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1 FURTHER MODEL DETAILS
In order to better understand the MetAssign model, a more detailed
description is given here. This is similar to the description in
Section 2.2 of the article, but is more detailed and also includes a
plate diagram as given in Figure 1 and a sampling algorithm as given
in Algorithm 1. The algorithm given is a naı̈ve version; a working
implementation would recognise that most of the conditional
posterior values in p are zero, use log likelihoods, cache frequently
used values (such as mass likelihoods) and have a sophisticated Z
and V structure.
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Fig. 1. A plate diagram of the model

The clustering model takes the form of a mixture model with
a Dirichlet Process (DP) prior (see e.g. Rasmussen (2000)) to
avoid specifying the number of clusters (metabolites) a priori. The
conditional distributions required by the Gibbs sampler to assign
peak n to a current cluster (k) or a new cluster (k∗) are (note that for
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brevity we omit conditioning on hyper-parameters):

P (znk = 1| . . .) ∝ ckp(xn, wn, rn|znk = 1, . . .) (1)

P (znk∗ = 1| . . .) ∝ αp(xn, wn, rn| . . .) (2)

where ck is the number of peaks currently assigned to cluster k, α
is the DP concentration parameter and p(xn, wn, rn|znk = 1, . . .)
is obtained by marginalising over all low-level assignments possible
for the metabolite to which this cluster is linked:

p(xn, wn, rn|znk = 1, . . .) =

1

AφkIφk

Iφk∑
i=1

Aφk∑
a=1

p(xn, wn, rn|vnkai = 1, φk, . . .) (3)

where φk = m if cluster k is linked to formula m and we assume
uniform priors over the Am × Im possible adduct and isotope
assignments for formula m. For new clusters, the marginalisation
is also done over the assignment of the new cluster to a formula
(φ∗):

p(xn, wn, rn| . . .) =

M∑
m=1

P (φ∗ = m)

Aφ∗Iφ∗

Iφ∗∑
i=1

Aφ∗∑
a=1

p(xn, wn, rn|vnkai = 1, φ∗ = m, . . .)

(4)

In this work, we assume that πm = P (φ∗ = m) = 1
M

.

Our model assumes that p(xn, wn, rn|vnkai = 1, φk, . . .)
factorises across the three data-types. For the mass term, we assume
a Gaussian density on the log of the mass (i.e. mass noise is
proportional to xn):

p(xn|vnkai = 1, . . .) = N (log xn| log yφkai, ζ
−1) (5)

where yφkai is the theoretical mass of the ith isotope peak of
the ath adduct for the formula assigned to cluster k, ζ is the
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Algorithm 1 The sampler used to compute the posterior probability
of peak to metabolite assignments. Please note that the data and
hyperparameters are implicitly defined.

function METASSIGN(S)
Z,V, φ← initaliseClustering()
for s← 1 . . . S do

order ← shuffle(1 . . . N )
for n← order do

METASSIGNPEAK(Z,V, φ, n)
end for
sampless ← V

end for
return samples

end function

function METASSIGNPEAK(Z,V, φ, n)
K ← numberOfClusters(Z)
for k ← 1 . . .K do

pk ← CLUSTERPOSTERIOR(Z,V, φ, n, k)
end for
pk+1 ← NEWCLUSTERPOSTERIOR(n)
newCluster ← samplePosterior(p)
setNewCluster(Z, n, newCluster)
if newCluster = K + 1 then

for m← 1 . . .M do
qm ← METABOLITEPOSTERIOR(n,m)

end for
newMetabolite← samplePosterior(q)
setNewMetabolite(φ, newCluster, newMetabolite)

end if
for a, i← 1 . . . A× I do

oai ← ADDUCTISOTOPEPOSTERIOR(Z,V, n, k, a, i)
end for
newA, newI ← samplePosterior(o)
setAdductIsotope(Z,V, n, newA, newI)

end function

function CLUSTERPOSTERIOR(Z,V, φ, n, k)
ck ← clusterSize(Z, k)
return ck ∗ p(xn, wn, rn|znk = 1, . . .)

