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Supplemental Figures directly called from the main text.

Figure S1. Toy models with transient signaling modules perform PRESS, related to Figure 2.

In the three models, left panels contain schemas of the corresponding model, middle panels show dose-responses and right panels
show temporal dynamics. Parameters were selected so that X* has a transient behavior. Dose-responses are included for the
equilibrium value of C (ligand-receptor complex) in solid black lines, and for the maximum of X* in dashed blue lines. The dose of the
ligand is normalized by the K4 of the binding/unbinding reaction. Temporal profiles of C (solid lines) and of X* (dashed lines) are
included at ligand concentrations indicated over the traces.
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r;=0.001, X+=10 (k, is not needed refractory state 0’—::44
because of the dimensionless variables 0.01 1 100 10000 0,
chosen, see section 1). EC50 for each LK, Time (min)
response: 1 for C, and for X* is 9.3 for B
r,=0.06, 65.8 for r,=0.8, and 87 for Dose responses Dynamics
r,=1.6. Right. Temporal profiles for the 1 c L~ 7 1
_ / ,
same parameters as in the middle k, - X* / /
. L+R<= C 3 08 ! 2038
panel, using r,=0.8. k. g K g
B. X controlled by an incoherent feed- / \ 3 0.5 / 206l -
. , :
forward loop (IFFL). Left. Occupied B&= B*\i(f X* % ) / % o
receptor activates both B and X into B* 204 /] ) = 0.4 "
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Middle. Parameter values: k=0.001-0.1
1/sec (from right to left), kxg=1, Kxg=0.01, krga=5, Krgg=100, Fg=0.5, kex=5, Kex=0.1, kgx=6, Kgx=0.01 (see SI Appendix, Section 2 for
details of the model). Right. Temporal profiles for the same parameters as in the middle panel, using k.=0.001 1/sec.
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Figure S2. The effect of noise during PRESS, related to Figure 2.

Results of simulating Model 1 (the model
with an inactive refractory state) for low,
medium, and high number of receptors (30-
300-3000), using stochastic methods.
Simulations were done in Copasi using its
adaptive tau-leaping algorithm. Parameter
values: k,=0.0002 ml/(pmol*sec), k=0.001
1/s, r;=0.01 ml/(pmol*sec), r,=0.06 1/sec,
r;=0.001 1/sec (with 1 pmol/ml = 1 nM).
Initial particle numbers: receptor=30-300-
3000, x=14536.5. Cell volume= 5e-11 ml. Left 0.1 1 10 100 2 4 6 8
panels (A, C and E) contain normalized dose- LKy Time (min)
response curves and right panels (B, D and F)
contain normalized temporal profiles, A and
B correspond to 3000, C and D to 300 and E
and F to 30 receptors per cell, as indicated
over the figure. Left panels: Equilibrium
value of the ligand-receptor complex C (Cs)
in red dashed lines, maximum of X* (X*..,) in
black dashed lines, and C at the time where
X* reaches its maximum (C(tma)) in blue
dashed lines. The dose of the ligand is 2 _ 4 6
. d Time (min)
normalized by the Ky of the g F
binding/unbinding reaction. Open circles and
error bars correspond to mean value and
standard deviation over N=1001 stochastic
simulations performed with the same set of
parameter values for each value of ligand, 9
values of ligand were considered in the range
0.05-500 nM (corresponding to 0.01-100
L/Ky). Right panels: L/K4=1-10-100 K4 are
indicated in green, red, black, respectively.
Monotonic curves correspond to the ligand-
receptor complex C, curves with transient
behavior correspond to X*. Both in left and
right panels curves were normalized as
follows: Coq and C(tmax) were divided by the
initial receptor particle number and X* was
divided by the initial X particle number. G:
oV’ (coefficient of variation, the ratio of the
standard deviation to the mean, squared)
versus normalized ligand, for 3000-300-30
receptors per cell (dotted, dashed, solid lines, 0.01 0.1 1 10 100
respectively). cV* for C(tmax) in blue, and for d
X* nax in black.
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Figure S3. Characterization of PRESS applied to gradient detection, related to Figure 3.

A-C. Graphs are heatmaps of Deltaeq (A), Deltamax (B) and temporal window (C) as functions of oF¢and aF, (oF and oF, divided by
the Kgy). Since we are considering gradients, aF; has to be greater than o, (and this is why the figure is blank below the diagonal).
Delta.q and Deltamax were calculated using the analytical calculation in the SI Appendix, and are plotted using the same color scale.
The temporal window was numerically calculated as the interval during which Delta is more than 1.2 Delta.,. We show two color
scales, obtained with the indicated unbinding rates k.. The black solid line over each panels corresponds to Delta.q= 0.23 and the
black dashed line corresponds to Delta.,= 0.23. The solid grey line represents a gradient with an average between front and back of
10 K4 and the dashed grey line, 5 Kq. A cell sensing with an average 10 K4 could have different combinations of aF}, and aFy, some of
them will result in Deltamax> 0.23 and Delta.q< 0.23 (those that correspond to the grey solid line in the region between the solid and
dashed black lines). The intersections of the line representing an average of 10 K4 and the lines for Delta.,= 0.23 and Deltam,= 0.23
are identified as L, and L, respectively. L, is characterized by aFf= 17.4 and oF, = 2.6, resulting in Delta,q=0.23 and
Deltama=0.59, respectively, and a temporal window of 12.9 min. L, is characterized by by aF¢ = 13.1 and oF, = 6.9, respectively,
resulting in Delta.q= 0.06 and Deltama.= 0.23 and a temporal window of 9.1 min. D. Delta(t) vs time, for L; and L,. The vertical line
indicates the time were the temporal window for PRESS ends.
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Figure S4. Timing of yeast polarization, related to Figure 3.

A. Example of a transmission image montage used to determine the position in the cell cycle (YPP3662 strain, 1uM a-factor). G1 cells
(top) respond to pheromone forming a mating projection. S cells (bottom) first bud and then respond to pheromone. Time in
minutes is shown below each image, and the ID of each cell is shown on the left.

B. Example of a YFP image montage used to determine the polarization time (YPP3662 strain, 1uM a-factor). The slice number of the
Z stack is indicated on the left. Time in minutes is shown below each image.

C. Cumulative fraction of polarized cells vs. time for Ste5-YFPx3 (YPP3662) or Ste20-YFP (ESY3136). Cells were stimulated with 1uM
a-factor at time zero. Only cells in G1 were considered for this analysis. Error bars represent the 95% confidence interval of the
mean as calculated by bootstrap.
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Figure S5. Timing of polarization patch relocalization, related to Figure 3.

A. The microfluidic device we used. It contains two ports, one filled with a red dye (labeled input source 1) and the other one with a
blue dye (labeled input source 2), and 4 A B Region of best

open chambers (200 x 500 um). Two of 2 inatl
the chambers receive different inputs, '
and a gradient is formed; the other two
serve as controls.The fluid is delivered
to the wells by a binary splitting
manifold that ends in a line of 38
microjets of 10 um wide and 2.5 um
tall.  B. The dynamics of gradient
formation. We formed a gradient using
a solution of BPB (bromophenol blue,
0.01%) as source 1 and water as source
2. We determined the gradient profile
measuring BPB fluorescence using a
standard Texas Red filter cube. At t=0,
we washed away the chamber with a
pipet and then we monitored gradient
formation by imaging every 15 seconds.
The gradient is linear and it reaches the
steady state in ~3 min.

C. Brightfield image of yeast strain
ACL379 exposed to a gradient of O-
50nM of oF for 3 hours. The middle
region of the chamber displays the
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forms a new patch somewhere in the BF .'...'
cell periphery. Depending on the 115 15 185 22 25 28
position of the new polarization,

patches (both in mothers or daughters) were classified as “proximal”, “distal” or “no internal cue”. The time (in minutes) between
the last frame with bud-neck polarization and the first with a new visible patch was used to estimate the repositioning time. We
show an example of each group of yeast YGV5097 (expressing Bem1-mNGsy) (blue arrowheads indicate the polarization in the neck,
yellow arrowheads show a new patch and the repositioning time is delineated by the red line). Average repositioning time is
presented in the table (mean + standard deviation).
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Figure S6. The oF receptor binding dynamics might be optimal for PRESS, related to Figure 4.

