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Figure S1 Legends:

S1A.

S1B.

Si1C.

Mean changes in a small percentage of the population have little effect on the population mean,
but are reflected in large changes to the population variance. Y-axis shows the proportional shift
as % deviation from the original population value. X-axis shows the amplitude of perturbation
imposed on the cell population. Legend: Solid line and filled symbols for CoV values, hatched
lines and open symbols for Mean values. Red lines: 1% of the cells changing; Orange lines: 5% of
the cells changing; Blue lines 10% of the cells changing. Green lines 20% of the cells changing.
Genes with low mean expression tend to show increased standard deviation.

We have displayed the standard deviation as a function of mean expression for all expressed
genes in the iPS unrelated (Briggs) population. Y axis displays mean expression and X axis
displays standard deviation of expression. Genes with a low mean expression tend to display a
higher standard deviation, perhaps due to a small proportion of cells in the population
expressing the gene at a detectable level. Genes with a high mean expression do not tend to
contribute to the standard deviation disproportionately.

There are no significant differences in gene expression variability between phenotypes. Density
plots of gene expression variance were computed using a Gaussian kernel density estimator for
the coefficient of variation (R statistical software) for all detected genes in each dataset. Y-axes
display the density of log2(expression) and the Y-axes display the log2(CoV) of gene expression.
Datasets were independently normalised using quantile normalisation (/lumi Bioconductor
package for R). Distributions were not statistically different (Levene’s test; lawstat CRAN

package for R) between phenotypes.



Figure S2.
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Figure S2 Legend:

Figure S3 displays CoV profiles for each region of the 3 networks generated: Protein-Protein (S2A and
S2B) and co-expression (S2C) in 2 cell phenotypes (iPS and hES) from an independent dataset (Vitale).
X-axis describes the network regions and Y-axis describes the coefficient of variation. P-values assess
significant differences in gene expression variability between each network region (p, 0.05, Wilcoxon

rank sum).

Figure S3.

Coexpression Network

Coexpression Network

Figure S3 Legend: Elements are shared between network cliques. Venn diagrams in Figure S3C display
the overlap in membership between the co-expression network clique, with the BisoGenet and STRING

network cliques.

Table S1: Gene lists for the full co-expression network, clique and disjoint regions

Table S2: Table of significantly enriched terms in the disjoint region of the co-expression network
Table S3: K-means clustering gene lists

Table 54: List of K-means clusters of the PluriNet genes across sub-cellular fractions

Table S5: Gene lists for 3 co-expression PluriNet networks



SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Microarray datasets:

All microarray data was generated on the lllumina HT-12 platform, and raw data was summarized using
Bead Studio (lllumina, Inc). Background correction (affy) and quantile normalization was performed
using R statistical software Bioconductor package lumi (Du et al., 2008). We tested the distribution of
variability in each phenotype and found no significant differences (Supplementary information 1C). All
downstream analyses were performed using quantile normalised data with background correction, and
only probes passing the lllumina detection threshold were included in the analysis. A probe was
considered detected if its p-value was < 0.01 in at least 75% of individuals in the same phenotype. We
had previously tested the impact of 5 different normalisation strategies on the genome wide variance
distribution, and showed that Quantile normalization offered the least pertubation of variance patterns

seen in the raw data(Mar et al., 2011a).

The Illumina probe (ILMN_1659013) assigned to Nanog maps to a retrotransposed variant (NanogP1),
which may be under different regulatory control to the canonical transcript. The probe mapping to the
canonical transcript (ILMN_3307710) was not represented in the datasets we selected (surveyed using

the lllumina HT12-V3 chips), so Nanog was excluded entirely from our analysis.