end function

function NEWCLUSTERPOSTERIOR(n)
return α ∗ p(xn, wn, rn| . . .)

end function

function METABOLITEPOSTERIOR(n,m)
return p(φ∗ = m|znk∗ = 1, . . .)

end function

function ADDUCTISOTOPEPOSTERIOR(Z,V, n, k, a, i)
return P (vnkai = 1|znk = 1, xn, wn, rn, . . .)

end function

expected precision based on the known accuracy of the specific mass
spectrometer used in an experiment, N (b, c) denotes a Gaussian

density with mean b and variance c and N (a|b, c) denotes that
density evaluated at a.

The intensity term is also Gaussian, but the density depends on
the intensities of other peaks currently assigned to this cluster. In
particular, we assume that intensity of adduct a in cluster k, λka
is drawn from a Gaussian prior N (λ0, κ

−1
0 ). We set λ0 to the

mean of observed intensities and κ0 to 10−14, resulting in a fairly
flat prior over the region of interest. Individual peak intensities are
then assumed to to be drawn from a Gaussian conditioned on their
adduct-isotope assignment:

wn ∼ N (βφkaiλka, κ
−1)

where βφkai is the theoretical proportion of total intensity that
would be observed as isotope peak i and κ = 10−8 is the
observation precision. Based on the peaks currently assigned to
cluster k, we can compute the posterior density over λka. This is
another Gaussian:

p(λka| . . .) = N (λ∗, κ
−1
∗ ),

where

κ∗ = κ0 + κ
∑
n,a,i

vnkaiβ
2
φkai

λ∗ = κ−1
∗

(
λ0κ0 + κ

∑
n,a,i

vnkaiwnβφkai

)

(note that all summations do not include the peak we are currently
sampling assignments for). We can then marginalise over λka to
obtain the conditional density that can be used by the sampler:

p(wn|vnkai = 1, . . .) = N (wn|βφkaiλ∗, κ
−1 + β2

φkaiκ
−1
∗ ). (6)

For the retention time term, we assume the following generative
model: The cluster retention time, lk is assumed to be drawn from
N (µ0, δ

−1
0 ), where µ0 is the mean of the retention times in the data

and δ0 is 10−5. Each peak retention time is assumed to be lk with
additive noise: rn ∼ N (lk, γ

−1), where γ is given as 2.5 × 10−1.
We can analytically compute the posterior density for lk, which is:

p(lk| . . .) = N (µ∗, δ
−1
∗ ),

where

δ∗ = δ0 + γck

µ∗ = δ−1
∗

(
µ0δ0 + γ

∑
n

znkrn

)
.

As for intensity, we can marginalise lk to get:

p(rn|vnkai = 1, . . .) = N (rn|µ∗, δ
−1
∗ + γ−1) (7)

p(xn, wn, rn|znk = 1, . . .) is then given by the product of
Equations 5, 6 and 7. The quantity required for a new cluster is
computed in a similar manner, but with the posterior parameters
replaced by their prior counterparts (for rn and wn).
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If a peak is assigned to a current cluster, it must then be
assigned to a particular adduct–isotope pair within that cluster. The
probability of isotope i and adduct a is:

P (vnkai = 1|znk = 1, xn, wn, rn, . . .) ∝

p(xn, rn, wn|vnkai = 1, . . .) (8)

which can be decomposed as above. For a new cluster, we must also
first assign the cluster to a formula. This is done with:

p(φ∗ = m|znk∗ = 1, . . .) ∝

P (φ∗ = m)

AmIm

Im∑
i=1

Am∑
a=1

p(xn, wn, rn|vnk∗ai = 1, φ∗ = m) (9)

and the assignment to adduct and isotope follows as in the previous
case.

