
Supporting Information for
Quantifying the benefits of vehicle pooling

with shareability networks

Paolo Santi, Giovanni Resta, Michael Szell, Stanislav Sobolevsky,
Steven Strogatz & Carlo Ratti

In this supporting information we present the detailed methods, including the handling of the
data set, the formal derivation of the network-based approach used to quantify the benefits of a
shared taxi system, and essential extended details of the analysis.

Data set and pre-processing
The data set contains origin-destination data of all 172 million trips with passengers of all
13,586 taxicabs in New York during the calendar year of 2011. Each vehicle is associated with
a license, a so-called medallion, which is synonymously used as a name for the vehicles. These
medallion taxis are the only vehicles in the city permitted to pick up passengers in response
to a street hail. A medallion may be purchased from the City at infrequent auctions, or from
another medallion owner. Because of their high prices medallions and most cabs are owned
by investment companies and are leased to drivers. There are 39,437 unique driver IDs in the
data set, which corresponds to 2.9 drivers per medallion on average. Note that we unfortunately
do not have explicit information on the number of passengers per vehicle, however, following
the data reported by [1], that the average daily number of passengers served by NY taxis is
600,000, with 450,000 trips on average, the average number of passengers per trip is around
1.3. The data set contains a number of fields from which we use the following: medallion ID,
origin time, destination time, origin longitude, origin latitude, destination longitude, destination
latitude. Times are accurate to the second, positional information has been collected via Global
Positioning System (GPS) technology by the data provider. Out of our control are possible
biases due to urban canyons which might have slightly distorted the GPS locations during the
collection process [2]. All IDs are given in anonymized form, origin and destination values
refer to the origins and destinations of trips, respectively.

For creating the street network of Manhattan we used data from openstreetmap.org. We
filtered the streets of Manhattan, selecting only the following road classes: primary, secondary,
tertiary, residential, unclassified, road, living street. Several other classes were deliberately left

1

out, such as footpaths, trunks, links or service roads, as they are unlikely to contain delivery or
pickup locations. Next we extracted the street intersections to build a network in which nodes
are intersections and directed links are roads connecting those intersections (we use directed
links because a non-negligible fraction of streets in Manhattan are one-way). The extracted
network of street intersections was then manually cleaned for obvious inconsistencies or re-
dundancies (such as duplicate intersection points at the same geographic positions), in the end
containing 4091 nodes and 9452 directed links. This network was used to map-match the GPS
locations from the trip data set. We only matched locations for which a closest node in the
street intersection network exists with a distance less than than 100 m. We matched GPS points
to street intersections rather than to points on the closest street segments as a reasonable com-
promise between high accuracy (the average length of street segments in Manhattan is 126 m)
and granularity of discretization that is mainly relevant in the estimation of travel times, see
SI Section Computing travel times. Finally, from the remaining 150 million trips we discarded
about 2 million trips that had identical starting and end points, and trips that lasted less than one
minute.

Static and dynamic implementations, and the relevance of empty trips
Before addressing the aim of this work of developing a theoretical framework for the rigorous
quantification and optimization of general spatio-temporal sharing problems, in particular of trip
sharing in taxi systems, we draw in this section the connection to the corresponding practical
issues that come along with concrete implementations of such systems. A street hailing based,
conventional taxi system, ideally features taxis that i) when empty, try to find a passenger as fast
as possible by choosing an optimal passenger-finding strategy [3, 4], ii) when occupied, deliver
passengers as fast as possible to their destination. For taxi operations that are not based on
street hailing but on trip queries, as facilitated by modern mobile phone apps and services, the
sub-problem i) becomes an issue of efficiently locating, scheduling and dispatching the closest
empty taxis.

In conventional taxi systems, the problem of dispatching taxis to a trip request is conceptu-
ally straightforward: Find the closest empty taxi – where the metric for closeness can involve
vehicle velocities, traffic conditions [5], etc. In dynamic approaches to taxi sharing however,
in which taxis are allowed to re-route and to pick up new passengers on the fly, the concrete
operational issues of the detailed spatial query setup and the communication protocol design
between taxis and dispatch system becomes potentially intricate. This set of problems has been
satisfactorily solved by a recently published service model called T-share [6]. Using empirical
data and simulations, the study has pointed out the impressive potential of a heuristic, dynamic
approach, and has provided efficient and scalable algorithms to solve the taxi searching and
scheduling sub-problems which occur when taxis are allowed to change their routes on the fly.
It found that a dynamically scheduled taxi system is able to handle ridesharing, allowing in the
city of Beijing to service 25% additional taxi users while saving 13% travel distance compared
to services without ridesharing.

2

As we derive formally in the following sections, it is already possible to achieve high levels
of trip sharing and extraordinary benefits with simple static implementations rather than with
dynamic ones. A static perspective additionally allows rigorous quantification of the benefits
using provably optimal algorithms from graph theory. Such a static implementation of taxi
sharing can be imagined as follows, from the perspective of a passenger: 1) Submit trip request
source and destination to the central system, for example via mobile phone app, 2) wait up to
δ = 1 min for the system to respond with a sharing option presenting the information of es-
timated arrival time without sharing and how, due to sharing, the trip might be prolonged by
a time up to ∆ (or equivalently, the passenger is presented a time window of possible arrival
times), 3) either confirm or deny the presented sharing option. After the k passengers have
confirmed their participation, the shared trip becomes one assignment of bundled, unchange-
able requests with a well-defined route having a starting point, intermediate points, and an end
point, which can be handled by any conventional taxi dispatch system. Only at this step do the
locations of the surrounding taxis become relevant. Therefore, a static implementation builds
directly on existing taxi systems without the need to reconsider the dispatch process.

Since such a static implementation of a shared taxi system can be regarded as independent of
the problem of dispatching and can build directly on top of existing dispatching solutions, it is
not in the scope of our work to revisit implementation issues concerning search and scheduling
of empty taxis. Still, it is helpful to understand quantitatively the relevance of empty trips in the
general picture of taxi systems since one could suspect that the cruising of empty taxis might
be the main source of wasting energy in terms of the effective mile per gallon. For this reason,
we measured the distribution of durations of occupied trips versus the durations in-between
occupied taxi trips, Fig. S1. The figure shows the empirical probability distribution of durations
of occupied trips, and of the time spans in-between the occupied trips which comprise both
empty trips and all activities where taxis are not being used to transport passengers such as shift
changes, lunch breaks, vehicle maintenance. Specific information for distinguishing between
the empty trips and the rest of these downtime activities is unfortunately not available, as the
data points only include the spatial and temporal information of the pickups and dropoffs of
occupied trips. In any case, the in-between durations peak below two minutes, substantially
lower than the durations of occupied trips which peak at around six minutes, showing that taxis
tend to find new passengers relatively quickly and that taxis spend about 75% of their on-service
time performing occupied trips. This is at least the case for Manhattan; it is an open question
whether the dispatching sub-problem becomes more relevant in cities with lower taxi demand.
Further, the distribution of in-between durations is long-tailed due to the various types and
occurences of taxi downtimes, see Fig. S1 inset. For example, bumps in the distribution at 6
and 14 hours possibly indicate shift-related durations. However, the vast majority of empty trips
are covered by the durations that are shorter than half an hour, which includes over 96% of all
downtimes, shown in the main panel of Fig. S1.