A. Percentage of polarizations in the front quadrant as a function of

%
4w Dd

binding dynamics (parameter k-), using ——— =10 and ha =03
; d

(corresponding to p;=10 and p,=0.3, see S| Appendix, Section 5), as in
Fig. 4D. For each value of k, we run a set of stochastic numerical
simulations (Altschuler’s model with external gradient as input), and
counted the number of runs that resulted in a polarized state, and then
determined how many polarized in the quadrant facing the oF source
(front quadrant). We computed polarizations that took place in the first
five minutes of the simulation as in Fig 4D (black circles) or in the total
simulation time of fifteen minutes (red circles). We varied parameter k.
from 0.0001 1/sec to 0.1 1/sec (this last value corresponding to the
“fast” receptor in Fig. 4D). A horizontal line over the plot indicates the
expected percentage output if polarizations were randomly located, i.e.
25%. For fast receptor dynamics, the system is unable to use the
gradient information. A receptor slower than wt results in improved
sensing, but only allowing more time to polarize. When evaluating the
polarization performance in 5 min (black circles) we found a maximum
in the percentage outputs in the front quadrant at k. of about 0.0003
1/sec. For the time window of 15 min instead, the maximum is achieved
at the slower dynamics considered for this figure (k.=0.0001 1/sec).

B. Percentage of polarizing cells as a function of parameter

%
4w Dd

K

=10 and %z 0.3 (corresponding to p;=10 and p,=0.3, see SI
d
Appendix, Section 5). As explained in (A), if the receptor dynamics is
very slow, very few cells polarize in 5 min.
Combining the information in (A) and (B), we conclude that there is a
tradeoff between achieving a good number of polarizing cells in a
population and obtaining a good performance for those polarizations
(in the sense that those cells correctly identify the position of the
partner). If the decision has to be made in the first 5 minutes, then the
dynamics corresponding to the a-factor receptor (k.=0.001 1/sec)
results in the best combination of polarizing cells with successful
polarizations. For a longer time interval, like the one of 15 minutes
analyzed, the optimal occurs for a still slower dynamics, k. about 0.0003
1/sec.
C. Summation of all the polarizations that appeared for a time less or
equal than the time indicated in the horizontal axis, normalized by the
total number of polarizations achieved at the end of the simulation
(t=15 min). Each value of k. is indicated with a different color as shown
in the figure.
The number of stochastic numerical simulations performed for each
value of k. is: 19,000 for k.=0.0001 1/sec, 10280 for k.=0.0003 1/sec, and
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2000 for all the other values of k.. Comparing the outputs for each two successive values of k_indicate that only the following pairs
are significantly different (p < 0.05): 0.0003-0.001, and 0.001-0.004 at 5 min; 0.0001-0.0003, and 0.001-0.004 at 15 min.
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1. Characterization of the ligand-receptor time-dependent dose-response curve.

In this section we characterize the sensitivity and potency (given by parameters ny and ECs,
respectively) of the curve that describes the time evolution of occupied receptor at different doses of
ligand for the simple case of one-step binding, assuming that free L is not significantly affected by the

reaction:
Cetry = Ceqy * (1 — e(_t/T(L)))
with
— — L/Kq
Ceq = Reot L1Kq tot e

the steady-state value for C and

1 1
U= e -
— + k_(l-l-a)

the characteristic time T (time required to reach 63.2% of the steady-state value). L is the ligand, R is the
receptor, C is the complex ligand-receptor, and k, and k. are the binding and unbinding rates,
respectively. Normalizing the curve C(t,L) by Ry and defining x=L/K4 (normalized ligand concentration),
results in a function that depends only on x and k.

X _ a(=txk—*(14x))
14+ x i (1 € " )

The steady-state of this last function, which we obtained by taking the limit t->00, has an ny = 1 and ECs,

Cexy =

= 1. We are interested in obtaining the ECsq and ny for normalized C versus x, for any given time, which
will result in two relationships: ECso(t) and ny(t). Instead of ECso(t) we could easily obtain the inverse

function, t(ECs), as follows:

1 2 = ECsq
t= log ( )
k_*(1+ECg,) ECg, — 1
Based on this last expression, we plot ECso versus time in Fig. S7. According to this plot,
1. ECso > 1 for every time, and ECsg = 1 only for

103 the equilibrium binding curve;
' K =0.001 sec”' | 2. ECspdecreases when time increases;

—— k=001 sec” 3. If k. is large (fast unbinding reaction), the
time at which the curve C versus x has a given
ECso is small. For example, if the desired ECs

EC50

is 10*Ky4, then, the dose response curve has
that ECs, at around ~1 min for k=0.001 sec™
and at ~0.1 min for k.=0.01 sec™, see Fig. S7.

Regarding the sensitivity of the normalized C

Time (min) versus x curve for times prior to reaching the
equilibrium, we obtained an approximated

_ . . *
Figure S7. EC50 of L-receptor binding curve vs. Time. ny=1.4 in the limit of low values of t*k. We

ECsp is in units of L/Kg. 9
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obtained this value by deriving t(ECs) and t(EC,o) in the same way we derived t(ECsg), and neglecting
terms as follows:

o -1 oz (Ec10 «0.9 — 0.1) ~ -1 10g(0.9)
K_= (1 +EC,,) EC,, k_+ (L +EC,,) '

o -1 log (Ec90 %01 — 0.9) ~ -1 log(0.1)
K_» (1L +ECyy) ECyp k_= (1 +ECyy) '

These approximations are valid because at short times (t*k.<<1), both ECy and EC,oare much greater
than one, similar to the behavior of ECsq (Figure S7). From the last two formulas we obtained the ratio

EC90/EC10:
ECoo __ —log(0.1)—txk-

EC10 —log(0.9)—t*k_
which results in 21.85 when t*k.is neglected, leading to ny=1.42 (ny=log(81)/log(ECeo/ECyo). This
approximated result indicates that the sensitivity goes from about 1.4, in the limit of low values of t*k,

to 1, in the limit of t->2°, and means that before reaching equilibrium the sensitivity is higher than when

it is reached.

10
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2. Toy models with transient signaling modules perform PRESS

Model 1: X with an inactive refractory state.

L+R —>C
x/i\x*
N

Figure S8. Toy model with a
refractory state.

Toy model of a downstream
response activated by the ligand-
receptor complex. Occupied
receptor activates effector X; after a
while, active X (X*) converts into an
inactive refractory state (X*), which
slowly converts back to the inactive
form (X), closing the cycle.

Occupied receptor activates effector X with a rate ry; active X (X*)
converts into an inactive refractory state (X*) with rate r,, which
converts back to the inactive form (X) with rate rs, closing the cycle
(see Fig. S8). Assuming that the total amount of X, Xy = X + X* + X2
is conserved, the system is described by the following ordinary
differential equations:

% - —I‘1XC + r3(Xt0t - X* - X) (1)
dx* x
T =1 XC—r;X (2)

where C is the ligand-receptor complex. The parameters used in the
numerical simulations reported in Figs. 2a-b in the main text are r; =
0.1, r; = 0.8, r3 = 0.001, X;o: = 10, and the initial condition was such
that all the effector was initially in its inactive state X. The steady-
state reached by this systems is characterized by X*eq/Xtot = r3/(rs +

ry + rara/(riCeq)) and Xeq/Xeot = rars/(rars + riCeq(ra + r3)).

Model 2: X controlled by an incoherent feed-forward loop (IFFL); and Model 3: X controlled by a

negative feed-back loop (NFBL).