2 DATASETS
The data used for the experiments came from three mixtures of
standard metabolites, normally used for identification purposes.
These standards (referred to as Standard 1, Standard 2 and Standard
3) contain 104, 96 and 40 metabolites, respectively. Each of these
standards was run in triplicate on the system, with interleaving
negative and positive ionisation modes. The data from each
ionisation mode was gathered to provide the LC–MS profile for
that run. The three replicates used were aligned by using mzMatch’s
Combine algorithm to produce the data used.

The standards were run using ZIC-HILIC chromatography
(Merck Sequant, Darmstadt, DE) on an UltiMate 3000 RSLC
system (Thermo, Hemel Hempstead, UK), coupled to an Orbitrap
Exactive mass spectrometer (Thermo, Hemel Hempstead, UK) in
positive and negative ionization mode. The output from each of
these runs was transformed to an mzXML file and then to a PeakML
file (Scheltema et al., 2011), which was used as input to the
algorithms.

The composition of the standards is given in the supplementary
information of (Creek et al., 2011, DOI:10.1021/ac2021823)

3 ROBUSTNESS AND CONVERGENCE
Since the MetAssign algorithm is based on a Bayesian framework
and is implemented using Monte-Carlo sampling, it is important
to check the robustness of inferences to prior parameters. To test
prior sensitivity, parameter sweeps were performed, varying the
parameters α, γ, γm, p0 and p1 and no significant changes in
posterior values were found.

In order to examine the converge of the Markov chain to its
stationary distribution, the MetAssign program was run on each of
the standard datasets in positive and negative mode thirty times,
each time starting at a random clustering. Each run had a burn
in of 600 samples and used 1000 samples for calculating the
posterior. The posterior probability for a peak being assigned to
each metabolite-adduct-isotope combination was calculated. The
standard deviation of these quantities over the thirty runs was
calculated. The proportion of these standard deviations under 0.1 are

shown in Table 1 and a histogram of these standard deviations for
Standard 1 in positive mode is shown in Figure 2. These results show
that the vast majority of peak assignments are sampled from the
stationary distribution of the Markov chain defined by the sampler.

Table 1. Proportion of assignments of peaks to
metabolite–adduct–isotope combinations less than
0.1 over thirty random restarts

Standard 1 Standard 2 Standard 3
Neg Pos Neg Pos Neg Pos

0.987 0.966 0.988 0.977 0.985 0.955
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Fig. 2. Standard deviations of assignments of peaks to metabolite–adduct–
isotope combinations over thirty random restarts

4 COMPUTATIONAL COMPLEXITY
The runtime of MetAssign depends on a number of factors. The
most important of these are the number of peaks N , the size of
the database M , the number of adduct types specified A. Strictly
speaking, the complexity will be in O(NMA), but because most
peaks will match only a very small amount of entries in M × A,
the constant in this will be very small. Figure 3 shows the linear
relationship betweenN×M×A and runtime. An indicative sample
is given as N = 10334 peaks, M = 1079 compounds and A = 14
adduct types, for a runtime of 1259 seconds. Figure 4 shows the
relationship between N ×M × A and memory. Whilst the trend is
not as linear as the runtime trend, the relationship is still fairly well
determined by this model. The same indicative example as before
gives a memory usage of 954 MB. Note that there is a fairly large
constant in these figures, dealing with overheads of the executable
environment etc.
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The execution environment of all the examples given in this paper
consisted of an Intel Xeon E5606 running at 2.13 GHz, with 2 GB
of available memory.
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Fig. 3. There is a linear relationship between runtime and N × M × A,
R2 = 0.9689
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Fig. 4. The relationship between runtime and N ×M ×A, R2 = 0.8232

5 RUNNING THE METASSIGN PROGRAM
MetAssign is available as part of the mzMatch suite of tools that
operates on data derived from LC-MS experiments. The tools
are available at http://mzmatch.sourceforge.net/, with
a MetAssign tutorial at http://mzmatch.sourceforge.
net/MetAssign.php. There are many parameters that can
modify the behaviour of the program. These will be explained here,
though in many cases the default values will work well.