For the specific problem of implementing a dynamic taxi dispatching and trip sharing sys-
tem these observations suggest that while efficient dispatching and routing of empty taxis is
doubtlessly a non-negligible issue, especially for the possible small fraction of cases where

3

taxis do not find passengers quickly, it might be of higher importance to solve the main problem
related to the occupied trips, namely of matching trips efficiently. In any case, to understand
thoroughly a taxi system’s improvability of the handling of empty trips, explicit data of empty
trips must be available, preferably containing frequently sampled points per trip, which is not
the case in the available data set.

A network-based approach for sharing taxi rides
In contrast to typical approaches based on linear programs [7, 8] and references therein, we
show in this supplementary information in detail how our new approach allows polynomial-
time, i.e., feasible, computation of the optimal ride sharing strategy when at most two trips
can be combined, and polynomial-time computation of a constant-factor approximation of the
optimal solution when k > 2 trips can be shared. Notice, though, that the degree of the involved
polynomials increases with k. In practice, the approach turns out to be computationally feasible
for k = 3, while it becomes impractical for larger values of k.

The goal of the trip sharing strategy can be either minimizing the number of trips performed
or the total travel cost for a given set of trips, subject to a quality of service constraint (maximum
allowed delay at delivery/destination). The former goal allows quantifying the actual number of
taxis needed to satisfy the current taxi demand with a shared taxi service. By assuming that cost
of a trip is proportional to the travel time, the latter goal becomes a proxy of the carbon emis-
sions generated by the shared taxi fleet to accommodate the total traffic demand. By comparing
the total travel time of the shared taxi service with that of the traditional, non-shared taxi service,
we can thus quantify the expected reduction in pollution achieved by a shared versus a tradi-
tional taxi service. Of course the factors which determine vehicle emissions can be complicated
and highly non-linear, such as the most important factor of speed and engine load, which are
themselves affected by traffic congestion, driver mentality, traffic signals, posted speed limits,
etc. [9, 10]. However, all things being equal, as general traffic conditions presumably remain
largely unaltered by the sharing service, the cumulative emissions can be treated as proportional
to the travel time.

The high-level idea, elaborated rigorously in the following sections, is to cast the problem
of identifying the best trip sharing strategy as a network problem, where nodes of the network
represent taxi trips, and links connect trips that can be combined. The resulting network is
called the shareability network. A maximum tolerated time delay ∆ at both pickup and deliv-
ery location regulates the density of the shareability network – the higher ∆ the more sharing
opportunities arise but the lower the quality of service becomes due to the increased delays. We
show that the problem of finding the optimal trip sharing strategy when at most two trips can be
combined is equivalent to the problem of finding the maximum matching in the shareability net-
work, which can be solved in timeO(m

√
n), where n is the number of nodes andm the number

of links in the network. Notice that the shareability network is likely sparse, i.e. the average
node degree is a constant which does not depend on n, hence the above time complexity reduces
to O(n

√
n). More specifically, the maximum matching in the shareability network corresponds

4

to the trip combination strategy that minimizes the number of performed trips. If links in the
trip graph are weighted with the travel cost reduction, i.e. the difference between the duration
of combined ride and the two single rides, then the problem of finding the trip combination that
minimizes the total travel cost is equivalent to the problem of finding the maximum weighted
matching in the shareability network, which is also solvable in polynomial time.

If we relax the assumption that at most two trips can be combined, the complexity of the
problem increases. In fact, the problem(s) at hand becomes equivalent to the weighted matching
problem on k-bounded hyper-networks, which is NP-complete when k > 2 in general hyper-
networks. However, polynomial-time algorithms are known that compute a solution which is
within a constant factor from optimal. In particular, when the number of combined trips is at
most k, for any constant k > 2, simple greedy algorithms can be used to produce a solution
within a factor k from optimal.

We first present the case in which at most two trips can be combined, and then proceed to
present the more general (and complex) case of an arbitrary number of combined trips. To ease
presentation, we assume single passenger trips.

The two-trips sharing case
In this section, we assume that at most two trips can be combined. Notice that this is a stricter
condition than assuming that the maximum taxi capacity is two. The difference between the
two assumptions is exemplified in Fig. 1G of the main text. We have three trips T1, T2, and
T3. Assuming that delay constraints on passenger delivery are satisfied, the three trips can be
combined in a single trip even using a taxi with capacity two if the passenger of T2 is loaded
onboard taxi performing T1 at time t2, unloaded at time t′2 > t2, and the passenger of trip T3 is
loaded at time t3 > t

′
2 – cfr. the middle case in Fig. 1G of the main text. This combination of

trips is not allowed in our model, since only two trips at most can be combined. Notice, on the
other hand, that any shared trip obtained by combining at most two single trips can be realized
using a taxi with capacity two. More generally, any k combination of trips can be performed
using a taxi with capacity k. Hence, the trip combination solutions presented in the following
can be accomplished using a taxi fleet where each taxi has capacity k, where k is the upper
bound on the number of trips combined in a single trip.

Let S = (T, L) be the (undirected) shareability network defined as follows. The node set
T = {T1, . . . , Tn} corresponds to the set of all possible n trips. The link set L = {L1, . . . , Lm}
is built as follows: link (Ti, Tj) ∈ L connects nodes Ti and Tj if and only if trips Ti and Tj
can be combined. The trip obtained combining trips Ti and Tj is denoted Ti,j in the following.
Whether trips Ti, Tj can be combined depends on spatial/temporal properties of the two trips,
and on an upper bound ∆ on the maximum delivery delay customers can tolerate. How to
derive the set of combinable trips (link set L) given a travel data set such as the one at hand is
a problem we defer to the next section. In the remainder of this section, we assume that L is
known and given as input to the problem.

Definition 1. A set T of possibly combined trips, where combined trips are composed of two

5

single trips, is defined as T = T1 ∪ T2, where T1 ⊆ T is a set of single trips, and T2 is a set of
combined trips Ti,j , for some i, j ∈ {1, . . . , n}.

Definition 2 (Feasible trip set). A set T of possibly combined trips is feasible if and only if all
trips in T appear once in T , formally:

∀Ti ∈ T, (Ti ∈ T1) ∨ (∃1j s.t. Ti,j ∈ T2) .

Notice that any trip Ti ∈ T can appear only once in a feasible trip set, either as a single trip
(if Ti ∈ T1), or combined with another trip (if Ti ∈ T2). The two travel optimization problems
we solve in the following are formally defined as follows:

Definition 3 (MINIMUMNUMBERTRIP – MNT). Given the shareability network S = (T, L),
determine a feasible trip set of minimum cardinality.

Definition 4 (MINIMIZETOTALTRAVELCOST – MTTC). Given the weighted shareability net-
work S = (T, L) where each link (Ti, Tj) ∈ L is weighted with wij = c(Ti) + c(Tj) − c(Ti,j),
where c(Tx) denotes the cost of trip Tx, and c(Ti,j) the cost of the combined trip Ti,j; determine
a feasible trip set such that the total travel cost is minimized.

Regarding problem MTTC, we observe that we can assume w.l.o.g. that c(Ti,j) < c(Ti) +
c(Tj), since otherwise we can remove link (Ti, Tj) from L without impacting the optimal solu-
tion.

