Structural basis of nSH2 regulation and lipid binding in PI3Ka

Supplementary Materials

Figure S1: Electron density maps for the two PIP₂ molecules. (A) Electron density map $(2F_0 - F_C \text{ at } \sigma=1)$ for the substrate PIP₂. (B) Electron density map $(2F_0 - F_C \text{ at } \sigma=1)$ for the second PIP₂ molecule, which binds at the interface between the ABD, iSH2 and kinase domains.

Figure S2: Alignment of activation loops from PI3K α structures. 40VU is shown in teal, 40VV is shown in red, 4JPS is shown in blue, 4L1B is shown in yellow, 4A55 is shown in magenta. All the PI3K α structures have the activation loop in a similar conformation, with the exception of 4A55, which is influenced by inhibitor binding in the structure.

Figure S3: Distance plots. Distance plots of the distance between $p85\alpha$ C α atoms of wild-type $p110\alpha/niSH2$ (PDB ID: 4OVU) and H1047R $p110\alpha/niSH2$ (PDB ID: 3HHM) aligned by C α atoms of $p110\alpha$.

Figure S4: Fluorescence quenching experiments. Model membrane vesicles with 50 nM of BODIPY®-FL-PI(4,5)P₂. The highest emission intensity is normalized to correspond to the vesicles alone. Each subsequent spectrum represents the incremental addition of the corresponding protein. All experiments were performed with N=3. Graphs shown are representative and present the data from a single experiment. (A) Ovalbumin does not quench the fluorescence signal. (B) Positive control of PLC8 (PLC- δ 1-PH Domain from Cayman Chemical). (C) p85 showed no quenching of the fluorescence signal at concentrations up to 6 μ M.

p110α residue	nSH2 domain	WT	H1047R
	residue	(4 OVU)	(3HHM)
Arg357	Asp349		+
Gly364	Asn377		+
Glu365	Asn377	+	+
Cys368	Asp352		+
Cys368	Gly375		+
Glu453	Arg348	+	+
Asp454	Arg348		+
Asp454	Asp349	+	
Asp454	Arg373	+	
Leu455	Asp349	+	
Glu542	Arg340	+	+
Glu545	Leu380	+	+
Gln546	Lys382	+	+
Gln546	Phe392	+	+
Asp549	Asn417	+	+
Lys573	Asn417	+	
Lys573	Lys419	+	
Asn575	Lys419	+	
Asp1029	Arg340	+	
Arg1023	Glu341	+	

Table S1: Table of interactions between $p110\alpha$ and nSH2 domain. Residues are colored according to the domains – C2 in green, helical in magenta, kinase in purple.