The equations for the network depicted in Fig. S9 and Fig. S10 were adapted from those in Ma et al (1)

L+Re= C

N\

B<= B* X<&= X*
~_

Figure S9. Toy model of an

incoherent feedforward loop.
Occupied receptor activates
both B and X, into B* and X*,
respectively. B* regulates the

inactivation of X* into X.

for the case where one node is a ligand-receptor complex. We
assume that each node (C, B, X) has a fixed concentration
(normalized to 1) but has two forms: C is the ligand-receptor complex
and (1-C) is the free receptor; B* and X* represent the concentration
of active states, (1-B*) and (1-X*) are the concentration of the
inactive states. L is the concentration of free ligand and k, and k_are
the binding and unbinding rates, respectively. kez and kex are the
strength with which C activates B and X into B* and X*, and kgy is the
strength of the negative regulation from B* to X*. If a node has only
positive incoming links, like node B in Fig. S9 and in Fig. S10, it is
assumed that there is a background (constitutive) deactivating
enzyme F; of a constant concentration to catalyze the reverse
reaction (see Ma et al (1) for details). The resulting equations

11
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describing the network in Fig. S9 are:

S=ky-L(1-C)—k_C
dB* (1—B*) B*
T:kCB-C(l_B*)‘I'KCB_kFBB-FBm
X e A-x) L X
dt ~ % " 1-X)+Kex 7 X"+ Kgx

The resulting equations describing the network in Fig. S10 are:

LHR&= C T =k, LA-0)-kC
l dB* _ (1-BY) .
X< X* ~N T:kXB-X (1—B*)+KXB_kFBB-FBB*+KFBB
B<— B* szcx. (1-X" _— X*
dt (1 —X*) +Kex X* + Kgx

Figure S10. Toy model of a negative
feedback loop.

Occupied receptor activates X into X*, X*
activates B into B* and B* regulates the
inactivation of X* into X.

12
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3. Models with transient signaling may be subsensitive, helping to expand the input dynamic range.

Modulation of the input dynamic range could imply its expansion/compression (i.e., an increase or
decrease of the range of doses where the system produces dose-dependent responses), its
displacement (i.e., the ratio ECqo/EC,o is the same but it is centered around a different dose), or a
combination of both. Expansion/compression of the dynamic range is determined by the sensitivity of
the response, quantified by the change in the Hill coefficient ny (log(81)/log(ECs0/EC10)) of the response:
the higher the ny, the smaller the input dynamic range. Displacement of the dynamic range is usually
guantified by the change in the ECso of the response. A rightward displacement of the ECsq with constant
ny enables dose-dependent responses in the high concentration range without compromising sensitivity,
while a decrease in ny with constant ECsg results in an extended range of dose-dependent responses and
a corresponding loss of sensitivity, meaning that the difference in the output you get for two different
stimuli is smaller than otherwise would have been.

The common Michaelis-Menten relationship gives, by definition, an ny=1. Subsensitive responses (i.e.,
ny < 1) may arise, for example, from the presence of negative cooperativity (2) or negative feedback (3).
Systems with transient responses, such as the one we implemented in our three toy models, also known
as pulse-generators, can be subsensitive. Given that one of the effects of the PRESS signaling mode is to
make the overall response subsensitive (expand the input dynamic range), we asked if the transient
responses we implemented are intrinsically subsensitive (i.e., when studied uncoupled from a binding
mechanism); and if so, how this subsensitivity contributes to the overall system behavior, when coupled
to a slow or a fast binding reaction. With this in mind, in what follows we analyze in detail the model
with an inactive refractory state and the model controlled by a negative feedback loop (Models 1 and 3).

Sensitivity in Model 1: X with an inactive refractory state.

In order to study the pulse generator of Model 1 in isolation, that is, independently of the ligand-
receptor complex (C) formation, we first studied the peak response of X* as a function of a step increase
in C (Fig. S11a). For the parameter values we selected, the system was subsensitive, with a Hill
coefficient of 0.8, corresponding to a dynamic range (ECqo/EC1o) of 243 (colored lines in Fig. S11a), three
times the dynamic range of a Michaelian response (81, black line). We tested three values of r; (the rate
of inactivation of X*, the key parameter controlling the duration of the pulse response), which had no
significant impact on the ny, but had a strong effect on the ECs, of the response.

Next, we introduced a simple ligand-receptor binding reaction between the step input and the X cycle,
using fast or slow ligand-receptor binding rates (Fig. S11b and c). The addition of the ligand-receptor
binding reaction increased the sensitivity from 0.8 to 0.9 when we used fast ligand binding rates
(reducing the dynamic range to ~132), and decreased it to 0.7 when we used slow binding rates
(increasing the dynamic range to ~533) (Table S1). In both cases, parameter r, had no significant impact
on the ny, impacting strongly on the ECs, of the response.

These results indicate that the coupling of a ligand-receptor reaction interacts with the subsensitive
pulse-generator, in a manner that depends on the speed of this reaction. When binding is fast, the
13



Ventura et al, SI Appendix

overall sensitivity is increased, but when binding is slow, it is further decreased. The speed of the
binding reaction also affects the degree of the dynamic range displacement; it was much greater with
slow binding than fast binding. Thus, we conclude that the intrinsic subsensitivity of the pulse generator
does not explain the effects observed in PRESS mode of signaling.

Q
o
@]

1

" x .
a5 indin: — binding
3 _:);gog s —’Lgc”l
o 08 _rt=08 &) 0.8 —1,=08
he) r‘,=16 - r,=16
5m 06 : S 06
2 2
(@) o
3 04 3 04
N N
g 0.2 g 0.2
0 2 0 2
0001 0.1 10 1000 0do1 01 10 Qo1 1 100 10000
c L/K LKy

Figure S11. Sensitivity in Model 1

X with an inactive refractory state. Parameters: X;,:=10, r,=0.1, r,=0.06-0.8-1.6 (red, blue, green lines), r3=0.001. a.
The isolated cycle of X (no dynamics of ligand-receptor complex, C, formation). Plot shows peak response of X* as
a function of step increase in C. A Michaelian response (with EC5p=1 and ny=1) is included with a black line. b-c.
Complete Model 1 (including the dynamics of ligand-receptor complex, C, formation). Plots show peak response
of X* as a function of the ligand concentration, L (L normalized by the Ky of the ligand-receptor reaction).
Different values of parameter r, are included in different colors, as indicated. Rates in b are k,=0.02 (nM*sec) _1, k.
=0.1 sec ' and in ¢ k,=0.0002 (nM*sec) *, k.=0.001 sec .

C as the Fast Slow

stimulus binding binding
ry ECso Ny ECs Ny ECso Ny
0.06 1.2 0.79 | 0.4 092 | 9.3 0.71
0.8 15.9 0.80 | 1.3 0.94 | 65.1 0.75
1.6 31.3 0.81 | 1.7 0.92 | 87.2 0.73

Table S1. Model 1 sensitivity.

Characterization of the potency (ECso) and sensitivity (ny) for the different curves in Fig. S11, as a function of
parameter r,, corresponding to Model 1.
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Sensitivity in Model 3: X controlled by a negative feed-back loop (NFBL).

We performed the same study for Model 3. When considered in isolation, for the parameter values we
selected, the peak response of X* to a step increase in C (Fig. S12) resulted ultrasensitive, with an ny of
1.7, corresponding to a dynamic range of 13.3, and an ECs
of 0.3. When we included the dynamics of ligand-receptor

1
o formation (C), the sensitivity of the overall system decreased
(2]
5 0.8 to 1.3 for fast binding, and even further to 1.2 for slow
§0 5 binding (Table S2), corresponding to a dynamic range of 29.4
% ' and 38.9, respectively. In addition, the dynamic range of C
ﬁ 0.4; (ECso) was displaced from 1 to 4.5 for fast binding and from 1
E to 447.6 with slow binding.
5 0.2} ‘ binding
zZ —— NBFL
Qo1 1 100
' Stimulus C as the Fast Slow
stimulus binding binding
Figure S12. Sensitivity in Model 3 ECso Ny ECso Ny ECso Ny
X controlled by a negative feed-back loop 0.3 1.71 | 45 1.31 | 447.6 1.24
(NFBL). Parameter values: kyg=1, Kyg=0.01,
kess=5, Kres=100, Fg=0.5, kex=5, Kox=0.1, Table S2. Model 3 sensitivity.

kex=6, Kgx=0.01. A Michaelian response
(with EC50=1 and ny=1) is included with a
black line. The response of the NFBL to a
step increase in C (indicated as Stimulus)

Characterization of the displacement (ECsy) and dynamic range (ny)
for the different curves in Fig. S1B and in Fig. S12, corresponding
to Model 3.