Definition 5. (MATCHINGS) Let S = (T, L) be a shareability network. A matching on S is a
set of links L′ ⊆ L such that no two links in L′ share an endpoint. A maximum matching on S
is a matching on S of maximum cardinality. If links in S are weighted, a maximum weighted
matching on S is a matching L′ on S such that the sum of weights of links in L′ is maximum.

Lemma 1. A set T of possibly combined trips is feasible if and only if its subset T2 of combined
trips is a matching of S.

Proof. Let T be any feasible set of combined trips. Since T is feasible, it contains either single
trips, or trips obtained by combining two trips. Let T2 ⊆ T be the set of combined trips in T .
For any combined trip Ti,j ∈ T2, we consider the corresponding link (Ti, Tj) in the shareability
network. Notice that, for any other link of the form (Ti, Th) (or (Th, Tj)) in the shareability
network, the corresponding combined trip Ti,h (or Th,j) is not in T2, since otherwise conditions
on maximal trip combination would be violated. It follows that no two links corresponding to
the combined trips in T2 share a node, i.e., the links corresponding to trips in T2 are a matching
on S.
The proof of the reverse implication is similar. Any matching M of S uniquely determines a
set of combinable trips T2. A feasible set T of possibly combined trips is then obtained from T2
by adding as single trips all trips whose corresponding nodes in S are not part of the matching
M .

6

Theorem 1. Let Mmax ⊆ L be a maximum matching on S. Then, the minimum cardinality of a
feasible set of possibly combined trips is n− |Mmax|.

Proof. By Lemma 1, the cardinality of any feasible set T of possibly combined trips is n−|M |,
where |M | is the cardinality of the matching M corresponding to the subset T2 of combined
trips in T . The proof then follows by observing that the minimum cardinality of a feasible set
is obtained when |M | is maximum, i.e., when M is a maximum matching for S.

The proof of Theorem 1 suggests a polynomial time algorithm for solving MNT, which is
reported below. The feasible set T of trips to be performed is initialized to the entire set of
single trips T . Given the shareability network S, a maximum matching Mmax on S is computed
using, e.g., Edmond’s algorithm [11]. For any edge (Ti, Tj) ∈ Mmax, the combined trip Ti,j is
included in T , while the individual trips Ti and Tj are removed from T . After all edges inMmax

have been considered and processed as above, T contains a set of (possibly combined) trips of
minimum size that satisfies all customers, i.e., it is a feasible trip set of minimum size. The
time complexity of MAXMATCH is determined by the complexity of the matching algorithm.
Considering that the shareability network is likely to be very sparse in practice, the Edmond’s
matching algorithm yields O(n

√
n) time complexity.

Algorithm MAXMATCH

Input: the shareability network S = (T, L)
Output: the set T of (possibly combined) trips to be performed
1. T = T
2. Build a maximum matching Mmax on S
3. for each (Ti, Tj) ∈Mmax do
4. T = T ∪ {Ti,j}; T = T − {Ti, Tj}
5 return T

Algorithm MAXMATCH for optimally solving MNT.

Theorem 2. Let Mmaxw ⊆ L be a maximum weighted matching on S, where S is link weighted
as described in Definition 4. Then, the feasible set of possibly combined trips of minimum total
travel cost has cost

cmin =
∑

i=1,...,n

c(Ti)−
∑

(Ti,Tj)∈Mmaxw

c(Ti) + c(Tj)− c(Ti,j) .

Proof. By Lemma 1, the subset T2 of combined trips of any feasible trip set T corresponds to
a matching M on S. For any edge (Ti, Tj) ∈ M , the travel cost reduction due to the combined
trip Ti,j with respect to the cost of the two single trips Ti, Tj is c(Ti) + c(Tj) − c(Ti,j). Thus,
the total travel cost for any feasible trip set T is given by the total travel cost of the single trips
(
∑

i=1,...,n c(Ti)), minus the sum of the cost savings achieved by the combined trips in M , i.e.,

7

∑
(Ti,Tj)∈M c(Ti) + c(Tj)− c(Ti,j) =

∑
(Ti,Tj)∈M wij . The proof then follows by observing that,

ifMmaxw is a maximum weighted matching on S, then the sum of the cost savings is maximized,
and the total travel cost of T is minimized.

The algorithm WEIGHTEDMAXMATCH to find the feasible trip set of minimum travel cost
is similar to MAXMATCH, the only difference being that the maximum matching algorithm
in step 2 is replaced with a maximum weighted matching algorithm. For instance, we can
use Edmond’s algorithm for weighted matching [11] , which on a sparse graph yields time
complexity O(n2 log n).

The k-trips sharing case

In this section, we generalize the results presented in the previous section to the more challeng-
ing scenario in which an arbitrary number k > 2 of trips can be combined. The only assumption
we make about the value of k in this section is that k does not depend on the total number of
trips n, i.e., k = O(1) in asymptotic notation. Considering that k is also an upper bound on
taxi capacity needed to accommodate the k combined trips, assuming k a small constant is
reasonable in any practical case.

We first present how a combination of up to k trips can be represented in form of a k-
bounded shareability hyper-network. Some definitions are in order before proceeding further.

Definition 6. A set T of possibly combined trips, where combined trips are composed of at
most k ≥ 2 single trips, is defined as T = T1 ∪ · · · ∪ Tk, where T1 ⊆ T is a set of single trips,
and Th, with 2 ≤ h ≤ k, is a set of combined trips Ti1,...,ih , for some i1, . . . , ih ∈ {1, . . . , n}.

Definition 7 (Feasible trip set). A set T of possibly combined trips is feasible if and only if all
trips in T appear once in T , formally:

∀Tj ∈ T, (Tj ∈ T1) ∨ (∃1h, ` s.t. (Ti1,...,ih ∈ Th) ∧ (i` = j)) .

Notice that also in this case, any trip Ti ∈ T can appear only once in a feasible trip set,
either as a single trip, or in a combined trip.

Definition 8. A hyper-network H is a pair H = (T,L) where T = (T1, . . . , Tn) is a set of
nodes (representing single trips in the context at hand), and L is a set of non-empty subsets of T
called hyper-links. The size of a hyper-link is the number of nodes it connects. A hyper-network
whose hyper-links have size ≤ k, for some integer k ≥ 2, is called a k-bounded hyper-network.

Definition 9. A (hyper-)matching M on the hyper-network H = (T,L) is a subset of the hyper-
links in L such that each node in T appears in at most one hyper-link.

Similarly to the previous section, given a set of trips T , we can represent all possible com-
binations of up to k trips – defined according to some quality of service criterion – with a k-
bounded hyper-network, which we call the shareability hyper-network. Formally, the trip hyper-
newtork is defined as the k-bounded hyper-networkH = (T,L), where Li = (Ti1 , Ti2 , . . .) ∈ L

8

if and only if trips Ti1 , Ti2 , . . . can be combined. Notice that, if hyper-link Li = (Ti1 , Ti2 , . . .)
belongs to the shareability hyper-network, so do all hyper-links formed of any subset of the
nodes connected by Li. This is due to the fact that, if, say, trip T1,2,3,4 is feasible, so do trips
T1,2, T1,2,3, etc. We call a hyper-link in H maximal if its incident nodes are not a subset of any
other hyper-link in H .

