Supplemental material for:

High-resolution imaging of dietary lipids in cells and tissues by NanoSIMS analysis

Haibo Jiang et al.

Supplementary Figures

Figure S1. Transmission electron micrographs of hearts from *Gpihbp1*^{+/+} and *Gpihbp1*^{-/-} mice. (A–B) Numerous cytoplasmic lipid droplets (arrowheads) are detected throughout the myocardium of a wild-type (*Gpihbp1*^{+/+}) mouse. (C–D) There are far fewer cytosolic lipid droplets in cardiomyocytes of *Gpihbp1*^{-/-} mice. Scale bar, 2 μ m.

Figure S2. ¹²C⁻, ¹³C⁻, and ¹²C¹⁴N⁻ NanoSIMS images of the heart of a wild-type mouse that had not received any ¹³C-lipids. Scale bar, 10 μ m. Signal scales: ¹²C⁻ (left panel), 0–3500, with 3500 being white; ¹³C⁻ (middle panel), 0–100, with 100 being white.

Figure S3. ¹H⁻ and ²H⁻ NanoSIMS images of a cell that had not received any ²Hlipids. Scale bar, 3 μ m. Signal scales: ¹H⁻ (left panel), 0–150, with 150 being white; ²H⁻ (right panel), 0–1, with 1 being white. Because the NanoSIMS 50 was tuned to detect ¹H⁻ and ²H⁻, it was not possible to generate a ¹²C¹⁴N⁻ image.