Isogenic and unrelated iPS cell phenotypes (Briggs et al., 2012)

The full iPSC (induced pluripotent stem cell) experimental series (GEO accession number GSE42956)
assessed the derivation of bona-fide iPS cells from patients with Down’s syndrome and healthy controls.
All'iPS cells were generated from fibroblasts using non-viral episomal reprogramming, and FACS sorted
on TRA160 expression prior to profiling. 6 iPSCs lines from the same donor formed the isogenic iPS cell
population (iPS_isogenic)(Briggs). This population was used to assess changes in CoV independent of
genetic background. The unrelated iPS population (iPS_unrelated)(Briggs) encompassed all 18 iPSC
samples derived from 3 different donors, thus representing a total population with mixed genetic
background.

Human embryonic stem cells with varying pluripotency potential (Hough et al., 2009)

The hESC experimental series (GEO accession number GSE13201), surveyed four different fractions (P4,
P5, P6, P7) of HES2 cells that had been FACS sorted based on two surface markers (GCTM2 and CD9)

whose expression was highly correlated with self-renewal. These fractions were concordant with the



architecture of a hESC colony, such that the cells from the P4 fraction had the lowest proportion of self-
renewing cells (defined as the least pluripotent) and generally located in the middle of the colony,
whereas cells from the P7 fraction were found on the edge of the colony and had the largest number of
self-renewing cells (defined as the most pluripotent phenotype). Where samples from all fractions were
combined to produce the full colony, the population was named hES_all_P_fractions (Hough).

Phenotypic variance in induced pluripotent stem cells (Vitale et al., 2012)

The full experimental series available in Array Express (ID E-MTAB-1040) compared human ESC (Mel1)
with completely reprogrammed iPSC grouped by high or low expression of the pluripotency cell surface
marker SSEA4. The data in this study represented a subset of cell types representing 9 control iPSC

(grouped as iPS_high and iPS_low) and 3 hESC samples from the larger dataset.

Simulating gene expression changes in the cell population:

We used python programming language to model a matrix of 10’ cells, reflecting the size of a typical cell
population in culture. A 1D array fitting a normal distribution was simulated using the range of
expression values typically seen in the linear range of a microarray experiment (5000-50000 FU). The
mean, median, standard deviation, and co-variance were calculated, and normality was tested based on
D’Agostino’s K-squared test. Randomized ‘pooled’ samples (representing a summary of 10° entries, or 1
‘pool’) were taken from the original array and the mean and CoV of these pooled samples were
exported to a table (n=100 pools). Increasing percentages (we selected 1, 5, 10 and 20%) of entries in
the original array were perturbed, and the degree of perturbation was also scaled (we selected 5 -50% in
increasing increments of 5%), prior to resampling randomized pooled samples for each perturbation, as
described above. The proportional deviation from the original population values were recorded, and

were visualised in a line graph where N= 100 for either the CoV or the mean at each point.

Population variance analyses:

We examined the average gene expression variance distributions for each population across the three
data sets which were processed as described above, and log(2) transformed. As a measure of variance
we used the coefficient of variation (CoV), computed for each gene by dividing the standard deviation of
its expression measures across a sample population by its average expression. This provides a snapshot
of expression variability for each gene across a population of cells. Basing our analysis on CoV protects
against detecting patterns in variability influenced by trends in absolute expression alone. Log

transformation protects highly up-regulated genes from contributing to CoV disproportionately, and



thus provides an additional variance stabilizing measure. Box-plots were generated from average and
CoV values of all probes. Data were considered to be outliers when falling greater than 1.5 times the
inter-quartile range and are indicated by open circles. Density plots of gene expression variance were
computed using a Gaussian kernel density estimator for the coefficient of variation in R statistical

software.