We are now ready to formally define the two considered optimization problems.

Definition 10 (k-MINIMUMNUMBERTRIP – kMNT). Given the shareability hyper-network
H = (T,L), determine a feasible trip set T of minimum cardinality.

Definition 11 (k-MINIMIZETOTALTRAVELCOST – kMTTC). Given the weighted shareability
hyper-network H = (T,L) where each link Li = (Ti1 , Ti2 , . . .) ∈ L is weighted with wc

i =∑
ij∈Li

c(Tij) − c(Ti1,i2,...), where c(Tij) denotes the cost of trip Tij , and c(Ti1,i2,...) the cost
of the combined trip Ti1,i2,...; determine a feasible trip set T such that the total travel cost is
minimized.

Lemma 2. A set T of possibly combined trips is feasible if and only if its subset Tc = T − T1
of combined trips is a (hyper-)matching of H .

Proof. The proof is along the same lines of the proof of Lemma 1.

Theorem 3. Let H = (T,L) be a shareability hyper-network, and assign weight wi = |Li| − 1
to each hyper-link Li ∈ L. Then, the minimum cardinality of a feasible set of possibly combined
trips is n−

∑
Li∈Mmaxw

wi, where Mmaxw is a maximum weighted matching of H .

Proof. By Lemma 2, any feasible trip set T uniquely defines a matching M in the shareability
hyper-network H . Consider any hyper-link Li in the matching M . By definition, wi represents
the number of trips that are saved by performing the combined trip corresponding to hyper-
link Li instead of performing all single trips in Li. For instance, if Li = {Ti1 , . . . , Tik}, the
combination of k trips allows reducing the number of performed trips from k to 1; i.e., the total
number of trips is reduced of wi = k − 1. Based on this observation, the total number of trips
performed for feasible trip set T equals n −

∑
Li∈M wi. The proof then follows by observing

that the total number of trips is minimized when
∑

Li∈M wi is maximized, i.e., when M is a
maximum weighted matching for H .

Unfortunately, the maximum (weighted) matching problem on k-bounded hyper-networks
is NP-complete for k > 2 on general hyper-networks, hence finding the optimal solution to
kMNT is likely computationally hard. However, a simple greedy heuristic can be used to find a
k-approximation of the optimal solution in time O(m logm), where m is the number of hyper-
links in the hyper-network, which yields O(n log n) complexity under our working assumption
of sparse shareability hyper-network. In the greedy heuristic, a hyper-link Li of maximum
weight is added to the current matching at each iteration, and hyper-links sharing at least one
node with Li are removed from the set of candidate hyper-links for matching before proceed-
ing to the next iteration. Observe that better approximation ratios can be obtained at the price

9

of increased (but still polynomial) time complexity using, for instance, the algorithm of [12]
which finds a 2(k + 1)/3 approximation of the optimal solution. Note that the weighted maxi-
mum matching problem on hyper-networks is equivalent to the weighted set packing problem.
The greedy algorithm for finding a k-approximation to the optimal kMNT solution is reported
below.

Algorithm GREEDYKMATCHING

Input: the shareability hyper-network H = (T,L) with weights wi on hyper-links
Output: the set T of (possibly combined) trips to be performed
1. T = T
2. Build a weighted matching Mw of H using the greedy heuristic
3. for each Li = (Ti1 , . . . , Tij) ∈Mw do
4. T = T ∪ {Ti1,...,ij}; T = T − {Ti1} − · · · − {Tij}
5 return T

Algorithm GREEDYKMATCHING for finding a k-approximation to kMNT.

Theorem 4. LetH = (T,L) be the shareability hyper-network, where eachLi = (Ti1 , Ti2 , . . .) ∈
L is weighted with the weight wc

i =
∑

ij∈Li
c(Tij) − c(Ti1,i2,...) representing the cost saving in

performing the combined trip versus the collection of single trips. Then, the feasible set of
possibly combined trips of minimum total travel cost has cost

cmin =
∑

i=1,...,n

c(Ti)−
∑

Li∈Mmaxw

wc
i ,

where Mmaxw is a maximum weighted matching of H .

Proof. The proof is along the same lines of the proof of Theorem 3.

The greedy heuristic for computing a k approximation of the optimal solution to kMTTC
can be straightforwardly obtained from Algorithm GREEDYKMATCHING by using weights wc

i

instead of wi to label hyper-links in the shareability hyper-network.

Building the shareability network
In this section, we describe a method for producing the shareability (hyper-)network, given a
set of single trips T = {T1, . . . , Tn} and a quality of service criterion ∆. We present in detail
the method for k = 2, and shortly describe how the technique can be generalized to arbitrary
values of k.

Each trip Ti ∈ T is characterized by the following quantities: the trip origin oi and destina-
tion di, that we can think of as pairs of (lat, lon) coordinates; the start time sti; and the arrival
time ati. We start defining a notion of feasible trip combination based on a quality of service
criterion ∆.

10

Definition 12. The combined trip Ti,j is feasible if and only if a trip route can be found such
that the following conditions are satisfied:

a) sti ≤ pti ≤ sti + ∆;

b) stj ≤ ptj ≤ stj + ∆;

c) dti ≤ ati + ∆;

d) dtj ≤ atj + ∆;

where ptx is the pickup time at ox in the combined trip, and dtx is the delivery time at dx in the
combined trip.

The above definition is motivated by the fact that a customer might be willing to wait at
most some extra time ∆ at her pickup location (and in general she might not be able to show up
at oi before time sti), as well as to arrive at destination with delay at most ∆ (early arrivals are
likely not to be a problem for customers).

Theorem 5. Building the shareability network S = (T, L) starting from the trip set T =
{T1, . . . , Tn} requires O(n2) time.

Proof. In the worst-case, we have to consider all O(n2) possible pairs of trips Ti, Tj . For each
pair, the feasibility condition for the combined trip Ti,j can be verified in O(1) as follows.
Observe that only four routes are possible for trip Ti,j: oi → oj → di → dj , oi → oj →
dj → di, oj → oi → di → dj , and oj → oi → dj → di. Let us consider a specific route,
e.g., oi → oj → di → dj . Condition a) for feasibility is always satisfied by setting a pickup
time at oi in the desired time window. The pickup time at oj can then be computed as follows:
ptj = pti + tt(oi, oj), where tt(x, y) denotes the travel time between x and y. The delivery
time at di is defined as follows: dti = ptj + tt(oj, di). Finally, the delivery time at dj is defined
as dtj = dti + tt(di, dj). Thus, the feasibility condition for route oi → oj → di → dj can
be verified by checking whether a value of pti that simultaneously satisfies the four conditions
below exists, which requires O(1) time:

sti ≤ pti ≤ sti + ∆ (S1)
stj ≤ pti + tt(oi, oj) ≤ stj + ∆ (S2)

pti + tt(oi, oj) + tt(oj, di) ≤ ati + ∆ (S3)
pti + tt(oi, oj) + tt(oj, di) + tt(di, dj) ≤ atj + ∆ (S4)

The feasibility conditions for the other routes can be verified similarly. If there exists at least
one route which satisfies the feasibility condition, then trip Ti,j is feasible, and link (Ti, Tj) is
included in the trip graph. Otherwise, trips Ti and Tj cannot be combined.
Observe that the number of trip pairs to consider for combination can be reduced by considering
only trip pairs Ti, Tj such that: i) stj ≤ ati + ∆; and ii) sti ≤ atj + ∆. Simultaneously

11

satisfying conditions i) and ii) is a necessary (but not sufficient) condition for feasibility of trip
Ti,j . In practice, this heuristic considerably reduces the running time of the shareability network
construction algorithm, although the worst-case time complexity remains O(n2).

