Derivatives of	Markers examined	# tetrads	# PD-1 or PD-2	# NPD-1 or	# TT	Association with crossover	
EY7		analyzed		NPD-2			
1	hphMX4; IV 1028509	5	2 PD-1	0	3	NCO	
2	hphMX4; IV 1058335	3	2 PD-1	0	1	NCO	
4	hphMX4; IV 1028509	5	2 PD-1	0	3	NCO	
5	IV 1002467; IV 1028509	3	2 PD-1	0	1	NCO	
6	hphMX4; IV 1044571	6	3 PD-1	0	3	NCO	
7	hphMX4; IV 1028509	4	4 PD-1	0	0	NCO	
8	hphMX4; IV 1028509	4	3 PD-1	0	1	NCO	
10	hphMX4; IV 1037347	3	3 PD-2	0	0	CO	
13	hphMX4; IV 1028509	4	3 PD-1	0	1	NCO	
14	hphMX4; IV 1028509	4	4 PD-1	0	0	NCO	
16	hphMX4; IV 1028509	5	3 PD-1	0	2	NCO	
17	hphMX4; IV 1028509	3	3 PD-1	0	0	NCO	
18	hphMX4; IV 1028509	5	4 PD-1	0	1	NCO	
26	hphMX4; IV 1037347	2	2 PD-2	0	0	CO	
27	hphMX4; IV 1044571	5	2 PD-1	0	3	NCO	
29	hphMX4; IV 1028509	5	4 PD-1	0	1	NCO	
30	hphMX4; IV 1028509	4	2 PD-2	0	2	CO	
31	hphMX4; IV 1028509	3	2 PD-1	0	1	NCO	
33	hphMX4; IV 1097831	6	2 PD-1	0	4	NCO	
35	hphMX4; IV 1044571	3	3 PD-1	0	0	NCO	
36	hphMX4; IV 1028509	4	4 PD-1	0	0	NCO	
37	hphMX4; IV 1028509	7	3 PD-1	0	4	NCO	
38	hphMX4; IV 1028509	5	3 PD-2	0	2	СО	
39	hphMX4; IV 1037347	3	2 PD-2	0	1	СО	
40	hphMX4; IV 1028509	5	5 PD-2	0	0	CO	
41	hphMX4; IV 1028509	6	3 PD-2	0	3	СО	
42	hphMX4; IV 1028509	5	3 PD-2	0	2	СО	
43	hphMX4; IV 1028509	4	4 PD-1	0	0	NCO	
44	hphMX4; IV 1028509	2	2 PD-2	0	0	со	
45	hphMX4; IV 1028509	2	2 PD-1	0	0	NCO	
46	hphMX4; IV 1028509	3	3 PD-1	0	0	NCO	
47	hphMX4; IV 1028509	3	3 PD-1	0	0	NCO	
48	hphMX4; IV 1028509	3	3 PD-2	0	0	СО	
49	hphMX4; IV 1028509	2	2 PD-1	0	0	NCO	

Table S5 Meiotic analysis of coupling¹

50	hphMX4; IV 1028509	3	2 PD-1	0	1	NCO
51	hphMX4; IV 1028509	3	2 PD-1	0	1	NCO
52	hphMX4; IV 1051452	4	3 PD-1	0	1	NCO
53	hphMX4; IV 1028509	3	2 PD-2	0	1	СО
54	hphMX4; IV 1028509	3	2 PD-2	0	1	СО
55	hphMX4; IV 1028509	4	2 PD-1	0	2	NCO
56	hphMX4; IV 1028509	3	2 PD-1	0	1	NCO
57	hphMX4; IV 1028509	3	3 PD-1	0	0	NCO
58	hphMX4; IV 1028509	3	3 PD-1	0	0	NCO
59	hphMX4; IV 1028509	4	4 PD-2	0	0	СО
60	hphMX4; IV 1028509	2	2 PD-1	0	0	NCO
61	hphMX4; IV 1028509	3	2 PD-2	0	1	СО
62	hphMX4; IV 1028509	6	3 PD-1	0	3	NCO
63	hphMX4; IV 1028509	4	2 PD-1	0	2	NCO
64	hphMX4; IV 1037347	3	2 PD-1	0	1	NCO
65	hphMX4; IV 1028509	3	2 PD-1	0	1	NCO
66	hphMX4; IV 1028509	3	2 PD-1	0	1	NCO
69	hphMX4; IV 1044571	8	4 PD-2	0	4	СО
70	hphMX4; IV 1028509	6	4 PD-1	0	2	NCO
71	hphMX4; IV 1028509	4	3 PD-1	0	1	NCO

¹Tetrads were dissected and examined for markers flanking the conversion event. For most events, the *hphMX4* marker was the centromere-proximal marker. The centromere-distal marker was examined by SPA (described in text). The primers and restriction enzymes used for this analysis are given in Table S3. PD-1 tetrads are those with two Hyg^R SNP^W to two Hyg^S SNP^Y spores; SNP^W and SNP^Y are defined as in Figure 6. PD-2 tetrads are those with two Hyg^R SNP^W to two Hyg^S SNP^W spores. Based on this analysis, we classified the events as crossover-associated (CO) or unassociated (NCO).