Constructing a co-expression network from known pathways, enriched in the pluripotent phenotype:
Pathway-based significance between fibroblast and iPSC phenotypes in the Briggs et al. (2012) dataset
was determined using the attract algorithm (Mar et al., 2011b; Mar et al., 2011c). All pathways in KEGG
were assessed, and the PluriNet originally described by Muller et al. (2007) was assessed individually
against all pathways in KEGG(Franz-Josef Muller, 2008) (Kanehisa et al., 2002). Gene sets were identified
for the synexpression groups of PluriNet and ECMR-interaction (Extracellular Matrix Receptor)
pathways. Correlated partners of the synexpression groups were computed at a Pearson coefficient cut-
off of +0.9. The list of probes representing the PluriNet and ECMR- interaction pathways and their
correlated partners of expression was mapped from probe to official gene symbol level (for a full
description of methods see Supplementary Information 3: Mapping) using python. Correlated partners
of expression of the synexpression groups identified in PluriNet and the ECMR-interaction pathways
were generated using the attract algorithm. The Pearson R correlation threshold was set at above or
equal to +0.9. A single list of genes was generated which comprised members of the ECMR-interaction
and PluriNet pathways, and their correlated partners of expression. Those gene pairs with a Pearson R
value equal to or above +0.995 and below -0.995 were selected as network nodes. The network was
visualized using a force directed spring embedded layout in Cytoscape, where the correlation coefficient
between the pair of genes represents an edge weight (Shannon et al., 2003). Associated with an edge
was either positive (Pearson R >= 0.995; green) or negative (Pearson R <=-0.995; red) correlation in

gene expression.

Constructing protein-protein interaction networks in Cytoscape:

Cytoscape plug-ins (STRING.db and BisoGenet) were used to construct edges representing protein-
protein interactions. This produced 2 different protein-protein interaction networks with node colour
and shape. BisoGenet (Martin et al., 2010) is a Cytoscape plugin which integrates data from well-known
interaction databases including DIP, BIOGRID, HPRD, BIND, MINT and INTAC. STRING.db (Francheschini

et al., 2012) is a database which provides known and predicted (scored) associations between proteins,



which results in comprehensive protein networks covering >1100 organisms. We imported our co-
expression node list into STRING.db to form a medium-stringency network for Homo sapiens. Details

provided in Supplementary Information S3B.

Network analyses:

Network architecture:

The larger network was divided into 3 regions based with different connectivity:
1. Clique: Nodes that form part of the densely connected network core. Characterized by blue
circles.
2. Leaf: Nodes peripherally connected to the main network hub. Characterized by grey triangles.
3. Disjoint: Nodes that were disconnected from the main network. Characterized by red squares.
Supplementary Information S2A contains gene lists for each region
The force directed spring embedded algorithm pushes nodes with a higher degree toward the centre
(clique region), and nodes with a reduced degree further away.
CoV profiles:
Box-plots were generated from the CoV values for each group, in the iPS_unrelated (Briggs) and the
hES_P_fractions (Hough) datasets. A Wilcoxon rank sum test assessed whether the differences between

the distributions were statistically significant.

Constructing networks which represent pluripotent and transitioning cell populations

The PluriNet pathway was identified as significant in the attract analysis, and was decomposed into
distinct modes of expression variability. We used agglomerative hierarchical clustering with average
linkage to cluster the log2-transformed CoV data and used the Gap statistic with 1000 bootstrap
samples to determine the number of appropriate variance clusters. A unique list of probes with a 1:1
mapping to official gene symbol represents all genes in these variance clusters, and there are 60, 97 and
39 genes associated with each cluster respectively, totalling 196 unique genes. (Supplementary
Information S4)

The sub-fractions were grouped as follows:

Network 1: P4 & P5 microarray data

Network 2: P5 & P6 microarray data

Network 3: P6 & P7 microarray data



For each group we selected the full list of 196 probes and performed a pair-wise Pearson correlation of
gene expression was performed using R statistical software. The gene pairs with a Pearson R value equal
to or above +0.9 and below -0.9 were selected as network nodes, with the correlation between them
representing an edge. The networks were visualized using a force directed spring embedded lay out in
Cytoscape (Shannon et al., 2003), where the correlation coefficient between the pair of genes
represents an edge weight. Genes were represented as circular nodes, and their pair-wise correlation of
expression represented as an edge. Associated with an edge was either positive (Pearson R >=0.9;
green) or negative (Pearson R <=-0.9; red) correlation in gene expression, corresponding to the Pearson

R coefficient.
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