The algorithm for building the trip graph reported in the proof of Theorem 5 can be extended
in a straightforward way to the case of combinations of up to k trips, yielding a time complexity
of O(nk); in particular, all possible routes connecting k origins with k destinations, subject
to the condition that each origin must precede the respective destination in the route, must be
considered. The number of possible such routes grows exponentially with k, which is however
assumed to be a small constant in our model. For instance, 60 possible routes connecting origins
with destinations must be considered when k = 3.

Runtime and feasibility considerations
Although we have proven above theoretically that the trip sharing problem can be solved by
maximum matching algorithms with polynomial time complexity, it is important to demonstrate
that the computational implementation indeed runs fast enough on practical problem sizes and
that the solution is feasible to operate in an actual real-time taxi sharing system. On average,
in every two minutes there are about 600 trips requested in NYC, which constitutes the typical
number of nodes in the shareability network that have to be matched optimally. To account for
possible extraordinary spikes in the demand, we measured the runtime for sharebility networks
of size 10,000. Here, the runtime of the software implemented in the programming language C
on a Linux-based workstation equipped with i7-3930K CPU and 32GB of RAM is less than 0.1
seconds. For the more realistic size of 1,000 nodes the runtime is even less than 0.01 seconds.
These measurements show that the proposed graph matching-based solution is highly efficient
and feasible for an online taxi sharing service. Further, the procedures for inserting/deleting
nodes and corresponding links in the shareability network are also very efficient, with a running
time that increases only linearly with the number of nodes in the network.

Oracle and Online model
Trip sharing opportunities are investigated according to two different models, called the Oracle
and the Online model. The difference between the two models lies in the set of links in the
shareability network that are considered for computing the maximum matching. In the Oracle
model, all possible links between shareable trips as determined by spatial and temporal con-
ditions are retained. Thus, two trips T1, T2 are considered to be shareable also if their starting
times are separated by a long time interval (say, 30 min), as long as the two trips can be com-
bined without imposing delays exceeding ∆ on both trips. Note that this is in principle possible
if, say, T1 is a very long trip, and the pickup location of T2 is close to the trajectory of T1. Since
in this paper we consider only static trip sharing, combining trips in a situation like the one de-
scribed above would require the presence a reservation system, in which requests for taxi trips

12

are issued well ahead of time (e.g., at least 30 min in the example above). Since in many cases
a reservation system is not present or not allowed by regulations (as it is the case in the city
of NY), we have introduced also the Online model, which can be easily turned into a practical
real time, on-demand taxi system. The idea is to reduce the number of links in the shareability
network, by filtering out trip sharing opportunities for trips T1, T2 whose starting times are more
than δ apart. In other words, we retain in the shareability network only trip sharing opportunities
that can be exploited with a real-time, on-demand taxi system.

Computing travel times
Knowledge of estimated travel times between arbitrary origin/destination in the road map is
a pre-requisite for checking the trip sharing conditions, and, hence, to build the shareability
network. Since we cannot use directly GPS taxi traces for this purpose due to lack of trajectory
and speed information in the data set, we designed a travel time estimation heuristic starting
from the pickup/drop off times recorded in the data set.

Given is a set of actually performed trips T = {T1, . . . , Tk}, where each trip Ti = (oi, di, tti)
is defined by an origin location oi, a destination location di, and a travel time tti. While in the
original data set origin and destination of a trip are defined as raw GPS (lat, lon) coordinates,
in the following we assume origin and destination of a trip are taken from the set I of street
intersections in the road map. To convert raw GPS coordinates into an intersection in I, we
associate oi (or di) to the closest intersection based on geodesic distance, subject to the condition
that the distance to the closest intersection is below a threshold such as twice the average GPS
accuracy, set to 100 m. Thus, in the following we assume oi and di are indeed distinct elements
of the set I of possible intersections in the road map, i.e., ∀Ti ∈ T , oi, di ∈ I. We also define
the set S = {S1, . . . , Sh} of streets as the set of all road segments connecting two adjacent
intersections in the road map.

Given the trip set T as defined above, the problem to solve is estimating the travel time xi
for each street Si ∈ S, in such a way that the average relative error (computed across all trips)
between the actual travel time tti and the estimated travel time eti for trip Ti computed starting
from the xis (compound with a routing algorithm) is minimized1. Once error minimizing travel
times for each street in S are determined, the travel time between any two intersections Ii, Ij ∈
I can be computed starting from the xis, using a routing algorithm that minimizes the travel
time between any two intersections. Besides the trip set T , we are also given the array Le = (li)
of the lengths of the streets in S.

In the following, we define the problem at hand more formally. First, we partition the
trip set in time sliced subsets T1, . . . , T24, where subset Ti contains all trips whose starting
time is in hour i of the day. Finer partitioning (e.g., per hour and weekday, per hour and
weekday and month, etc.) is possible, if needed. In the following, to simplify notation, we
re-define T as any of the time-sliced subsets Ti. In fact, the travel time estimation process

1Formally, the average relative error is defined as εi = |tti − tei|/tti.

13

can be performed independently on each of the time-sliced trip subsets. When a time-sliced
trip set T is considered, classes T 1, . . . , T h of equivalent trips are formed, where two trips
Tu, Tv are said to be equivalent if and only if (ou = ov) ∧ (du = dv). Notice that, under the
assumption that the routing algorithm is deterministic (i.e., it always computes the same route
given the same starting and ending intersections Ii and Ij), the set of streets in the optimal route
from origin to destination is the same for any two trips Tu, Tv ∈ T i,j , where T i,j is the class
of trips with origin Ii and destination Ij . Thus, all the trips in equivalence class T i,j can be
considered as multiple samples of the travel time on the same set of streets. All trips in T i,j

are then replaced by a single trip Ti,j with corresponding origin and destination, and travel time
t̄ti,j equal to the average of the travel times of all trips in T i,j . After this step is performed for
all equivalence classes, we are left with an aggregate set Tagg of singleton, non-equivalent trips
Ti,j , and corresponding travel times t̄ti,j .

The travel time estimation heuristic is reported below. Initially, trips are filtered to remove
“loop” trips (i.e., trips with the same origin and destination), as well as excessively “short” or
“long” trips. After a step in which initial routes are computed using a pre-selected initial speed
vinit (the same for all streets), a second trip filtering step is performed, in which excessively
“fast” and “slow” trips are removed from the travel time estimation process. The rationale
for this filtering is removing “noisy” data which could have been resulted from very specific
conditions (say, a snowstorm could have caused many slow trips). Including “noisy” data in
the travel time estimation process would bias the estimation process to partially compensate for
“noisy” trips, increasing the error experienced in the remaining portion of trips.

