

Figure S1, Related to Figure 1. Pho23 regulates ATG gene transcription in an Rpd3-dependent manner (A) Number of genes that have more than a 1.5-fold change in expression level in $pho23\Delta$ and $rpd3\Delta$ [4] strains relative to the wild-type strain are shown. Numbers in parentheses indicate the number of the *ATG* genes upregulated in the mutant strains.

(B) Cells were grown in YPD to mid-log phase and RNA extracted as described in Materials and Methods. The relative mRNA levels of different *ATG* genes were measured in wild-type and mutant strains. The mRNA level of each gene in wild-type cells was set to 1, and other values were normalized. The error bars represent the SEM of three independent experiments.

(C) Protein levels of Atg1, Atg8, and Atg9 were analyzed from protein extracts generated from mid-log phase wild-type (WLY176), *pho23* Δ (JMY048), *rpd3* Δ (JMY093), *pho23* Δ *rpd3* Δ (JMY094), *ume6* Δ (JMY097), and *pho23* Δ *ume6* Δ (JMY098) strains. Endogenous Atg proteins were detected by the indicated antisera, and Pgk1 was used as a loading control.

Table S1, Related to Figure	1. Strains used	in this study
------------------------------------	-----------------	---------------

Name	Genotype	Ref
BY4742	MAT α his 3 Δ 1 leu 2 Δ 0 ura 3 Δ 0	Research Genetics/Invitrogen
CWY230	SEY6210 vac8Δ::KAN	[S1]
FRY143	SEY6210 $vps4\Delta$::TRP1 $pep4\Delta$::LEU2	[S2]
HDY001 (A9Δ)	WLY176 ATG9Δ::LEU2 pRS406::URA3	This study
HDY002	WLY176 ATG9Δ::LEU2 pRS406-P _{ATG9} -ATG9-GFP::URA3	This study
(A9W1)		
HDY003 (A9Lo)	WLY176 $ATG9\Delta$:: $LEU2 pRS406-P_{ATG23}-ATG9-GFP$:: $URA3$	This study
HDY007	WLY176 $pRS406-P_{4TCS}-ATG9-GFP\cdots URA3$	This study
(A9OE)		1110 Study
JMY015	$ZFY202 \ pho23\Delta::KAN$	This study
JMY018	BY4742 <i>pho23</i> Δ:: <i>HIS5</i>	This study
JMY020	TVY1 pho23∆::HIS5	This study
JMY047	SEY6210 <i>pho23</i> ∆:: <i>HIS5</i>	This study
JMY048	WLY176 <i>pho23</i> ∆:: <i>HIS5</i>	This study
JMY050	FRY143 $pho23\Delta$::KAN	This study
JMY093	WLY176 <i>rpd3</i> ∆:: <i>HIS5</i>	This study
JMY094	WLY176 $pho23\Delta$::KAN $rpd3\Delta$::HIS5	This study
JMY097	WLY176 ume6Δ::HIS5	This study
JMY098	WLY176 $ume6\Delta$::HIS5 $pho23\Delta$::KAN	This study