5.1 Running from the command line
Since the mzMatch system is Java-based, a Java Runtime
Environment (such as the one provided by Oracle) is needed.
Assuming the runtime environment has been set up as explained
on the mzMatch website, the following command will run the
MetAssign algorithm:

JAVA mzmatch.ipeak.sort.MetAssign <parameters>

The following is a list of the more important parameters used in
MetAssign, with a brief explanation and some guidance to their use.
For a full explanation of all parameters, please refer to the mzMatch
documentation.

-i <filename>
The PeakML input file

-o <filename>
The PeakML output file containing peak annotations

-sampleOut <filename>
A tab separated output file where compound annotations are
stored

-ppm <number>
The PPM accuracy of the measuring mass spectrometer

-filterPPM <number>
Only peak m/z values within filterPPM of theoretical peaks
are used

-numDraws <number>
The number of posterior Monte-Carlo draws to collect

-burnIn <number>
The number of posterior Monte-Carlo draws to discard
before collection occurs

-databases <comma separated filenames>
A list of databases in mzMatch XML format used for
annotation

-adducts <comma separated adduct-formats>
A list of possible adducts that could be formed in the mass
spectrometer

-retentionTimeSD <number>
The retention time standard deviation of peaks from their
‘true’ value

-identificationPeaks <number>
The program will output probabilistic annotations of
metabolites supported by at least this many peaks

5.2 Running from R
MetAssign can be used from the mzmatch.R package available from
the mzMatch website. From R, the following command can be used:

> mzmatch.ipeak.sort.MetAssign(<parameters>)

Parameters in this case are passed in the form
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<parameter name> = <parameter value>

An example of this usage is:

mzmatch.ipeak.sort.MetAssign(
i=inputFilename.peakml,
o=outputFilename.peakml,
ppm=3

)

Detailed instructions on how to run the MetAssign program from
R are provided on the mzMatch website at http://mzmatch.
sourceforge.net/MetAssign.php

5.3 Parameter Usage
When running the MetAssign program, there are a few parameters
that should be explicitly set by the user, as these will have a direct
influence on the results obtained. These are:

ppm This should be set to the parts-per-million accuracy of the
MS equipment. The probability distributions over the theoretical
peaks have been defined so that 95% of the probability mass is
covered by this value in each direction.

filterPPM This is an optimisation measure to speed up processing
by ignoring peaks that are not closer than this value to a
theoretical peak. Generally a value between 1.1×ppm and
1.5×ppm should be appropriate.

numDraws This parameter says how many posterior Monte-Carlo
draws to take. For the analysis performed in this paper, 200
samples were taken, which should be sufficient for most uses. For
data with more peaks than the test data sets present here or for
much larger databases, more samples might be needed, perhaps
up to 500.

burnIn This parameters says how many initial Monte-Carlo draws
should be discarded before saving posterior samples. For larger
datasets, it is recommended to set this to 200.

databases This is a comma separated list of databases that are to
be matched against. The format of these databases is XML and is
described in the mzMatch documentation.

adducts This is a comma separated list of adduct types that will be
used in the generation of theoretical peaks. Whilst an exhaustive
list can be provided, it is better to stick with those adducts that are
known to be generated, as spurious adducts can generate more
false positives.

retentionTimeSD This parameter describes the spread of the
retention times of the LC-MS peaks (e.g. isotopic peaks and
adduct peaks) that are generated by a single chromatographic
peak. This should be set so that the deviation of the retention
times of most of these LC-MS peaks from the retention time of
the chromatographic peak is less than two times this value. This
value can vary widely because of difficulties in detecting accurate
retention times from noisy peaks.

identificationPeaks This parameter says to output metabolite
annotations that are supported by at least this many peaks
assigned to the metabolite.

5.4 Program Output
The output of the MetAssign program consists of two elements:
annotations on each of the input peaks of the probability it

came from a certain compound and the probability that a certain
compound was present in the sample.

5.4.1 Peak Annotation Output The annotated output file (corresponding
to the -o option) consists of the input file with extra PeakML
annotations on each of the peaks. For a description of the PeakML
annotation format, please see the mzMatch website.