An iterative process is started after the second trip filtering step. The iterative process is
composed of two nested iterations. In the outer iteration, new routes for the trips are computed
based on the updated travel time estimation of street segments. After routes are computed,
new trip travel time estimations are determined, and the average relative error across all trips is
computed. Furthermore, an offset value is computed for each street segment, indicating whether
travel times of all trips in which a street segment is included are under- or over-estimated. Then,
an inner loop is started, with the purpose of refining street travel time estimations based on
the computed offset values: an increase/decrease step k is initialized, and used to tentatively
change street travel time estimates based on the offset value (tentative updated trip travel times
are accepted only if the resulting average speed v on the trip is such that 0.5 m/sec < v <
30 m/sec). The tentative estimations are accepted if the newly computed average relative error
is decreased with respect to the current value. Otherwise, another iteration of the inner loop
is started with a smaller value of k. This process is repeated until either the street travel time
estimations are updated, or the value of k has reached a specified minimum value. The outer
iterative process terminates when there is no updated street travel time estimation after the
execution of the inner loop.

After the iterative process, the algorithm has produced a travel time estimation for each street
included in at least one optimal route for at least one trip in the data set (set Strip). The travel
time for the remaining streets is then computed according to a simple heuristic: the travel time
for each street s having an intersection in common with at least one street in Strip is estimated

14

based on the average speed estimated in adjacent streets, i.e., streets s′ such that s and s′ share
an intersection. This process is repeated until the travel time on all streets can be estimated.
Finally, at step 7 the travel time between any two possible intersections Ii, Ij in the street map is
computed by first computing the optimal route between Ii and Ij using Dijkstra algorithm with
the estimated trip travel times, and then computing the travel time by summing up the travel
time of the streets in the optimal route. Notice that we use the Dijkstra algorithm [13] (repeated
|I|2 times) to compute all-to-all shortest paths instead of the classical Floyd-Warshall algorithm
since the graph corresponding to the street network is very sparse. Thus, repeating |I|2 times
the Dijkstra algorithm yields O(|I|2 log |I|), which is lower than the O(|I|3) complexity of
Floyd-Warshall.

The travel time estimation algorithm has been executed on the set of about 150 millions trips
performed in New York City during weekdays, in year 2011. The performance of the travel time
estimation algorithms for the 24 trip classes (corresponding to time of day) is summarized in
Table S1. The table reports the average relative error computed on all trips retained after the
filtering steps, the percentage of trips retained in the data set after filtering, and the number of
streets included in at least one optimal route. As seen from the table, the algorithm provides
travel time estimations incurring an average relative error of 15%. The vast majority of trips is
retained in the data set after filtering (more than 97% on the average). Furthermore, the vast
majority of street segments are included in at least one optimal route: considering that the total
number of (directed) street segments in Manhattan is 9452, on average 91.7% of the streets are
included in at least one optimal route. For the remaining streets, step 6 of the algorithm is used
to estimate street travel time.

To study the travel speeds estimated by our algorithm we calculated travel speeds across
different times of the day. The travel time estimations are reasonable, with a relatively lower
average speed of around 5.5 m/sec estimated during rush hours (between 8am and 3pm), and
peaks around 8.5 m/sec at midnight. Further evidence for a reasonable estimation is highlighted
also by Fig. S2, reporting the estimated travel speed on each street segment at four different
times of day: 0am, 8am, 4pm, and 22pm. As expected, travel speeds tend to reduce during
daytime. Also, the algorithm is able to faithfully model the higher speed on highways (on the
left-hand side of Manhattan).

15

Algorithm for travel time estimation
Input: the (sub)set T of performed trips;the set I of intersections;

the set S of streets; the vector Le of lengths for streets in S
Output: a travel time estimation matrix ET (i, j), where eti,j is the estimated

time for traveling from intersection Ii to intersection Ij
1. Equivalent trip reduction

- group in class T i,j all trips Tu such that ou = Ii and du = Ij
- for each class T i,j , replace all trips in T i,j with a single trip Ti,j with oi,j = Ii , di,j = Ij ,

and tti,j = t̄ti,j =

∑
Tu∈T i,j ttu

|T i,j |
- let Tagg be the collection of trips Ti,j

2. First trip filtering
- for each Ti,j ∈ Tagg , remove Ti,j from Tagg if i = j //remove “loop” trips
- for each Ti,j ∈ Tagg , remove Ti,j from Tagg if (t̄ti,j < 2min) or (t̄ti,j > 1h) //remove “short” and “long” trips

3. Initial route computation
- for each S ∈ S, set same initial speed vS = vinit ; set travel time to tS =

L(S)
vS

- for each Ti,j ∈ Tagg , compute optimal route Ii → Ij using Dijkstra algorithm
- for each Ti,j ∈ Tagg , let Si,j = {Si,j

1 , . . . , S
i,j
k
} be the set of streets in the optimal route for Ti,j

4. Second trip filtering

- for each Ti,j ∈ Tagg , compute the average speed asi,j =

∑
h L(S

i,j
h

)

t̄ti,j
- for each Ti,j ∈ Tagg , remove Ti,j from Tagg if (asi,j < 0.5 m/sec) or (asi,j > 30 m/sec) //remove “slow” and “fast” trips

5. Iterative steps
5.1 set again=true
5.2 while again do

- again=false
- for each Ti,j ∈ Tagg , compute optimal route Ii → Ij using Dijkstra algorithm
- for each Ti,j ∈ Tagg , let Si,j = {Si,j

1 , . . . , S
i,j
k
} be the set of streets in the optimal route for Ti,j

- for each Ti,j ∈ Tagg , compute eti,j =
∑

S∈Si,j tS //trip travel time estimation

- let Strip =
⋃
T i,j∈Tagg

Si,j

- RelErr=
∑

Ti,j∈Tagg

|eti,j−t̄ti,j |
t̄ti,j

- for each S ∈ Strip , let TS = {Ti,j ∈ Tagg|S ∈ Si,j} //set of trips including S in the current route
- for each S ∈ Strip , compute OS =

∑
Ti,j∈TS

(eti,j − t̄ti,j) · |Ti,j | //offset computation

- k=1.2
5.3 while true do

- for each S ∈ Strip , do the following
- if OS < 0, then tS = k · tS ; else tS =

tS
k

//street travel time estimate is increased/reduced based on offset
- for each Ti,j ∈ Tagg , compute et′i,j =

∑
S∈Si,j tS //tentative updated trip travel time estimation

- NewRelErr=
∑

Ti,j∈Tagg

|et′i,j−t̄ti,j |
t̄ti,j

//compute new relative error

- if NewRelErr<RelErr then do the following //new estimates better than previous ones
- for each Ti,j ∈ Tagg , eti,j = et′i,j //update travel time estimates
- RelErr=NewRelErr
- again=true; goto step 5.2 //perform another iteration

- else // new estimates worse than previous ones
k=1 + (k−1) · 0.75 //reduce the street travel time increase/decrease step
if k< 1.0001 then exit from loop at step 5.3 //if k is too small, exit from inner loop
else goto step 5.3 //otherwise, perform another iteration with smaller k

6. Computation of estimated travel time for remaining streets
- ES = Strip;NS = S − Strip
- let N(S) be the set of streets sharing an intersection with street S
- for each Si ∈ NS compute nSi

= |N(Si) ∩ ES|
- order the streets inNS in decreasing order of nSi
- for each Si ∈ NS in the ordered sequence

vSi
=

∑
Sj∈N(Si)∩ES vSj
|N(Si)∩ES| ; tSi

=
L(Si)
vSi

; ES = ES ∪ {Si};NS = NS − {Si}

- repeat above step untilNS = ∅
6. Travel time estimation

-for each possible pair of intersections (Ii, Ij), compute optimal route Ii → Ij
using Dijkstra algorithm with estimated travel time tS for each street S
- let Si,j be the set of streets in the optimal route for (Ii, Ij)

- ET (i, j) =
∑

Sh∈Si,j
L(S)
vS

- return ET

Travel time estimation algorithm.

