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APPENDIX: PROOF OF ASYMPTOTIC PROPERTIES

We establish the consistency of the proposed EMSELE é for £€° by applying the lemma developed
by Weaver (2001) as an extension of the result of Foutz (1977), which states the existence of
a unique consistent solution to a general estimating equation. We then derive the asymptotic
normal properties of EMSELE by standard methods given the consistency.

We require the following conditions:
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(C1) The parameter space, B, is a compact subset of RP. 3° lies in the interior of B, and the
covariate space, Z, is compact;

(C2) Ao(t) is strictly positive and differentiable for ¢ € [0, 7];

(C3) Let Séd) (8,t) and sgd) (8,t) (d=0,1,2) be as in Section 2.3. There exists a neighborhood
D of 8% such that  sup ||S’éd)(6,t) — s(()d)(ﬁ,t)ﬂ £, 0, d=0,1,2;

tel0,7],8€D

(C4) s (d) (8,t), d =0, 1,2 are continuous functions of 8 € D uniformly in ¢ € [0, 7]. (d)(,B, t), d
0,1,2 are bounded on D x [0, 7], and 50 (ﬂ t) is bounded away from zero on D x [0, 7]. Inter-
changes of differentiation and integration of 580)(6,15) are valid for the first and second partial
derivatives with respect to [3;

(C5) The matrix Ao(8°) = [y vo(8°, 1) (8, )Xo (t)dt is positive definite.

(C6) Interchanges of differentiation and integration of fg a,(¢t|Z) are valid for the first and

second partial derivatives with respect to f;

K
(C7) The quantities > %Vﬁj.P[(Z; B%), j =1,---,p are linearly independent on Z, i.e.,
=1 !
P K
if o is any p-vector such that Y a; > p‘W/—O’JOV@Pl(Z; B%) = 0 for almost all Z € Z, then o = 0.
j=1 1=1 !
Proof of Theorem 2.1: We first calculate the first and second derivatives of the profile

likelihood function. We write the resulting profile likelihood function in (2.8) as

1(8,7) = [1(B) + 12(B) + I3(8, ),

L(B)=A; ( — log( ZYl 621)7
IS
K

L(B) = log fy4,(T:|Z),

k=1 iESk

K
13( Z Z log (no 1+Z—Pz Zi; B) > — an log 7. (A1)
k=1

k=01€S}
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The first derivatives of the profile likelihood function are:

all Z/( S()B’i)dwt),

1€8So
k=14€S), fb’Ao T|Z)

813 57 Z Z Zl 1 noﬂlvﬁ‘Pl(Zl)B)
k=0ics, LT Y nz;,Pl(Zi,ﬁ)

n ;: (Z“B)
31357 ZZ o2, - _m m=1,-,K. (A.2)
k=0ics, LT Zl:l nel-P(Z;8)  Tm

The second derivatives of the profile likelihood function are:
20 ( ) €y ®2
3535’ S(O) S©(B,1)

9l5(B) i V3,12 (Vafas, (T2
fs.40(TilZs) fs.4, (T3l Z) ’

i

. K =n ®2
(BT i Yt e VEP(ZsB) (Zzzl R0 VBPI(Z%@)
= K ] 2
imoies, \ LT 2= mor, D12 6) (1 + S0 e P Zs 6))

and

U8, ez VpPn(Zi ) & iz P (255 8) (212 1,;; -VsP(Zi; B)
aﬁdanm Z 2 ny +>> ( )

k=014€Sk L+ Zl 1 nom PZ(Z“B) k=01i€Sy (1 + El 1 nom (Zza 6))

_8Z3(577T) _ _i Z 7LZ7T2 m(Zzaﬂ)n(ﬂp r Zi; Z Z ,Loﬂs (Znﬁ) _ TLm(S
n; 2 mnrs
O Oy k=0 i€S, (1+Zz T Pl(Zzaﬁ)> i 1+ X nomPI(Z“ﬂ) Tm

| (A.3)

)

where 0., = 1 if m = r and 0 otherwise, for m,r =1,--- | K.

By a straightforward extension of the classical results on Cox’s model (Andersen and Gill,

1982; Kalbfleisch and Prentice, 2002), we can obtain that la[éigﬂ) £, 0, -+ %éla(ﬁﬁ,) £, poAo(B)

uniformly for B in a neighborhood of 3°, and \}6118(5) LN N(0, poAo(B%)), where pg =

hm no/n, and Ag(f) is described in Section 2.3. Thus, according to the law of large numbers,
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we can show that

» K K 1) .
10l v (T|2) L VP28
Lol szm( 5fﬁAOTZ| ) ZpkEk (ZH? Vs 2O\ _, o,
" k=1 f5,4,(T12) 1+ 305 22R(Z:8)

2L Pl(Z B)

. K 1+zl ) pgal P.(Z3) o
1
o 2 | i | =m0, (A4)

k=0 psf‘.{Q Pr(Z;B) fr—f(

1+ZIK:1 m P (Z;8)

where py = nh—{%o no/n, pr = nh_{rgo ng/n. Then we have %ag(f) converges to s(§) = (Zég) in

probability. When evaluate at the true value ¢, we can show s(£°) 0.

Furthermore, by the uniform convergence theorem established by Jennich (1969), we can

FRIG)
0¢0¢’

0 J11(§) J12(€) .
¢", where J(¢ ((le(ﬁ)) .122(9) with

obtain that —l

converges to J(§) in probability uniformly for £ in a neighborhood around

K K K
J(€) = poo(B) + Y By (~V3log f, 5, (T12)) + 3 pr (vg log(1+ ﬁﬂ(z; 5))) :

k=0 =1

K K p1/7}
T2(€) = > prEy (Vi log(1 Z ) + :
pr /T

k=0 =1
K

K
Ji2(€ ZpkEk (V,&T log(1 Z ) .

k=0 1

By Assumption (C7), it also can be shown that J(€°) is invertible. Then, the convergence of £ is
achieved by applying Lemma 3.3 in Weaver (2001).

Given the consistency result we obtain, we can derive the asymptotic normal properties of
EMSELE by standard methods. By using the first-order Taylor series expansion of 22&) 4t &0,

we have

—1 ~ ~ ~
. B 321(,5 ) Lnall(ﬁo) %312@0) 1 dl5(€%)

where £* lies on the line between é and £°. Using the consistency of é , it is obvious to conclude
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a1
that ( LPLp(e )) L, J71(£Y) as n — oo. It follows the Central Limit Theorem that

T n T 9EdE
1 0L (8%)
0 0 0

~ 0 K
(iaala(g)> o, [ Ve 0 (A.6)
0 0 0
and
1 9i3(£%) 4 0
N = N (0, £3(£")), (A7)
with

™

K /e
P Y A AT
=1

=
143 20 Py (Z58)
=1
le/%ﬂo Py (Z;5)

K S
K
Ss(6) = > prVary Lt 3 P Pi(Z:6)
k=0 - .

T

LELPO Py (Z55) .
K i
TK

K

1430 L0 Py (Z58)
=1

The asymptotic property of é holds by Slutsky’s theorem. Finally, by consistency results and the

continuous mapping theorem, a consistent estimator for the asymptotic covariance matrix Z(fo)

is J7HE)(S1(E) 4 22(€) + B3(€))J1(E), where J, £1 5 and 33 are obtained by replacing the
large-sample quantities in J, 31 Yo and X3 with their corresponding small-sample quantities.
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