L) 32.2 (L) 15.9 (H) 232
(αα/α-)
#7, α-Thal trait 6.29 5.97 13.1 (L) 42.1 71.2 (L)* 22 (L)* 30.9 (L)* 15.5 (H) 217
(α-/α-)
#8, α-Thal trait 8.66 6.48 (H) 14.1 44.8 69.1 (L) 21.8 (L) 31.5 (L) 15.4 (H) 223
(α-/α-)

#9, β-Thal trait 4.68 4.98 11.8 36.6 73.5 (L) 23.7 (L) 32.2 (L) 15.0 (H) 207

#10, β-Thal trait 7.39 5.65 (H) 12.1 37.4 66.2 (L) 21.4 (L) 32.4 14.7 (H) 232

#11, β-Thal trait 7.52 4.56 10.2 (L) 32.6 (L) 71.5 (L) 22.4 (L) 31.3 (L) 14.2 240

#12, β-Thal trait 6.27 6.66 (H) 14.1 43.5 65.3 (L) 21.2 (L) 32.4 15.5 (H) 213

LOW (L) HIGH (H)

* Mean values from several blood samples