16

Robustness of day of week (Oracle model)
To assess whether there is any noticeable difference in terms of trip sharing opportunities be-
tween weekend and week days, we have repeated the analysis above for the 104 weekend days.
There is no major difference in terms of trip sharing opportunities in weekend versus weekdays.
However, the average number of trips per day during weekend days is about 17% lower than
that during week days (≈ 350K versus ≈ 418K trips per day). Only minimal differences in
total trip travel time savings between week and weekend days are observed, with slightly better
savings achieved during weekdays. As shown next, this is due to the strong relation between
trip sharing opportunities and the number of performed trips.

Shareable trips versus trips per day (Oracle model)
To better understand the relationship between trip sharing opportunities and number of trips per-
formed in a day, we have ordered the days for increasing number of performed trips, and plotted
the corresponding percentage of shared trips in the day. The resulting plot is reported in Fig. 3C
in the main text. Typical days in New York City feature around 400,000 trips with almost near
maximum shareability. Days with a small number of trips are rare and happen mostly during
special events. For example, the most noticeable drop in trip sharing opportunities occurs on
day 240, August 28th 2011, during which hurricane Irene hit New York City. On this (weekend)
day, only about 26, 500 trips were performed, and trip sharing opportunities dropped to about
87% when ∆ = 2 min. As such, data points below 300,000 trips per day are too sparse to make
statistically reasonable assessments. Hence we have generated additional low density situations
by subsampling our dataset, randomly removing various fractions of vehicles from the system
in the following way: For each day in the data set, we randomly selected a percentage c of the
taxis in the trace, and deleted the corresponding trips from the data set. We varied c from 95%
down to 1%, generating a number of trips per day as low as 1,962.

To the set of resulting shareability values we have fit a saturation curve of the form f(x) =
Kxn

1+Kxn , whereK and n are two (non-integer) parameters, Fig. 3C in the main text. Curves of this
form appear in the well-known Hill equation in biochemistry, describing saturation effects in
the binding of ligands to macromolecules and in similar processes [14]. Fits to both the shared
trip maximization and time minimization conditions match very well (for both, R2 > 0.99), we
used a standard Levenberg-Marquardt algorithm for obtaining least squares estimates. The best
fit parameters read K = 1.1 × 10−4, n = 0.92 for time minimization, and K = 1.5 × 10−6,
n = 1.39 for shared trip maximization. Since for time minimization we have n ≈ 1, the fit
works here almost as well (again R2 > 0.99) with the functional form f(x) = Kx

1+Kx
that has

only the one parameter K, known as the Langmuir equation [15], with K = 4.4 × 10−5. The
Langmuir equation describes the relationship between the concentration of a gas (or compound)
adsorbing to a solid surface (or binding site) and the fractional occupancy of the surface. Since
an increasing density of taxis – the “particles” – implies that more trip pairs – the “surface” –
can be covered, the Langmuir equation can thus be seen as an analogy to the saturation effects in

17

shareability if a homogeneous distribution of trips and taxis is assumed. The second parameter
n that appears in the Hill equation is used as a measure for cooperative binding in enzyme
kinetics: If n > 1, an enzyme which has already a bound ligand increases its affinity for other
ligand molecules. It is unclear if the analogy can be stretched to understand why n = 1.39
works best for shared trip maximization. In any way, the fast, hyperbolic saturation implies that
taxi sharing could be effective even in cities with taxi vehicle densities much lower than New
York, and in case of low market penetration of the sharing system a high return on investment.

Increasing the number of shared trips
We next investigate what happens when we increase the number k of sharable trips from 2 to 3.
We remark that the computational complexity of the trip matching task with k = 3 is orders of
magnitude higher than the same task with k = 2, for the following reasons:

– The computation of the shareability hyper-network is challenging. In fact, we now have to
compare triplets, instead of pairs, of candidate trips. For each triplet, we have 60 possible
valid routes connecting the three sources/destinations of the trips, instead of 4 possible
routes with k = 2. For each valid route, we then have to check whether the trips can
actually be shared, meaning that the computational time for calculating the shareability
network with k = 3 is at least 15 times higher than that needed to compute the trip sharing
graph with k = 2.

– We now have to solve a matching problem on hyper-networks, instead of on simple net-
works. While matching on graphs can be solved in polynomial time, matching on general
hyper-networks belongs to the class of NP-hard problems, i.e. problems that are “difficult
to solve”. To get around this computational challenge, we use a greedy, polynomial-
time heuristic that first builds the maximum matching considering only triplets of trips,
then applies standard matching on the remaining trips. This heuristic is known to build a
solution which is, in the worst-case, within a constant factor from the optimal solution.

To tackle these computational challenges, we computed the number of shared trips and the
fraction of saved travel time only in the Online model, and for selected days of the year. Notice
that in the Online model trips can be shared only when their starting times are within a tem-
poral window of δ, thus significantly reducing the number of candidate trips for sharing (and,
hence, computational time needed to compute the shareability hyper-network) with respect to
the Oracle model in which also trips with starting times in time windows larger than δ can be
shared.

We first present the results referring to a day (day 300) in which about 450, 000 trips were
performed, which is about the average number of trips per day recorded in our data set. Figures
2D and E in the main text report the percentage of saved taxi trips and of saved travel time
as a function of the quality of service parameter ∆, when the time window parameter δ is
set to 1 min. As seen from the figure, increasing the number of sharable trips provides some

18

benefit only when the quality of service parameter ∆ is large enough for such trips taxi sharing
opportunities to become available. This value of ∆ is approximately equal to 150 sec. For larger
values of ∆, the advantage of triple trip sharing versus double trip sharing becomes perceivable.
When ∆ = 300 sec, the number of saved taxi trips is increased from about 50% with k = 2
to about 60% with k = 3. While with k = 2 nearly all trips can be shared, resulting in about
halving the number of performed trips, relatively less trips can be combined in a triple trips
when k = 3. In fact, the achieved percentage of saved trips with k = 3 is 60%, which is below
(but not too much) the percentage of 66.6% that would result if all trips would be shared in a
triple trip.

Similarly to the percentage of saved trips, also when the percentage of total traveled time is
considered the difference between double and triple trip sharing becomes perceivable only for
values of ∆ ≥ 150 sec. Increasing the number of shared trips from 2 to 3 allows a further saving
of about 10% in terms of total traveled time, which is achieved when ∆ = 300 sec.