General conclusions based on the above studies and the results in the main text:

i) The ligand-receptor binding reaction has an equilibrium dose-response curve characterized by ny =1
and ECsp = 1 (dose = ligand/Ky, response = normalized ligand-receptor complex). The dose-response
curve before reaching equilibrium has ny > 1 and ECso > 1 (see S| Appendix, Section 1), that is, it is
displaced to the right and has smaller input dynamic range (increased sensitivity). Therefore, the shape
of the binding dose response curve by itself cannot explain the overall characteristics of PRESS systems.
ii) Pulse generators may by subsensitive (ny < 1), such as in Model 1 or ultrasensitive (ny > 1), such as in
Model 3, depending on architecture and parameter values.

iii) The coupled system (ligand-receptor -> pulse generator) results in a dose-response curve (dose =
ligand/K4, response = maximum value reached by the pulse) whose characteristics depend on the
coupling, and particularly on the dynamics of the ligand-receptor reaction.

If the ligand-receptor reaction is fast (compared to the time-scales of the pulse generator), then we may
consider the equilibrium ligand-receptor dose-response curve (with nyasst = 1) as the input to the pulse
generator. Therefore, the upper bound of the overall system sensitivity depends exclusively on the
sensitivity of the pulse generator. If the ligand-receptor reaction is slow, one may be tempted to think
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that the ny of the dose-reponse that acts as the input to the pulse generator has an nya sow > 1
(according to point i)), resulting in a coupled sensitivity that might be higher for the slow ligand-receptor
reaction than for the fast one. This is clearly in disagreement with the results in Tables S1 and S2, where
we show that the coupled sensitivity is consistently lower than that of the pulse generator.

What happens is that for each ligand concentration that stimulates the coupled system, the pulse
generator reaches its maximum at a different time t,., (see right panels in Fig. S1 and also Fig. S13b-d).
Particularly, for Model 1, if the input stimulus is large, the peak of X* occurs early; if the input stimulus is
small, the peak of X* occurs late. The binding dose-response curve for early times is shifted to the right
compared to those of later times, resulting in an effective ligand-receptor curve, that of C(tmay), that has
lower slope than that of C in early times or even than that of C in equilibrium (see Fig. S13a, green line).
. The coupled sensitivity for

1
a b
T 7 o8 the ligand-receptor -> pulse
@ 7] §o.e generator system is then
g / ' §04 bounded by the ny of the
% | 202 L/Kd=0.1 curve formed by the C(tmax)
x % 5 10 15 values (Fig. S13). So, for a
L o) Time (min)
8 c pulse generator and a slow
g o8 L/Kd=1 ligand-receptor  reaction,
g o6 the coupled sensitivity will
Sos be lower than that of the
0.01 0.1 1 10 100 1000 =2°92 pulse generator in isolation,
L/Kd % 2 4 & &8 10 whether or not the
Time (min)
e d | sensitivity of this last one is
‘%08 L/Kd=100 ‘%08 lower or greater than 1.
2 2 L/Kd=10 _
006 006 Therefore, PRESS itself
§°4 §0-4 lowers the sensitivity of the
S02 $02 overall response, expanding
% os_ 1 15 % 1 2 3 4 s its dynamic range.
Time (min) Time (min)

In the case of Model 3, the

Figure $13. Graphical explanation of the expansion of the input dynamic range. pulse generator reaches its

Analysis of the sensitivity of the ligand-receptor system coupled to the pulse
generator in Model 1. Parameters: X;»:=10, r;=0.1, r,=0.06, r3=0.001, k.=0.001
sec’. a. Normalized ligand-receptor complex C in equilibrium (black), at four
different times indicated over the figure (grey), and for the times where the
maximum of the pulse occurs for each dose, C(tmax) (green). Peak X* is included
in red. The horizontal axis corresponds to the dose of ligand normalized by the Ky
of the ligand-receptor reaction. The times selected to plot C versus L/K4 before
equilibrium are the t.. for L/K4=0.1, 1, 10, 100: 6.24, 2.07, 0.83, and 0.36 min
respectively. Green circles indicate the intersection of doses L/K4=0.1, 1, 10, 100,
and C vs L/K4 at the listed times, therefore, those circles are over the curve
C(tmax). The curve C(tmax) vs L/Kq is characterized by E¢50=17.7 and ny=0.9. b-e.
Temporal profiles for normalized C (thin line) and peak X* (thick line) for doses
L/K4=0.1, 1, 10, 100.

maximum at similar times
tmax. 0.88, 1.1, 1.3 sec for
normalized doses: 1500,
500, 100, as indicated in Fig.
S14, resulting in an effective
ligand-receptor curve, that
of C(tmax), that has not a
much lower slope than that
of each C(t) curve (curves in
grey). The overall result for
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this model is then, that the coupled sensitivity is still lower than the sensitivity of the pulse generator
considered in isolation but the effect is not as important as when the values of t.,.,,are very different for
different doses (Model 1, Fig. S13).

a b
1 1y
0 0.8! @ 0.8
C C
o o
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$ 0.6 ® 06"
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e] o
g g
= 0.4 = 0.4}
z £
o o
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10 100 500 1500 10000 0 2 4
LK, Time (sec)

Figure S14. Graphical explanation of the behavior of Model 3.

Analysis of the sensitivity of the ligand-receptor system coupled to the pulse generator in Model 3. Parameters:
k.=0.001 sec'l, kxg=1, Kxg=0.01, krps=5, Krgg=100, Fg=0.5, kcx=5, Kx=0.1, kgx=6, Kgx=0.01. a. Normalized ligand-
receptor complex C in equilibrium (black), at three different times from right to left 0.88, 1.1, 1.3 sec (grey), and
for the times where the maximum of the pulse occurs for each dose, C(tma) (green). Peak X* is included in red.
The horizontal axis corresponds to the dose of ligand normalized by the Ky of the ligand-receptor reaction. The
times selected to plot C versus L/Ky before equilibrium are the t,., for L/Kg=1500, 500, and 100, respectively.
Green circles indicate the intersection of doses L/K4=100, 500, 1500, and C vs L/Kq4 at the listed times, therefore,
those circles are over the curve C(tna). The curve C(tma) vs L/Kq is characterized by EC50=666.4 and n,=1.15. b.
Temporal profiles for normalized C and peak X* for doses L/K4=100, 500, 1500.
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4. The effect of noise during PRESS

Ventura et al, SI Appendix

To determine the effect of noise during PRESS, we run stochastic simulations of the toy model labeled as

Model 1 in this SI Appendix, Section2 (the model with an inactive refractory state in Fig. 2 of the main

text) varying the number of receptors. It is well known that at low concentrations deterministic

simulations based on the law of mass action are, in general, unlikely to be applicable. Therefore we used

a stochastic approach to describe the binding kinetics and to account for the noise resulting from the

probabilistic character of the (bio)chemical reactions. The goal of the study was to introduce different

degrees of noise at the ligand-receptor binding step and then analyze whether this noise was amplified
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Figure S15. Percentage of overlap between the stochastic
outputs of two consecutive doses for R.,;=30.

Results of calculating the overlap in the outputs of the 1001
stochastic simulations performed for Model 1 (the model with
an inactive refractory state) for low number of receptors (30
receptors per cell), using stochastic methods. Simulations were
done in Copasi using its adaptive tau-leaping algorithm.
Parameter values: k,=0.0002 ml/(pmol*sec), k=0.001 1/s,
r;=0.01 ml/(pmol*sec), r,=0.06 1/sec, r;=0.001 1/sec (with 1
pmol/ml = 1 nM). Initial particle numbers: receptor=30,
x=14536.5. Cell volume= 5e-11 ml. The overlap was calculated
with three different variables: the equilibrium value of the
ligand-receptor complex C (Cqq) in red, maximum of X* (X*1,5) in
black, and C at the time where X* reaches its maximum (C(tynax))
in blue. Labels in horizontal axis indicate the lower dose of the
two doses being compared for the overlap, normalized by the Kq4
of the ligand-receptor reaction. Doses being compared are (in
units of K4): 0.01, 0.03, 0.1, 0.32, 1.0, 3.16, 10, 31.62, 100.

or not by the downstream response. To
do that, we run simulations with different
number of receptors (low, medium or
high) while maintaining constant the
number of the rest of species in the
system.

