Table S1 List of symbols and their brief explanations.

Category	Symbol	Explanation
Two-gene	(ab)	Two-gene IBD configurations include (11) and (12)
	$\alpha_t(ab)$	Within-individual probability of configuration $\ (ab)\ $ in generation $\ t$
	$\beta_t(ab)$	Between-individual probability of configuration $\ (ab)\ $ in generation $\ t$
	$\alpha_t(11)$	Within-individual two-gene IBD probability in generation t
	$\alpha_t(12)$	Within-individual two-gene non-IBD probability in generation t
	s_t	Two-gene coalescence probability that both come from a single individual of the previous
		generation $t-1$
Three-gene	(abc)	Three-gene IBD configurations include (111), (112), (121), (122), (123)
	$\alpha_t(abc)$	Probability of configuration (abc) in generation t , given that genes a and c are in a single individual and gene b in another
	$\beta_t(abc)$	Probability of configuration (abc) in generation t , given that the three genes are in three
		distinct individuals
	$\alpha_t(123)$	Non-IBD probability of the three genes
	$\alpha_t(122)$	Probability that the genes a and b are non-IBD and genes b and c are IBD
	$\alpha_t(1_2)$	Marginal non-IBD probability between genes a and c
	q_t	Three-gene coalescence probability that one particular gene comes from one individual and
		other two genes come from another individual of the previous generation $t-1.$
Four-gene	(abcd)	Four-gene IBD configurations include the 15 configurations shown in Table 1
	D(abcd)	Two-locus probability of configuration (abcd)
	$J_t(abcd)$	Within-individual expected junction density of type $(abcd)$ in generation t . The seven
		junction types are shown in Table 1
	$K_t(abcd)$	Between-individual expected junction density of type $(abcd)$ in generation t
Breeding	L	Number of distinct founder genome labels (FGL)
design	U	Number of intercross generations
	V	Number of inbreeding generations
	N_t	Population size in generation t
	N_F	Constant size of founder population, and N_F =L if founders are fully inbred
	N_I	Constant size of intercross populations
	N_{II}	Constant size of inbred populations. $N_{II}=1$ if $\mathcal{M}_{II}=$ Selfing, and $N_{II}=2$ if $\mathcal{M}_{II}=$
		Sibling
	\mathcal{M}_t	Mating scheme from the generation t to the next generation.
	\mathcal{M}_F	Constant mating scheme from the founder population to the F_1 population, $\mathcal{M}_\mathit{F} = \mathcal{M}_0$
	\mathcal{M}_I	Constant mating scheme in the intercross stage, $\mathcal{M}_{I}=\mathcal{M}_{1}=\cdots=\mathcal{M}_{U}$
	\mathcal{M}_{II}	Constant mating scheme in the inbreeding stage, $\mathcal{M}_{II}=\mathcal{M}_{U+1}=\cdots=\mathcal{M}_{U+V}$
Мар	R	Map expansion, the expected junction density (per Morgan) on one chromosome
resolution	ρ	Overall expected junction density, the expected junction density (per Morgan) on two
		homologous chromosomes