JMY099	WLY176 ATG12-PA::HIS5	This study
JMY100	WLY176 pho23Δ::KAN ATG12-PA::HIS5	This study
JMY102	$YZX94 pho23\Delta::KAN$	This study
JMY103	HCY129 <i>pho23</i> ∆:: <i>KAN</i>	This study
JMY104	WLY176 ATG7-PA::HIS5	This study
JMY105	WLY176 ATG7-PA::HIS5 pho23A::KAN	This study
JMY146	CWY230 <i>pho23</i> ∆:: <i>HIS5</i>	This study
HCY129	SEY6210 ATG29-PA::TRP1	[\$3]
MZY089	SEY6210 atg8A::HIS5 PATG8-GFP-Atg8::LEU2	[S4]
SEY6210	MATα leu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 suc2-Δ9 lys2-801 GAL	[85]
SKB233	SEY6210 atg8A::HIS5 P _{ATG8} -GFP-Atg8::LEU2 pho23A::KAN	This study
TVY1	SEY6210 <i>pep4</i> Δ:: <i>LEU2</i>	[86]
W303-1B	MATa leu2-3,112 ura3-1 his3-11,15 trp1-1 ade2-1 can1-100	[S7]
WLY176	SEY6210 pho13 Δ pho8 Δ 60	[S8]
XLY054	WLY176; <i>ATG</i> 9Δ:: <i>LEU2 pRS406</i> :: <i>URA3 pep4</i> Δ:: <i>KAN</i>	This study
XLY055	WLY176; $ATG9\Delta$:: $LEU2 pRS406-P_{ATG23}-ATG9-GFP$:: $URA3 pep4\Delta$:: KAN	This study
XLY056	WLY176; $ATG9\Delta$:: $LEU2 pRS406-P_{ATG9}-ATG9-GFP$:: $URA3 pep4\Delta$:: KAN	This study
XLY057	WLY176; $pRS406-P_{ATG8}-ATG9-GFP::URA3 pep4\Delta::KAN$	This study
YZX94	BY4742; <i>ATG14-PA::HIS5</i>	This study
ZFY202	W303-1B; <i>pho13</i> ∆ <i>pho8</i> ∆60	[89]

		Auto	ophagic bod	y size			Vacuo	ole size		Autophagic boo	Total flux	
	Measured cross- sectional		Estimated original			Measured cross- sectional		Estimated original		Measured cross-	Estimated	
	Mean rad	SD rad	Mean rad	SD rad	Volume	Mean rad	SD rad	Mean rad	SD rad	sections/cen	boules/cell	
WT sample set 1	154.134 61.579 164.174 57.207 2.61E+07		996.298	276.647	1132.894	237.068	5.982	32.714	8.55E+08			
WT sample set 2	145.456 61.472 150.492 57.964 2.16E+07		989.502	265.114	1132.552	218.821	7.463	43.532	9.41E+08			
WT average	;		157.333	57.586	2.39E+07						38.123	8.98E+08
<i>pho23</i> ∆ sample set 1	140.472	47.293	153.910	42.607	1.91E+07	1015.804	293.056	1148.214	257.471	13.725	80.583	1.54E+09
<i>pho23</i> sample set 2	133.372 49.776 142.444 46.510 1.64E+07		978.013	269.367	1107.574	232.527	15.000	90.619	1.49E+09			
<i>pho23</i> ∆ average			148.177	44.558	1.77E+07						85.601	1.51E+09

Table S2, Related to Figure 3. WT vs. *pho23* Δ TEM data

 Table S3, Related to Figure 4. De-multiplexing results in 22M-31M reads of RNA-seq samples

			% of ra	w reads			Mean error rate	
Sample Description	Barcode (5'->3')	Raw reads	0 mismatch barcode	1 mismatch barcode	% bases >= Q30	Mean quality score		
WT growing	CGATGT	25,263,020	98.4%	1.6%	96.3%	37.88	1.6/10,000	
<i>pho23</i> ∆ growing	TGACCA	30,612,154	97.8%	2.3%	96.2%	37.86	1.6/10,000	
WT starved	GCCAAT	21,992,351	97.8%	2.2%	96.2%	37.85	1.6/10,000	
<i>pho23</i> Δ starved	CAGATC	24,344,369	97.9%	2.1%	96.2%	37.87	1.6/10,000	
No barcode	NA	3,124,074	NA	NA	93.8%	37.03	2.0/10,000	
	Total:	105,335,968						

Sample Description	Raw reads	Mapped reads	% of raw	Mapped, score ≥88	% of raw	Uniquely mapped, score ≥88	% of raw	Multi mapped, score ≥88	% of raw
WT growing	25,263,020	23,690,179	93.8%	22,965,459	90.9%	17,685,706	70.0%	5,279,753	20.9%
<i>pho23</i> Δ growing	30,612,154	28,348,799	92.6%	27,483,468	89.8%	21,475,572	70.2%	6,007,896	19.6%
WT starved	21,992,351	20,296,160	92.3%	19,636,451	89.3%	17,049,729	77.5%	2,586,722	11.8%
$pho23\Delta$ starved	24,344,369	22,545,466	92.6%	21,846,077	89.7%	18,481,608	75.9%	3,364,469	13.8%