The particular annotations produced by the MetAssign program
consist of STRING annotations on the top-level peaksets that give
the probability that a peak came from a certain compound. The three
different annotation labels are:

priorIdentification corresponding to the prior probability
probabilityIdentification corresponding to the basic

posterior probability; and
junkProbabilityIdentification corresponding to the

posterior probability with ‘noisy’ peaks filtered out.

The format of the strings are as follows:

〈annotationString〉 ::=〈peakIdentification〉 ‘; ’ 〈annotationString〉
| 〈peakIdentification〉

〈peakIdentification〉 ::=〈compoundId〉 ‘, ’ 〈compoundName〉 ‘, ’
〈adductType〉 ‘, ’ 〈isotope〉 ‘, ’ 〈probability〉

| 〈compoundId〉 ‘, ’ 〈compoundName〉 ‘, ’ default ‘, ’
〈probability〉

| junk ‘, ’ 〈probability〉

〈compoundId〉 ::=string

〈compoundName〉 ::=string

〈adductType〉 ::=The adduct type as defined in the main article

〈isotope〉 ::=〈isotopeElement〉 〈isotope〉 | 〈isotopeElement〉

〈probability〉 ::=A floating point number between 0 and 1

〈isotopeElement〉 ::=‘[’ isotopicNumber elementSymbol
‘]’ numberOfAtoms

5.4.2 Compound Identification Output The output for the
compound annotation (corresponding to the -sampleOut option)
consists of a tab-separated file, the rows of which correspond to
database compounds and with the following column headers:

compoundId The identifier of the compound from the database
compoundName The human readable name of the compound

Multiple headers of the form
p.<number> Where <number>≥ 1: the posterior probability of

that compound at support level <number>
p.combined The mean of the p.<number> columns

6 INTENSITY FILTER PEAKSETS
The threshold, against which peaks were filtered, was varied as 0,
5000, 10000, 15000, 20000. This resulted in different peak sets, the
sizes of which are shown in Table 2.

7 ADDUCT-TYPES USED IN ANALYSIS
The set of possible adducts used is given in Table 3
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Table 2. Number of peaks corresponding to absolute intensity filter
level, for each test data set

Standard 1 Standard 2 Standard 3
Filter

Threshold Neg Pos Neg Pos Neg Pos

0 20527 23859 20354 36577 16466 19546
5000 10241 14527 9792 24916 7287 9165
10000 7194 9583 6505 17592 4848 6672
15000 5778 7477 5200 13370 3956 5407
20000 4883 6166 4342 10334 3383 4539

Table 3. The possible adducts that could be generated. The form of each
adduct is explained in the main paper

Positive M+2H M+H+NH4 M+ACN+2H M+2ACN+2H
M+H M+NH4 M+Na M+CH3OH+H

M+ACN+H M+ACN+Na M+2ACN+H 2M+H
2M+Na 2M+ACN+H

Negative M-H2O-H M-H M+Na-2H M+Cl
M+K-2H M+FA-H 2M-H 2M+FA-H

8 PEAK INTENSITY FILTERING
In order to examine the results of pre-filtering the data by a peak-
intensity thresholding algorithm, each of the data sets was filtered
by a set amount and the result of this on the output was examined.
For this analysis, the database with 1000 decoy compounds was
used. Table 4 shows the results for the F1 score and Table 5
shows the results for the TPR at 5% FPR. As can be seen, the
output can be sensitive to the pre-filtering, as expected. However,
independent of the filtering applied, MetAssign outperforms the
alternative methods.