Figure S3 reports the percentage of saved taxi trips and of saved total travel time as a func-
tion of the time window parameter δ, for two specific values of ∆. While increasing δ beyond
120 sec provides little benefits in terms of saved taxi trips when k = 2, we still can observe some
benefit for δ > 120 sec with k = 3. This is due to the fact that with δ = 120 sec we already
obtain near-ideal performance when k = 2, corresponding to halving the number of trips. When
k = 3, there is more room for improvement, and a near-ideal performance is approached only
when δ = 180 sec and ∆ = 5 min. This means that all triple trip sharing opportunities can be
exploited only with relatively “patient” taxi customers. Concerning percentage of saved travel
time, we observe that triple trip sharing achieves as far as 45% saving, which is significantly
higher than that achieved by double trip sharing. However, similar to the percentage of taxi
trips, such high savings can be obtained only with relatively “patient” taxi customers.

Finally, we compare the potential of triple versus double taxi trip sharing in a relatively
less crowded day (day 250), when only ≈ 250, 000 trips were performed. Figure S3 reports
the achieved reduction in number of taxi trips and in total travel time as a function of δ, when
∆ = 5 min. While with k = 2 near-ideal taxi sharing can be achieved also with low taxi traffic,
with k = 3 a higher number of taxi trip requests is needed to fully exploit the potential of triple
trip sharing. The situation is different in terms of saved total travel time, which is consistently
benefiting from a higher number of taxi requests for both double and triple trip sharing.

Summarizing, based on the analysis above we can state that triple trip sharing does provide
substantial benefits versus double trip sharing, but for this to occur we need a reasonable num-
ber of taxi requests, and relatively “patient” taxi customers, for which waiting for a few minutes
at taxi request time and upon arrival at destination is acceptable. With “impatient” customers,
double trip sharing is much more effective than triple trip sharing: it is computationally effi-
cient, and provides nearly the same performance as triple trip sharing. Since the benefits to the
community in terms of reduced number of taxis and reduced pollution with triple trip sharing
versus double trip sharing are considerable, an interesting question raised by our analysis is
whether the New York City municipality can design a fare system that motivates customers to
be “patient”.

19

References
[1] Bloomberg, M. & Yassky, D. New york city 2014 taxicab factbook (2014).

[2] Grush, B. The case against map-matching. Eur. J. Nav. 6, 2–5 (2008).

[3] Yamamoto, K., Uesugi, K. & Watanabe, T. Adaptive routing of cruising taxis by mu-
tual exchange of pathways. In Knowledge-Based Intelligent Information and Engineering
Systems, 559–566 (Springer, 2008).

[4] Li, B. et al. Hunting or Waiting? Discovering Passenger Finding Strategies from a Large-
scale Real-world Taxi Dataset. In Proc. IEEE (2011).

[5] Yuan, J., Zheng, Y., Xie, X. & Sun, G. Driving with knowledge from the physical world. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining, 316–324 (ACM, 2011).

[6] Ma, S., Zheng, Y. & Wolfson, O. T-share: A large-scale dynamic taxi ridesharing service.
In Proc. of ICDE (2013).

[7] Berbeglia, G., Cordeau, J. F. & Laporte, G. Dynamic Pickup and Delivery Problems. Eur.
J. Op. Res. 202, 8–15 (2010).

[8] Horn, M. Transportation Research C 10, 35 (2002).

[9] Tong, H., Hung, W. & Cheung, C. On-road motor vehicle emissions and fuel consumption
in urban driving conditions. Journal of the Air & Waste Management Association 50, 543–
554 (2000).

[10] Kean, A. J., Harley, R. A. & Kendall, G. R. Effects of vehicle speed and engine load on
motor vehicle emissions. Environmental Science & Technology 37, 3739–3746 (2003).

[11] Galil, Z. Efficient Algorithms for Finding Maximum Matching in Graphs. ACM Comp.
Surv. 18, 23–38 (1986).

[12] Chandra, B. & Halldorsson, M. Greedy Local Improvement and Weighted Set Packing
Approximation. J. Alg. 39, 223–240 (2001).

[13] Cormen, T. H., Leiserson, C. E. & Rivest, R. L. Introduction to Algorithms (MIT Press
and McGraw-Hill, 1990).

[14] Hill, A. The possible effects of the aggregation of the molecules of haemoglobin on its
dissociation curves. J physiol 40, iv–vii (1910).

[15] Langmuir, I. The constitution and fundamental properties of solids and liquids. part i.
solids. Journal of the American Chemical Society 38, 2221–2295 (1916).

20

Hour Avg. Rel. Error % trips after filtering |Strip|
0 0.1541 94.91 8582
1 0.1301 96.64 8664
2 0.1433 97.76 8781
3 0.1463 98.12 8673
4 0.1438 98.16 8707
5 0.1448 98.17 8443
6 0.1517 98.04 8485
7 0.1535 98.04 8554
8 0.1560 98.01 8600
9 0.1541 97.97 8596
10 0.1568 97.96 8629
11 0.1644 97.85 8650
12 0.1639 97.97 8833
13 0.1547 98.12 8820
14 0.1486 98.20 8622
15 0.1553 98.19 8866
16 0.1388 98.13 8687
17 0.1486 98.05 8853
18 0.1457 97.86 8845
19 0.1540 97.61 8718
20 0.1602 97.23 8698
21 0.1649 96.85 8600
22 0.1693 96.54 8641
23 0.1799 95.78 8578
avg 0.1534 97.59 8671.9

Table S1: Summary of travel time estimation performance.

21

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3
x 10

−3

Duration t [sec]

P
(t

)

Occupied

In−between

10
1

10
2

10
3

10
4

10
5

10
6

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Figure S1: Empirical probability distribution of durations of occupied trips, and of the time
spans in-between the occupied trips which comprise both empty trips and all activities where
taxis are not being used for passenger transport such as shift changes, lunch breaks, vehicle
maintenance. Specific data describing the empty trips alone is not available. The inset shows
the same two histograms in log-log scale for all measured values. The in-between durations
peak below two minutes, much lower than the durations of occupied trips which peak at around
six minutes, showing that taxis tend to find new passengers relatively quickly.

22

Figure S2: Estimated speed map at 0am (top left) and at 8am (top right). Estimated speed
map at 4pm (bottom left) and 10pm (bottom right). Travel time for streets in bold (routing) is
estimated at step 6 of the algorithm.

23

0 30 60 90 120 150 180
∆ secs

10

20

30

40

50

60

70
 saved trips

k3, 5min

k3, 3min

k2, 5min

k2, 3min

30 60 90 120 150 180
∆ secs

10

20

30

40

 saved travel time

k3, 5min

k3, 3min

k2, 5min

k2, 3min

0 30 60 90 120 150 180
∆ secs

10

20

30

40

50

60

70
 saved trips

k3, avg trips

k3, low trips

k2, avg trips

k2, low trips

30 60 90 120 150 180
∆ secs

10

20

30

40

 saved travel time

k3, avg trips

k3, low trips

k2, avg trips

k2, low trips

Figure S3: Percentage of saved taxi trips (top left) and percentage of saved travel time (top right)
in New York City as a function of δ in the Online model. The quality of service parameter is
set to ∆ = 3 min and ∆ = 5 min. Percentage of saved taxi trips (bottom left) and percentage of
saved travel time (bottom right) as a function of δ in the Online model, in a day with relatively
low taxi traffic (“low”), and with average taxi traffic (“avg”). The quality of service parameter
is set to ∆ = 5 min. Each plot reports two curves: one referring to the case where at most two
trips can be shared (k = 2), and one referring to the case where at most three trips can be shared
(k = 3).

24