We include the
Model
number of receptors (30-300-3000), using
Fig. S2. We
simulations in

results of simulating
1 for low, medium, and high
stochastic methods, in
performed numerical
Copasi 4.11 (4) using its adaptive tau-
leaping algorithm. Importantly, we
defined parameter r; (x* activation rate)
as 0.1/initial free receptor, and therefore
0.1/30, 0.1/300, and
0.1/3000, respectively. Thus, each bound

receptor has a

its value was
stronger activation
capacity when there are only 30 total
receptors than when there are 300 or
3000. In this way, the effective activation
rate of X* is comparable between the
simulations with different number of
receptors.

As expected, the effect of noise is much
more evident when the number of
receptors is low, see Fig. S2, as can be
seen both in the temporal profiles on the
right
deviation from 1001 simulations plotted

panels, and in the standard
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on the left panels. The square of the coefficient of variation plotted in the bottom panel indicates that
for the three variables, Cg (red curves), C(tmax) (blue curves), and peak X* (black curves), lower receptor
number results in higher CV? for the whole range of doses considered. Also, for the three amounts of
receptors considered (30 in solid lines, 300 in dashed lines, and 3000 in dotted lines), the curve of Cg is
lower than that of peak X*, and peak X* is lower than the curve for C(tmay). This result suggests that even
in the case of very low number of receptors (30 per cell), which introduce a significant noise at the level
of occupied receptor (Fig. S2F), the pulse generator downstream of the receptor did not amplify it and
therefore the improvement gained by PRESS is not lost or masked by the effects of noise.

In Fig. S15, we show the percentage of overlap between the outputs of 1001 stochastic simulations for
two consecutive doses, Li/Kq and Li.1/Kq, being Liia/Kg~3* Li/Kq , evaluated for Ceq (red), C(tmax) (blue) and
X*nax (black), in the case of low number of receptors (30 receptors per cell). The aim of this figure is to
evaluate if two doses can be identified as different doses based on the information given by each
variable, Ceq, Cltmax), X*max particularly in the region of high doses (L/K4 >1). The results in Fig. S15
indicate even in this case with significant noise at the level of occupied receptor, variable X*.. has
lower overlap than C.y, supporting that the improvement gained by PRESS is not lost by the effects of

noise.
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5. Mathematical model to study the sensing of a stationary spatial gradient

In what follows we present two alternative mathematical descriptions for the variable Delta. In
Description 1 we derived the steady-state concentration of oF as an approximate solution to the
diffusion equation from a point source, with, and also without, reflecting boundary conditions on the
sensing sphere. Combining this solution with the normalized bound receptor function we derived the
variable Delta (difference of bound receptors at the front and at the back). In Description 1, Delta
depends on three combinations of parameters related the average concentration sensed by the cell, the
ratio between the radius of the cell and the distant to the source, and the ligand-receptor unbinding
rate. In Description 2, we derived variable Delta in terms of the maximal and minimal ligand
concentrations sensed by the cell, without relating them by any particular function (i.e. without
specifying the profile of the gradient). In this case, Delta still depends on the ligand-receptor unbinding
rate, and on the maximal and minimal ligand concentrations. Description 1 is based on a given source-
sensing cell pair, while Description 2 is based on the local environment sensed by the cell. Both
descriptions are easily related to one another.

5.1 An analytical expression for the oF gradient generated by a point source, and for the variable
Delta (Description 1)

As in Segall (5), the cell is modeled as an impermeable sphere of radius a, with d the distance from the
center of the sphere to the point source of aF. There is azimuthal symmetry with respect to the line
between the center of the sphere and the point source. The concentration at any point on the sphere
will vary with the angle, 6, between the line connecting the center of the sphere to the point source and
the line connecting the center of the sphere to the point on the surface. The point over the sphere that
is nearest the source is indicated with an f (front, 6 = 0) and the point that has the greatest distance to
the source is indicated with a b (back, 6 = ).
An approximate solution to the diffusion equation with a point source and given reflecting boundary
conditions on the sphere (5) is:

aF(0) = = [£2,2 + 1 (3) 22| )
where oF(0) is the steady-state concentration of aF as a function of the position over the cell surface, q
is the rate of release of alpha-factor from the point source, D is the aF diffusion coefficient, and P; is the
Legendre polynomial of order j (5).
We model the ligand-receptor binding with the following reaction:

oF+R <->C (4)

where oF is the ligand (alpha-factor), R is the membrane receptor assumed to have a uniform density
over the cell surface, C is the complex ligand-receptor, and k, and k_are the binding and unbinding rates,
respectively. The dissociation constant Kq is defined as k./k, and represents the ligand concentration that
produces a bound receptor level that is one-half of its maximum. The total concentrations of receptor
and ligand in the system are assumed to be constant, Ry = [R] + [C], OFo: = [0tF] + [C]. Thus, only one

concentration of the three ([R], [&F], and [C]) is independent; the other two may be determined from
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Riot, OFior and the independent concentration. The kinetics of this system can be solved analytically.
Choosing [C] as the independent concentration and representing the concentrations without the
brackets for brevity (e.g. R = [R]), the kinetic rate equation can be written as:

= =k, 0F R = k_C 2 ky 0Ftor(Reort = €) —k_C =k, aF(Repe —C) —k_C  (5)

where we have assumed that [0F] ~ aF;, meaning that the consumption of ligand in the ligand-receptor
reaction is negligible compared with aF,. OF is then the function aF(0) given by Eq. (3). The solution
for Eq. (5) is:

t
C(O,t) = Ceq (1 — exp (— ;)) (6)
with
aF(8)/K
Ceq = RtotW)c1 (7)
Kd 1
being the steady-state value for C and
T =[k_(1+aF(6)/Ka)l™" (8)
the time required for the bound receptor C to rise from zero to 1-1/e (that is, 63.2%) of its final steady-
state value.

Combining Egs. (3), (6), (7), and (8) we obtain that the normalized bound receptor, C/R. as a function of

0 and t depends on the following combination of parameters:
q

P1 :_4;3d;p2 = 3:133 =k_.(9)

Parameter p; combines parameters related to the ligand source (qg;D), the distance to the source (d),

and Ky, and indicates the average concentration sensed by the cell in multiples of Ky, for instance, p;=1
means that the cell feels a concentration of about 1 x Ky. Parameter p, is a geometrical parameter
defined as the ratio between the radius of the spherical cell and the distance from the center of the cell
to the point source. p; and p, are dimensionless parameters. Parameter ps3 is the ligand-receptor
unbinding rate and has units of 1/time. The three parameters are always positive, and p, is such that 0 <
p2<1.

For p; = 10 and p,= 0.3 (the values used in most of the paper), the total numbers of bound receptors in
steady state, for the hemispheres facing and away from the point source, were calculated following (5)
by integration over the angles 0 to m/2 radians (0 to 90 degrees) and m/2 to m radians (90 to 180
degrees), respectively. The total number of receptors was assumed to be 8000 (5). The hemisphere
nearest the source has 3720 occupied receptors and the hemisphere away from the source has 3531
occupied receptors. The difference between the two sides, 189 receptors, is 2.6% of the total number of
occupied receptors.

The variable Delta is defined as Delta(t) = C(0 = 0, t) - C(6=mr, t) (difference of bound receptors at the
front and at the back). The effectiveness of PRESS in the context of gradient sensing depends on how
much (amplitude) and for how long (duration) lasts the overshoot of Delta(t). Delta depends on
parameters pi, P2, and ps.

