Supporting Information

Awai et al. 10.1073/pnas.1403708111

Fig. S1. Disruption of the gene for the glucolipid epimerase (mgdE) in the monogalactosyldiacylglycerol (MGDG) synthase gene 1 (MGD1) background. (A) The genomic mgdE region and *GST-MGD1* inserted in the neutral site of the *Synechocystis* sp. PCC 6803 genome (shown schematically at the right) were amplified from the wild-type and $\Delta mgdE$ strains by PCR with the indicated primer pairs (numbers and arrows) and were separated by agarose gel electrophoresis. (*B*) TLC analysis of lipids in the wild-type and $\Delta mgdE$ cells of *Synechocystis* sp. PCC 6803 expressing *GST-MGD1*. (C) Galactolipid synthetic pathways of the $\Delta mgdE$ in the *MGD1* background. DAG, diacylglycerol.

Fig. S2. Alignment of MdgE proteins. Translated amino acid sequence alignment of *mgdE* orthologs from 36 cyanobacteria strains (from top to bottom): Nostoc azollae strain 0708, Nostoc punctiforme PCC 73102, Anabaena PCC 7120, Anabaena variabilis ATCC 29413, Synechococcus sp. JA-3–3Ab, Synechococcus sp. JA-2–3B'a(2-13), Synechococcus elongatus PCC 6301, Synechococcus elongatus PCC 7942, Synechocystis sp. PCC 6803, Trichodesmium erythraeum IMS101, Cyanobacterium UCYN-A, Synechococcus sp. PCC 7002, Microcystis aeruginosa NIES-843, Cyanothece sp. PCC 7424, Cyanothece sp. PCC 7822, Cyanothece sp. PCC 8801, Cyanothece sp. PCC 8802, Cyanothece sp. ATCC 51142, Synechococcus sp. RCC307, Prochlorococcus marinus str. NATL2A, P. marinus str. NATL1A, P. marinus str. MIT 9312, P. marinus str. MIT 9215, P. marinus str. MIT 9301, P. marinus str. AS9601, P. marinus subsp. pastoris str. CCMP1986, P. marinus str. MIT 9303, Synechococcus sp. CC9902, Synechococcus sp. WH8102, Synechococcus sp. CC9605. The different amino acids are color-coded.

Fig. S3. DNA constructs for transformation of *Escherichia coli* and *Synechocystis* cells. (*A*) *E. coli* coexpression vector pCox1. The chloramphenicol-resistance gene and replication origin (p15A) were amplified from pACYC184, and the *lacl* gene, Lacl-repressible T7 promoter, and terminator were from pET24a. (*B*) *mgdE* of *Synechocystis* sp. PCC 6803 (*sl*/1376) was inserted into the Smal site of pCox1 to make pCox1-mgdE. (C) Transformation vector pMobEm1. The *sacB* was from pK18mobSacB, the replication origin (*oriV*), transfer origin (*oriT*), and erythromycin-resistance gene were from pRL271, and multiple cloning sites (MCS) were from pBluscriptII SK+. (*D*) The 5' region of *mgdE* (*sl*/1376) was inserted in MCS1, and the 3' region was inserted in MCS2 of pMobEm1 for the *mgdE* knockout vector. (*E*) *Synechocystis* expression vector pSEM1. (*F*) For expression of the plant-type MGDG synthase gene in *Synechocystis*, GST-fused cucumber *MGD1* (*CsMGD1*) was inserted downstream of the light-inducible *psbA* promoter in pSEM1.