Table S4, Related to Figure 4. Mapping the reads of RNA-seq samples to the yeast transcriptome using Bowtie2

Table S5, Related to Figure 5. A9 strains TEM data

			Auto	phagic bod	ly size			Vacuo	ole size		Autophagic bo	Total flux	% flux	
		Measured	l cross-	Eat				Measured cross-			Maagurad			
		sectio	onal	Estimated original			sectional			cross-	Estimated			
		Mean rad	SD rad	Mean rad	SD rad	Volume	Mean rad	SD rad	Mean rad	SD rad	sections/cell bodies/cell			
e 1	A9Lo	151.214	44.113	169.029	36.365	2.32E+07	839.859	216.434	939.549	194.337	2.856	12.686	2.94E+08	50.7%
mpl	A9WT	133.150	35.521	146.124	31.534	1.50E+07	835.052	219.762	929.285	201.215	8.232	41.660	6.24E+08	107.6%
Sa	A9OE	130.633	33.522	143.491	29.268	1.40E+07	893.063	257.700	989.008	241.469	10.000	55.496	7.76E+08	133.8%
e 2	A9Lo	150.904	49.666	163.046	46.375	2.29E+07	885.798	251.927	982.226	234.885	3.088	14.314	3.28E+08	56.6%
mple	A9WT	126.450	33.223	137.063	30.134	1.24E+07	914.461	255.760	1026.609	233.004	7.309	43.105	5.36E+08	92.4%
Sai	A9OE	128.857	35.898	138.916	33.148	1.33E+07	906.265	255.857	1012.629	235.507	9.155	54.567	7.23E+08	124.8%

Supplemental References

- S1. Umekawa, M., and Klionsky, D.J. (2012). Ksp1 kinase regulates autophagy via the target of rapamycin complex 1 (TORC1) pathway. J Biol Chem 287, 16300-16310.
- S2. Cheong, H., Yorimitsu, T., Reggiori, F., Legakis, J.E., Wang, C.-W., and Klionsky, D.J. (2005). Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell *16*, 3438-3453.
- S3. Mao, K., Chew, L.H., Inoue-Aono, Y., Cheong, H., Nair, U., Popelka, H., Yip, C.K., and Klionsky, D.J. (2013). Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc Natl Acad Sci U S A *110*, E2875-2884.
- S4. Cebollero, E., van der Vaart, A., Zhao, M., Rieter, E., Klionsky, D.J., Helms, J.B., and Reggiori, F. (2012). Phosphatidylinositol-3-phosphate clearance plays a key role in autophagosome completion. Curr Biol *22*, 1545-1553.
- S5. Robinson, J.S., Klionsky, D.J., Banta, L.M., and Emr, S.D. (1988). Protein sorting in *Saccharomyces cerevisiae*: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol *8*, 4936-4948.
- S6. Gerhardt, B., Kordas, T.J., Thompson, C.M., Patel, P., and Vida, T. (1998). The vesicle transport protein Vps33p is an ATPbinding protein that localizes to the cytosol in an energy-dependent manner. J Biol Chem *273*, 15818-15829.
- S7. Thomas, B.J., and Rothstein, R. (1989). Elevated recombination rates in transcriptionally active DNA. Cell 56, 619-630.
- S8. Kanki, T., Wang, K., Baba, M., Bartholomew, C.R., Lynch-Day, M.A., Du, Z., Geng, J., Mao, K., Yang, Z., Yen, W.-L., et al. (2009). A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol Biol Cell *20*, 4730-4738.
- S9. Yang, Z., Geng, J., Yen, W.-L., Wang, K., and Klionsky, D.J. (2010). Positive or negative roles of different cyclin-dependent kinase Pho85-cyclin complexes orchestrate induction of autophagy in *Saccharomyces cerevisiae*. Mol Cell *38*, 250-264.