21



Ventura et al, SI Appendix

By combining Egs. (3), (6), (7), and (8) we numerically compute Delta and determine that the overshoot
amplitude increases with the concentration of ligand (which increases p;). This is because Deltacqhas a
biphasic behavior with p; while Deltan, has not (Fig. S16a inset). Delta.q peaks at about p;=1, i.e. at an
average concentration of oF of about the K4. On the other hand, Delta,, is virtually indistinguishable
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Figure S16. Characterization of PRESS applied to gradient detection.

a. Amplitude of Delta’s overshoot as a function of p; (average ligand concentration relative to the Ky) for the
indicated values of p,. Overshoot occurs at p; greater than ~ 1, providing an advantage of PRESS over
equilibrium signaling. p; does not affect Delta.q or Deltam.. Inset. Dependency of Deltaq (solid line) and
Deltamax (dashed line) on parameter p; (average concentration of oF) for p,=0.3. Delta, is biphasic with p;
while Delta, is monotonic. The shaded area represents Delta’s overshoot. b. Temporal window during which
Delta overshoots Delta.q as a function of parameter p; (the time scale of the aF binding reaction), for p,=0.3
and the indicated values of p;. The width of each line (shaded) marks the region between two extremes yeast
cell sizes (cells from 1.6 to 6.4 um diameter, located at a distance from the source of 6.7 um), corresponding to
p, from 0.12 to 0.48. Inset shows Delta versus time for the two values of ps indicated in the x-axis (p; = 10, p; =
0.3). Graph shows that the temporal profile is independent of p;, except for the scale of time. We defined the
temporal window for PRESS as the interval during which Delta is higher in more than 20% of Deltae,.

from Deltaeq for low values of p;, but at p; approaching 1 Deltam. diverges from Deltaeq increasing
asymptotically to a maximum Delta... Consequently, at values above 1, increasing p; increases the
amplitude of the overshoot. In contrast, its duration decreases with p; (Fig. S16b). Thus, even though
high levels of signal provide greater overshoot amplitude for PRESS, the time window available for
PRESS is reduced.

Increasing p, for a given value of p; (which translates into increasing the sensing cell size), increases both

Deltamasx and Deltae,, effectively improving the chances of the cell of detecting differences between front
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and back bound receptor, both at equilibrium and prior to it, but it does not make PRESS better than
equilibrium signaling (Fig. S16a).

Most interestingly, the duration of Delta’s overshoot is most strongly affected by ps (Fig. S16b). For Cell
1 in our example of Fig 3B in the main text, a value of ps 100 times faster than the actual aF binding
reaction reduces the time window for PRESS from about 6 minutes to about 0.06 minutes (3.6 seconds)
(inset in Fig. S16b). Thus, the slower ps, the more time there is for PRESS. On the other hand, p;does not
affect the amplitude of the overshoot.

5.1.1 A simplified formula for the o.F gradient generated by a point source, and the variable Delta

If the effect of the reflecting boundary conditions on the sensing sphere is not considered, then the
steady-state solution for the problem of diffusion from a point source is simplified to:

aF(8) = . (10)

4nDd 1+ (a/d)2-2(a/d) cos 6’
In terms of parameters py, p; and ps, and for the case with reflecting boundary conditions, we have:

F(© (cos 0)
S9 = p [+ DEI ]
and for the case without:
oF (6) 1
= (12)

1

\/1+(p2)l'—2p2 cos @
This last case results in oF; = aF(6 = 0) = p1/(1 - p2) and oF, = oF(0 = ) = p1/(1 + p2). In Fig. S17 we
compare the a-factor profiles over the sensing cell surface with and without reflecting boundary
conditions, i.e. we compare Egs. (11) and (12). If the presence of the sphere is taken into account in the
diffusion problem (Eq. (11)), the differences between front and back are greater than if not.

With oF given by Eq. (12) we obtain:
Ct

L =—— (1 --exp(-t/T5) (13)

Rtot p1+(1 p2)
S _ (1—exp(—t/t))  (14)

Reot p1+(1+P2)

where
_ 1-p2
T bspiri-p) (1)
_ 1+p2
To = p3(pl+1+p2) (16)
resulting in
Delta(t) = Deltaeq + f(t) (17)
_ 2plp2
Deltacq = Tipn?p2? (18)
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_ p1l _ 1+pl+p2 _ p1 _ 1+pl-p2
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Figure S17. a-factor profiles over the sensing cell Figure $18. Delta vs. time
surface. Data was calculated with (black) and without (red)
Including  (black) not (red) reflecting boundary reflecting boundary conditions, for p;=10, p,=0.3, and
conditions. oF is normalized by Kq and 0 is plotted in p3=0.001 1/sec.
T units.

In Fig. S18 we compare the variable Delta calculated using Eq. (11) or Eq. (12), we can see that in both
cases there is a time window where Delta is greater than its steady-state value, meaning that the
feature of the overshoot in Delta does not depend on the use or not of reflecting boundary conditions

over the sensing sphere.

We make use of this simplified scheme to analytically explain some of the features in Fig. S17. From Eq.
(18) we see that Deltaqdepends on parameters p; and p, but not on p;. Computing the derivative of
Deltaeq with respect to p; and equaling to zero, we obtain that Deltaq reaches a maximum at p;~ =(1 -
p’)"?
1, for instance, for p, = 0.3 (the value p, used in the majority of the paper), p.~ = 0.95. The derivative of

, it increases with p; for p; < p1~, then decreases. For a small value of parameter p,, p;~is close to

Deltaeq With respect to p; is always positive, meaning that Delta.q always increases with p,.

Using Egs. (17)-(19) we can explicitly compute the time t. where Delta becomes greater than Deltacg, i.e.
when f(t) becomes positive:

1-p2? 14+p1+p2
¢y =7——log(———) (20)
2p1p2p3 1+pl1-p2
and the time t,,.x where Delta reaches a maximum:
1-p2? 14p2
t = lo
max = 5 ——log ((2) (1)

The maximum value reached by Delta is given by Delta,, = Delta(t = tay):

_ pl —(1-p2)(1+p1+p2) 1+p2
Deltay,,x = Delta,q (1 + Tz &XP opip2 log (1_p2)]). (22)
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Delta.x depends on parameters p; and p, but not on ps. By plotting Delta. versus parameter p, for
different values of p,, or Delta,.versus parameter p, for different values of p; (not shown), we can see
that it increases monotonically with both p; and p,. From this last equation we see that for small values
of p;, the second term inside the parenthesis is very small resulting in Deltam. ~ Deltaeg.

5.2 An analytical expression for the variable Delta (Description 2)

The effectiveness of PRESS in the context of gradient sensing depends on the amplitude and duration of
the overshoot of Delta(t). Thus, we developed a mathematical analysis to describe the evolution over
time of Delta(t), assuming homogeneously distributed receptors and simple binding kinetics. Delta(t)
depends on the properties of the gradient: the maximum and minimum ligand concentrations sensed by
the cell (in the case of oF, o.F; and oFy,, the front and back oF concentrations, respectively), as well as of
the sensing cell: the binding and unbinding rate for the ligand-receptor reaction, k, and k.. Normalizing
by Ryt We obtain Delta(t) as follows:

Delta(t) = rarsrries + —2exp{—t[k_ (1 + aFy)]} - ~-exp{~t[k_(1+ aFp)]}

(1+ aFp)(1+ aFy) 1+ aF 1+ aFf

Where EFf and an are the front and back concentrations of oF normalized by the dissociation
constant, Kq. The first term (in black) does not depend on time, and it corresponds to the value of
Delta(t) at equilibrium, Deltaeq. The second and third terms (in blue and red) correspond to the dynamics
of binding at the back (in blue) and the front (in red). We then derived a formula for Delta,,, the
maximum value of Delta(t), its difference with Delta,, define the overshoot; and tma, the time of
Deltana, with which we obtained the overshoot’s duration (arbitrarily defined as temporal window
during which Delta(t) is 20% larger than Deltag,).