Table S1. Synteny of mgdA and mgdE

PNAS PNAS

Strain	melB	mgdE	DUF95	mgdA
Synechocystis sp. PCC 6803	sll1374	sll1376	slr1478	sll1377
Synechococcus sp. WH8102	SYNW0583	SYNW1821		SYNW0060
Synechococcus elongatus PCC 6301	syc0951_d	syc0679_d		syc0466_c
Synechococcus elongatus PCC 7942	Synpcc7942_0571	Synpcc7942_0861		Synpcc7942_1083
Synechococcus sp. CC9605	Syncc9605_2095	Syncc9605_0646		Syncc9605_0060
Synechococcus sp. CC9902	Syncc9902_0576	Syncc9902_1713		Syncc9902_0057
Synechococcus sp. CC9311	sync_2195	sync_2171		sync_0061
Synechococcus sp. RCC307	SynRCC307_0478	SynRCC307_1661		SynRCC307_0062
Synechococcus sp. WH 7803	SynWH7803_1931	SynWH7803_1831		SynWH7803_0061
	SynWH7803_1136			
Synechococcus sp. PCC 7002	SYNPCC7002_A2845	SYNPCC7002_A2519		SYNPCC7002_A0533
	SYNPCC7002 A0460			
Svnechococcus sp. JA-3–3Ab	CYA 2141	CYA 0235		CYA 0245
Svnechococcus sp. JA-2–3B'a(2-13)	CYB_0528	CYB 1779		CYB 1788
Thermosynechococcus elongates BP 1	tlr1521		tl 1058	tlr1854
Microcvstis aeruginosa NIES-843	MAE 37730	MAE 58610		MAE 58600
Cvanothece sp. PCC 8801	PCC8801 4415	PCC8801 0598		PCC8801 0599
	PCC8801 2906			
Cvanothece sp. ATCC 51142	cce 1874	cce 1989		cce 3237
	cce 2499			
Cvanothece sp. PCC 8802	Cvan8802 3190	Cvan8802 0613		Cvan8802 0614
	Cvan8802 4479			
Cvanothece sp. PCC 7424	PCC7424 0200	PCC7424 3384		PCC7424 4425
	PCC7424_3387			
Cvanothece sp. PCC 7822	Cvan7822 2100	Cvan7822 1105		Cvan7822 1106
	Cvan7822 1101	-,		-,
	Cvan7822 5851			
Cvanobacterium UCYN-A	.,	UCYN 01810		
Gloeobacter violaceus PCC 7421	gll4250			glr2559
	alr3959			5
Anabaena sp. PCC 7120	alr3705	alr1909	alr1808	all4933
Nostoc punctiforme PCC 73102	Npun F1762	Npun F1048	Npun R4113	Npun R4124
				Npun R4706
Anabaena variabilis ATCC 29413	Ava 3583	Ava 3742	Ava 4811	Ava 2217
Nostoc azollae str. 0708		Aazo 4290		Aazo 3301
Prochlorococcus marinus subsp. pastoris	PMM1323	PMM0478		PMM1659
str. CCMP1986				
Prochlorococcus marinus str. MIT 9313	PMT1398	PMT1304		PMT0058
Prochlorococcus marinus str. CCMP1375	Pro1404	Pro0476		Pro1819
Prochlorococcus marinus str. MIT 9312	PMT9312 1421	PMT9312 0478		PMT9312 1751
Prochlorococcus marinus str. NATI 24	PMN2A 0894	PMN2A 1810		PMN2A 1257
Prochlorococcus marinus str. MIT 9301	P9301 15091	P9301_05031		P9301 18491
Prochlorococcus marinus str. MIT 9303	P9303_05681	P9303_06851		P9303_00631
Prochlorococcus marinus str. MIT 9515	P9515 14841	P9515_05411		P9515 18491
Prochlorococcus marinus str. NATI 14	NATI 1 17501	NATI 1 05341		NATI 1 21281
Prochlorococcus marinus str. AS9601	A9601 15231	A9601 05331		A9601 18681
Prochlorococcus marinus str. MIT 9711	P9211 13771	P9211 0/781		P9211 17851
Prochlorococcus marinus str. MIT 9211	P9215 15521	P9215 05591		P0215 10221
Trichodesmium erythrooum IMS101	Tory 2252	Tory 17/2		Tory 27/0
menodesiniani eryanaeani impiot	Tery 2105	1C1y_1/45		1C1 y_2/43
Acorioshlaris marina MDIC11017	AM1 2242			
Acaryochions marina MBICT1017	AIVI 1_3342		AIV(1_51/2	AIVI 1_4570

The genes *melB*, *mgdE*, *DUF95*, and *mgdA* are aligned as a gene cluster in the genome of *Synechocystis* sp. PCC 6803. Orthologs of these genes in various cyanobacterial genomes are listed. The orthologs that are present at the same positions of the corresponding genes in the gene cluster of *Synechocystis* sp. PCC 6803 are highlighted in green. A blank column indicates there is no significant ortholog in the corresponding genomes. Pink highlighting indicates that *Thermosynechococcus elongates* BP 1, *Gloeobacter violaceus* PCC 7421, and *Acaryochloris marina* MBIC11017 do not have significant orthologs of mgdE, even though these bacteria have orthologs of mgdA.

Table S2. Primers used in this study

	Primer name	Sequence
1	lacl-MCS Fw	CTTATCATCGGTCGAGATCCCG
2	lacl-MCS Rv	ATAAGCGGATATAGTTCCTCCTTTCAG
3	Cm ori Fw	ACTATATCCGCTTATTATCACTTATTCAGG
4	Cm ori Rv	TCGACCGATGATAAGCTGTCAAACATGAG
5	oriTV Fw	CGATGGGCCAAAATCCCTTAACGTGAG
6	oriTV Rv	CATAGCTGTTTCCTGCCTCGCGCGTTTC
7	SacB Fw	GGCCGTCGTTTTACAAGTAAATCGCGCGGGTTTG
8	SacB Rv	GATTTTGGCCCATCGGCATTTTCTTTG
9	Em-Fw	AAGCTTCGCGTGCTATAATTATACTAA
10	Em-Rv	AAGCTTGACCTGCATCCCTTAAC
11	M13 forward	TGTAAAACGACGGCCAG
12	M13 reverse	CAGGAAACAGCTATGAC
13	MCS2Fw	GGAATTATAACCATATGTCGCGACTAGTGCATGCC
14	MCS2Rv	GATCTGCTAGCCATACCGCGGCATGCACTAGTCGCG
15	GST-Fw1	CCCGGGATGTCCCCTATACTAGGTTATTG
16	CsMGD1Rv	CCCGGGTCACGATGAATTCCCGCC
17	sll1376 Fw	AAGGAGATATACATATGGCAATGGCTTGGTTAATG
18	sll1376 Rv	GTGCGGCCGCAAGCTAGGACTTTTTGGTGAAGC
19	sll1376 KO 5′ Fw	ACTAGTGGATCCCCCGCATTCCTGGGGA
20	sll1376 KO 5′ Rv	GAATTCCTGCAGCCCACAGCACCGAAGC
21	sll1376 KO 3′ Fw	TCGACCTCGAGGGGGTAAAACGGGATAGC
22	sll1376 KO 3′ Rv	GCGAATTGGGTACCGGGCTACTTCCGC
23	pSEM1 Fw	CCCCTTCCTGATTTACAGG
24	pSEM1 Rv	GGGAGTAACGCTTGTCAC
25	sll1376 mid	CCATTACGTCCTGTGGTC

PNAS PNAS