9 DATASET PR AND ROC CURVES
This section contains results similar to section 4 of the article, but
across all data sets and ionisation modes. Figure 5 gives precision-
recall curves whilst Figure 6 gives ROC curves.
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K. E. V. (2011). Toward global metabolomics analysis with hydrophilic interaction
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Fig. 5. Precision-Recall curves for all three datasets, run in both modes, matched against a database of 1000 decoy compounds. The lines run over the useful
range of the output (0 < threshold ≤ 1), with the marks showing thresholds of 1.0, 0.95, 0.75, 0.5 and 0.0. The lines on the graph show that the behaviour of
MetAssign is tuneable to obtain an intended precision/recall value. The behaviour of mzMatch and CAMERA is less tuneable; the default behaviour of these
algorithms is given by the rightmost mark on their lines.
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Fig. 6. ROC curves for all three datasets, run in both modes, with an intensity pre-filtering of 5000, matched against a database of 1000 decoy compounds
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Table 4. Variation of the F1 measure depending on intensity filtering threshold
and data set

Prior Posterior Posterior
Filtered

mzMatch CAMERA

std1.NEG

0 0.51 0.57 0.69 0.44 0.13
5000 0.57 0.63 0.76 0.49 0.16
10000 0.63 0.68 0.78 0.53 0.18
15000 0.65 0.69 0.78 0.55 0.20
20000 0.67 0.70 0.75 0.57 0.21

std1.POS

0 0.28 0.35 0.45 0.27 0.09
5000 0.29 0.38 0.50 0.27 0.13
10000 0.31 0.42 0.53 0.30 0.16
15000 0.34 0.45 0.54 0.31 0.16
20000 0.35 0.46 0.56 0.32 0.18

std2.NEG

0 0.47 0.52 0.61 0.36 0.09
5000 0.52 0.59 0.65 0.40 0.11
10000 0.61 0.64 0.66 0.45 0.11
15000 0.65 0.67 0.65 0.46 0.13
20000 0.69 0.69 0.64 0.48 0.13

std2.POS

0 0.23 0.30 0.39 0.23 0.07
5000 0.24 0.34 0.44 0.24 0.09
10000 0.26 0.37 0.47 0.26 0.11
15000 0.27 0.39 0.46 0.25 0.11
20000 0.28 0.40 0.47 0.25 0.11

std3.NEG

0 0.23 0.29 0.41 0.14 0.12
5000 0.22 0.29 0.35 0.15 0.13
10000 0.22 0.26 0.31 0.14 0.18
15000 0.23 0.26 0.29 0.16 0.14
20000 0.22 0.26 0.26 0.16 0.16

std3.POS

0 0.07 0.13 0.19 0.07 0.11
5000 0.06 0.12 0.17 0.06 0.15
10000 0.06 0.12 0.14 0.06 0.20
15000 0.06 0.11 0.13 0.06 0.21
20000 0.07 0.13 0.14 0.06 0.22

Table 5. Variation of the TPR for compound annotation at
FPR=0.05 depending on intensity filtering threshold and data set

Posterior Filtered mzMatch CAMERA

std1.NEG

0 0.77 0.64 0.40
5000 0.78 0.70 0.38
10000 0.75 0.73 0.34
15000 0.69 0.66 0.34
20000 0.59 0.66 0.33

std1.POS

0 0.67 0.41 0.44
5000 0.70 0.39 0.44
10000 0.74 0.42 0.44
15000 0.68 0.44 0.39
20000 0.68 0.48 0.39

std2.NEG

0 0.82 0.62 0.29
5000 0.79 0.62 0.25
10000 0.68 0.60 0.23
15000 0.65 0.64 0.23
20000 0.57 0.67 0.25

std2.POS

0 0.44 0.29 0.34
5000 0.49 0.32 0.29
10000 0.54 0.36 0.28
15000 0.56 0.34 0.25
20000 0.56 0.31 0.23

std3.NEG

0 0.91 0.43 0.30
5000 0.70 0.39 0.22
10000 0.61 0.52 0.30
15000 0.55 0.52 0.26
20000 0.44 0.37 0.26

std3.POS

0 0.49 0.21 0.32
5000 0.58 0.11 0.32
10000 0.53 0.11 0.36
15000 0.50 0.11 0.29
20000 0.48 0.14 0.36

Note that the entries in this table can be directly compared, as the size of the
decoy database is constant
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