The function Delta(t) can be characterized by:

1) its initial value, Delta(t=0)=0;

2) its asymptotic value, Delta(t->o0):

— aFg—aFp
Deltaeq = ogr e arg)
3) the time tma Where Delta(t) reaches a maximum:
— 1 oF
tmax = k_( aFs_ ;Fb)log (;Fb);

4) the maximum value reached by Delta(t) , given by Deltay.= Delta(t = tmay):
Deltamax = Deltaeq

+{ aFy l 1+ aF, | <'o?Ff)l
——¢ — (o} —

aFf 1+ ’OZFf 1 aFf
1+ afr P (aF,_aFy) o\ aFy

5) the time t. where Delta becomes greater than Deltacq:
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log ( oF; 1+ aF,
= 0 = —
k_( aF,_ aF,) 8\ qF, 1+ af

t,

6) the temporal window where Delta is greater than Delta.q, approximated as At=2*(ty-t.):

Af = 2 | 1+ oF¢

The main quantities in the context of PRESS and the overshoot in Delta(t) are Deltamay, Deltaeq and the

temporal window At, where Delta(t) is greater than Deltay. Deltam.c and Deltas, depend on aFfand
ofy, only, and At depends on those two quantities and also on k.. Linear and exponential gradients are
represented in the (an, m:f) plane as lines parallel to the identity with different y-intercepts, or lines
with zero y-intercept and different slopes, respectively, as described with the following equations:

linear gradient: aF = a;x + by, aF; = aFy, + a;(X¢-Xy,), aFf = aFy, + const;,

_ (xf—xp)
exponential gradient: OF = a,e ¥z qF; = aFp,e P2 |, aFf = aFy * const, (with const,>1)

The biological relevance of the overshoot’s duration depends on the time-scale of the processes
downstream to the ligand-binding reaction (i.e., is the downstream process fast enough to generate a
response during the temporal window where Delta(t) > Deltac,?). The values of Delta(t) are differences
between the fraction of bound receptor at the front and back, and whether a given value of Delta
provides enough directional information to detect a given gradient depends on the particular
mechanism of polarization.

To show the behavior of Deltaq, Deltama, and the overshoot’s duration as a function of the gradient, we
focused on the case of yeast mating pheromone gradient detection. In Fig. S3 A-C we show heatmaps
where the color scale indicates Deltae,, Deltam.x and the overshoot’s duration, respectively, for a range
of gradients (oF front, aF back pair combinations) in a region of oF concentrations from 1 to 20 Kgs. For
Deltaeq and Deltamay, given a value of oF at the back, increasing oF at the front improves both Deltae,
and Deltamax (and the same is true for a given value of oF frontbut decreasing oF back), indicating that,
as expected, a more pronounced gradient improves Delta., and Deltamay.

We considered the profile of Delta(t) for a cell located in an exponential gradient at an average ligand
concentration of ~1xKy (see Fig. 3, main text). In this case, a cell reaches a value of Delta,,= 0.23. For
heuristic reasons, we used this value as reference point, assuming that a value of Delta of 0.23 or larger
provides enough front-back difference to distinguish the direction of the gradient, and that values lower
than 0.23 result in suboptimal gradient detection. The region to the left of the contour line in Fig. $3 A
gives all combinations of aF front-oF back that would lead to consistent gradient detection if only
equilibrium information is used. However, the region of oF front-otF back combinations where Deltanay
is greater than 0.23 is much larger than thatobtained if we consider equilibrium binding information
(dashed contour line in Fig. S3 B marks combinations with Deltan.x of 0.23). In the region between the
Deltaeg and Deltan, lines of 0.23, pre-equilibrium information is sufficient (Deltama,>0.23) but
equilibrium information is not (Delta,q<0.23). In Fig. S3 C we show the temporal window where this
amplification of the differences between front and back occurs. For the region between the Delta.q and
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Deltaay lines, the temporal window is not smaller than 6.8 min. The duration of Delta’s overshoot is
strongly affected by k.: a value of k. 100 times faster than the reported aF binding reaction reduces it by
a factor 100 (duration reaches a maximum of 15 min for k.=0.001 sec™, but only of 0.15 min for k=0.1
sec'l). Thus, the slower k, the more time available for PRESS. On the other hand, k. does not affect the
amplitude of the overshoot (see formula for Delta,,., above).

With this analysis, we studied Delta(t) in different gradient situations. We show that the average
concentration establishes a tradeoff between overshoot’s amplitude and duration. Delta,, is larger at
higher average ligand concentrations, but the temporal windows are shorter (see grey lines in Fig. S3 B
and C). The optimal condition depends on the downstream process time scale and sensitivity.
Summarizing:

- Deltaeq and Deltam. depend only on oFy, and oF;. A higher average oF concentration and a more
pronounced gradient are conditions that favor Delta.q and Deltamay.

- The temporal window for PRESS depends on oFy, and aFfand also on the unbinding rate for the
receptor-oF reaction, k. (at a fixed Ky). It is shorter for higher averages of aF concentration and for faster
unbinding rates.
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6 Supplemental experimental procedures

6.1 Strains and plasmids.

Strains are detailed in Table S3. YACL379 was used as the parental strain, which is a Abar1 strain derived
from YAS245-5C (canl::HO-CAN1 ho::HO-ADE2 ura3 ade2 leu2 trp1 his3), which in turn is a W303-1a
descendant (6).

ESY3136 was made by transforming YACL379 using a PCR product containing the YFP gene followed by
the S. pombe his5+ gene. We directed recombination downstream of the STE20 gene using primers with
40 nt of homology with the 3’end of the STE20 ORF (7). MWY003 was made in two steps. First, STE5 was
deleted using a PCR product containing the nourseothricin (NAT) resistance gene obtained using primers
with 40 nt of homology with the 5’ and 3’ ends of the STE5 ORF. Then, this strain was transformed with a
pRS404 plasmid containing the STE5 gene (from -1193 to the end of the ORF) followed by three copies
of YFP, linearized at the STE5 promoter with Pacl. The fluorescence level of MWYO0O03 is three times that
of other colonies aislated from this transformartion, suggesting that three integrations of the STE5-
YFPx3 construct ocurred. YAB3725 was made by transforming YACL379 with plasmid pBB-Ste2(T305)-
CFP linearized with Clal. pBB-Ste2(T305)-CFP is a pRS406 based plasmid that contains a 514 nt fragment
of STE2 (from nt +402 to +916 counting from the START codon) followed by CFP. In this plasmid, Clal cuts
within the STE2 fragment, and therefore, it integrates at the STE2 locus, generating a strain that
expresses only a Ste2 protein truncated at T305 followed by CFP.

Table S3. Strains.

Strain Relevant Genotype Reference
YACL379 MATa Abar1 (6)

ESY3136 MATa Abarl ste20::STE20-YFP::his5+ This study
MWY003 MATa Abarl Aste5::Nat, (trp1::STE5-YFPx3::TRP1)x3 Peter Pryciak lab
YAB3725 MATa Abar1 ste2::Psre, STE2(T305)-CFP::URA3 This study
YGV5097 MATa Abarl BEM1::BEM1-3xmNeonGreen-HIS3MX6 This study

We made YGV5097 by PCR-based gene tagging (7) of the BEM1 ORF in strain ACL379. For the PCR, we
used pFA6a-mNG(3x)-KANMX6 as template and two primers with 40nt homology 5’ends to the 3’ end of
BEM1 ORF and its 3’UTR, respectively. We made pFA6a-mNG(3x)-KANMX6 in two steps. First, we
designed and ordered the synthesis of a DNA sequence coding for a tandem repeat of three monomeric
NeonGreen (mNG) fluorescent proteins (8) flanked by a 5 Pacl and 3’ Acsl (Integrated DNA
Technologies, Inc., Coralville, lowa). For this design we optimized codon usage for yeast. For preventing
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intra-repeat recombination, we designed each copy of mNG to use slightly different codons. The
resulting plasmid is called pUCIDT-mNG(3x). In a second step, we subcloned a Pacl and Ascl cut fragment
containing mNG-(3X) from pUCIDT-mNG(3x) into the pFA6-GFP-HIS3MX6 backbone also digested with
Pacl and Ascl to release the GFP sequence. Finally, the PCR product was used for transformation of
ACLY379.

6.2 Quantification of Polarization Times

Microscopy experiments were performed as described elsewhere (9, 10). Exponential growing cells were
placed in 384-well glass-bottom plates pre-treated with 1mg/ml of concanavalin A (Sigma) to affix cells.
Images were acquired using an Olympus FV1000 confocal module mounted on an Olympus IX-81
microscope, with an Olympus UplanSapo 63x objective (NA = 1.35).

Cells were stimulated with 1uM a-factor at time zero and the same field was followed for up to 2.5
hours. Transmission and YFP (excitation 515nm, emission 530-630nm) images were analyzed by our
software Cell-ID (10), identifying individual cells. Using our package Rcell (http://cran.r-project.org/), we

created transmission image montages as the ones showed in Fig 3F. Based on these montages, the
position in the cell cycle for each cell was manually determined; pre-start cells (G1) responded to
pheromone directly while post-start cells (S) budded and finished a round of replication before
responding to pheromone (Fig S4A). Analogously image montage for YFP channel (as the one showed in
Fig. S4B) were created with Rcell. To avoid missing out-of-focus polarizations, a Z stack was acquired at
each time. Polarization time was determined as the first time in which a sustained polarization was
observed, for example 16.5 minutes in Fig. S4B. To avoid any bias, the cell-cycle and polarization-time
determinations were done independently, and the order in which the cells were presented was
randomized.

Three independent repetitions of each strains were done, finding very good repeatability. To estimate
the uncertainty in the cumulative polarization curves (Fig. S4C), repetitions were pooled and 95%
confidence intervals were calculated from 1000 bootstrap samples (11).
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7. Triple monomeric NeonGreen DNA sequence.

ATGGTCTCAAAAGGGGAGGAGGACAACATGGCATCCTTGCCAGCAACTCACGAATTACATATTTTCGGAAGTATTAATGGTGT
TGACTTTGATATGGTTGGACAAGGCACTGGTAATCCAAACGATGGATACGAGGAACTTAATCTTAAATCAACAAAAGGCGATT
TGCAATTTTCCCCCTGGATTCTTGTGCCCCATATTGGGTACGGCTTTCATCAATATTTACCTTACCCTGATGGAATGAGTCCATTT
CAAGCCGCTATGGTAGACGGTTCTGGCTACCAAGTTCATAGAACCATGCAGTTTGAAGACGGCGCTTCCTTAACAGTAAACTA
CAGGTACACGTACGAGGGTTCCCATATTAAGGGAGAAGCCCAAGTTAAGGGTACTGGTTTTCCGGCTGATGGTCCCGTTATGA
CTAATAGCCTGACAGCTGCTGACTGGTGTAGGTCTAAAAAGACATATCCTAACGATAAAACAATAATTTCAACTTTTAAGTGGT
CTTATACCACTGGCAATGGTAAAAGATACAGATCCACTGCCCGTACTACGTATACATTCGCTAAACCAATGGCCGCTAATTATC
TTAAAAATCAACCCATGTACGTGTTTAGGAAGACTGAACTAAAACATAGTAAGACCGAGTTGAACTTTAAGGAATGGCAAAAA
GCCTTCACCGATGTCATGGGAATGGATGAATTATATAAGATGGTTTCCAAGGGTGAGGAAGATAATATGGCATCTTTGCCAGC
CACACACGAATTGCACATATTTGGTTCTATTAATGGAGTGGACTTCGATATGGTGGGTCAAGGTACTGGCAACCCTAATGACG
GATATGAAGAACTTAATCTGAAGTCTACCAAAGGCGATTTACAGTTTTCTCCTTGGATCTTAGTTCCTCATATCGGCTATGGTTT
CCATCAATACTTGCCTTACCCGGATGGTATGAGCCCGTTTCAAGCTGCGATGGTAGATGGTTCAGGTTATCAAGTCCATAGAAC
CATGCAATTTGAAGACGGTGCGTCTTTAACTGTAAATTACAGATACACTTATGAAGGTTCACACATTAAAGGAGAAGCTCAAGT
TAAAGGTACAGGCTTTCCAGCAGATGGTCCTGTCATGACCAATTCTCTAACAGCTGCTGATTGGTGTAGATCAAAAAAGACTTA
CCCAAACGATAAAACAATTATATCTACCTTTAAATGGTCCTACACTACTGGCAATGGTAAAAGATACAGGAGCACTGCTCGTAC
TACTTACACGTTCGCTAAACCGATGGCTGCAAATTACTTGAAAAATCAACCAATGTATGTATTTAGAAAAACTGAATTGAAGCA
TTCTAAAACAGAGCTTAACTTTAAAGAATGGCAAAAAGCATTCACAGACGTTATGGGCATGGACGAATTGTATAAAATGGTCT
CTAAGGGTGAAGAAGATAATATGGCGTCTCTACCAGCTACACACGAACTGCATATCTTCGGTAGCATCAACGGTGTAGACTTC
GATATGGTCGGACAAGGCACCGGAAACCCAAATGATGGGTATGAAGAATTGAACCTAAAGTCAACGAAGGGTGACTTACAGT
TTAGCCCTTGGATTCTAGTGCCACACATTGGTTATGGTTTTCATCAATACCTACCTTACCCCGACGGAATGTCACCATTTCAAGC
CGCTATGGTTGATGGTTCCGGTTATCAAGTTCACAGAACTATGCAGTTTGAAGATGGAGCTTCCCTGACTGTCAACTACAGGTA
CACTTACGAAGGTTCTCATATCAAGGGTGAAGCACAAGTTAAAGGAACCGGTTTTCCTGCCGATGGACCCGTTATGACTAACTC
TTTGACGGCTGCCGATTGGTGCAGGAGTAAAAAGACCTACCCAAACGATAAAACTATCATCAGCACTTTTAAGTGGTCATATAC
TACCGGGAACGGAAAGAGATATAGATCAACCGCTAGAACGACATACACATTTGCCAAGCCTATGGCAGCTAACTACTTAAAAA
ATCAACCTATGTACGTGTTTCGTAAAACCGAATTGAAGCATAGCAAGACAGAATTAAATTTCAAGGAATGGCAAAAAGCCTTC
ACCGATGTTATGGGTATG GACGAACTTTATAAA-

30



Ventura et al, SI Appendix

8. Supplemental References

1.

10.

11.

Ma W, Trusina A, ElI-Samad H, Lim W, & Tang C (2009) Defining network topologies that
can achieve biochemical adaptation. Cell 138(4):760-773.

Koshland DE, Jr., Goldbeter A, & Stock JB (1982) Amplification and adaptation in
regulatory and sensory systems. Science 217(4556):220-225.

Ferrell JE (2001) Regulatory Cascades: Function and Properties. eLS, (John Wiley & Sons,
Ltd).

Hoops S, et al. (2006) COPASI--a COmplex PAthway Simulator. Bioinformatics
22(24):3067-3074.

Segall JE (1993) Polarization of yeast cells in spatial gradients of alpha mating factor.
Proc Natl Acad Sci U S A 90(18):8332-8336.

Colman-Lerner A, et al. (2005) Regulated cell-to-cell variation in a cell-fate decision
system. Nature 437(7059):699-706.

Longtine MS, et al. (1998) Additional modules for versatile and economical PCR-based
gene deletion and modification in Saccharomyces cerevisiae. Yeast 14(10):953-961.
Shaner NC, et al. (2013) A bright monomeric green fluorescent protein derived from
Branchiostoma lanceolatum. Nature methods 10(5):407-409.

Bush A, Chernomoretz A, Yu R, Gordon A, & Colman-Lerner A (2012) Using Cell-ID 1.4
with R for microscope-based cytometry. Current protocols in molecular biology / edited
by Frederick M. Ausubel ... [et al Chapter 14:Unit 14 18.

Gordon A, et al. (2007) Single-cell quantification of molecules and rates using open-
source microscope-based cytometry. Nat Methods 4(2):175-181.

Efron B & Tibshirani R (1994) An introduction to the bootstrap (Chapman & Hall, New
York) pp xvi, 436 p.

31



