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SUMMARY
Heterogeneity is a hallmark of stem cell populations, in part due to the molecular differences between cells undergoing self-renewal and

those poised to differentiate. We examined phenotypic and molecular heterogeneity in pluripotent stem cell populations, using public

gene expression data sets. A high degree of concordance was observed between global gene expression variability and the reported

heterogeneity of different human pluripotent lines. Network analysis demonstrated that low-variability genes were themost highly con-

nected, suggesting that these are the most stable elements of the gene regulatory network and are under the highest regulatory con-

straints. Known drivers of pluripotencywere among these, with lowest expression variability of POU5F1 in cells with the highest capacity

for self-renewal. Variability of gene expression provides a reliablemeasure of phenotypic andmolecular heterogeneity and predicts those

genes with the highest degree of regulatory constraint within the pluripotency network.
INTRODUCTION

Pluripotency can only be propagated in the context of

phenotypic heterogeneity: cells flux between states of

self-renewal and competency-to-differentiate, but the

origin and importance of molecular heterogeneity in these

processes remains controversial. Some argue that stem cell

heterogeneity is largely a consequence of culture condi-

tions rather than a necessary or inherent property (Smith,

2013), but there is clear evidence that heterogeneity at

themolecular level, exemplified by cyclic expression of dif-

ferentiation-inducing transcription factors, describes crit-

ical features of the pluripotent phenotype (Singh et al.,

2013). Mouse embryonic stem cells (mESCs) under stan-

dard culture conditions exhibit highly variable Nanog

expression, permitting the breadth of pluripotency pheno-

types to manifest in the stem cell population (Chambers

et al., 2007; Hayashi et al., 2008). Low Nanog enhances

the competency of mESCs to respond to extrinsic signals

required for differentiation, whereas high levels are associ-

ated with self-renewal. Mice hemizygous for Pou5f1 express

half thewild-type level of Pou5f1 transcript, resulting in the

stabilization of Nanog expression and propagation of a

ground state of self-renewal (Karwacki-Neisius et al.,

2013). Although the ability to grow mESCs in a ‘‘ground

state’’ has generated much debate about the physiological

significance of stem cell heterogeneity (Karwacki-Neisius

et al., 2013; Smith, 2013), it unequivocally demonstrates
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that variability in the expression of key members of the

pluripotency network will drive phenotypic heterogeneity.

Studies of early embryogenesis in other model organisms

provide further evidence that expression variability is an

essential driver of phenotypic outcome. For example,

wild-type Caenorhabditis elegans have a highly predictable

genetic network specifying intestinal cell fate that has

been well characterized, where the 20 cells that make up

the gut descend from a single progenitor (Raj et al., 2010).

Expression variability is an intrinsic characteristic of genes

composing this developmental network and underlies cell-

cell differences in endodermal differentiation outcomes.

Mutations in the key transcription factor skn-1 resulted in

significant variability in the expression of downstream tar-

gets end-1, end-3, and elt-2, evenbetween cells from isogenic

individuals (Raj et al., 2010). However, some expression

variability of end-1, end-3, and elt-2was tolerated, providing

a level of robustness to the differentiation outcomes driven

by these genes, and the level of expression variability was

concordant with the deleted gene’s connectivity in the reg-

ulatory network. Similarly, the propagation of gene expres-

sion variability at different stages of the sea urchin Strongy-

locentrotus purpuratus development was identified as an

important driver of phenotypic diversity (Garfield et al.,

2013). These in vivo studies demonstrate the utility of

expression variability as a parameter that is directly related

to the range of phenotypic outcomes that could be derived

from a single well-specified gene regulatory network.
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Single-cell expression profiling has allowed researchers to

test the idea that gene expression variability reflects true

biological variation in cellular mRNA levels. For example,

in an analysis of individual pancreatic islet cells, the tran-

scripts of insulin genes Ins1 and Ins2were highly correlated

with each other (Pearson R 0.9), but not other genes

(Bengtsson et al., 2005). This supports a model where insu-

lin genes are coexpressed at a high level in some cells and a

low level in other cells to produce a spectrum of insulin-

producing states within the larger tissue compartment,

rather than the generation of two distinct cell populations

that display uniquely high or low transcriptional activity.

The concordance of any two transcripts in a single cell

must be dependent not just on the transcriptional activity

of the parent genes, but also on the stability of eachmRNA.

As a result, single-cell analyses will necessary reveal the sto-

chastic nature of the molecular process of transcription,

whereas bulkmeasures ofmRNA across populations of cells

will report the average mRNA level. An outstanding ques-

tion for the field is therefore how tomeasure, and interpret,

the variation of gene expression across a population of

cells.

We have previously shown that the coefficient of varia-

tion (CoV) identifies variability in repeated measures of

the same population (Mar et al., 2011c) to provide a snap-

shot of each gene across a population of cells and allow

these to be classified as either stable (low CoV) or changing

(high CoV). The stable genes in a network may represent

the elements that help to define key features of phenotype

common to all cells in the population. Conversely, highly

variable genes are expressed in some individuals in the pop-

ulation but absent in others. In a pluripotency network,

these genes may represent elements which fluctuate as an

asynchronous stem cell population moves between the

transient states of self-renewal and competency-to-differ-

entiate. The propagation of gene expression variability

across a pluripotency network may therefore be essential

to the regulation of a pluripotent phenotype.
RESULTS

Gene Expression Variability Reflects Population

Heterogeneity

Experience tells us that the averages derived from a pool of

cells are relatively insensitive to fluctuations of individuals

within the pool. We modeled this in Figure S1A (available

online) to demonstrate that the CoV was an order of

magnitude more sensitive than the mean to fluctuations

of even 5% of the cells in a series of pooled measures,

and confirmed that the CoV was not intensity dependent.

To demonstrate that phenotypic variability within a

population was concordant with global gene expression
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variability in real-world data sets, we examined three inde-

pendently generated human stem cell microarray experi-

ments. Each experimental series contained subpopulations

defined by differing levels of cell-surface markers, which

reportedly corresponded with different efficiencies of self-

renewal or lineage priming. Figure 1 ordered these from

lowest to highest pluripotency based on the published

phenotypes. We predicted that populations with low CoV

(a ratio of absolute and variable expression) would be less

heterogeneous than populations with high CoV, and this

holds for the three experimental series examined here.

The populations with mixed phenotypes demonstrated

the highest overall expression variability. For example

partially reprogrammed induced pluripotent stem cell

(iPSC) (‘‘iPSC-low,’’ Vitale) showed the highest gene expres-

sion variability. These cells were described as a mixed pop-

ulation of progenitor cells not able to produce all germ

layers in a teratoma (Vitale et al., 2012). In contrast, the hu-

man embryonic stem cell (hESs) that had been fluores-

cence-activated cell sorting (FACS) sorted prior to profiling

using two pluripotency surface markers (Figure 1C, all P

fractions, Hough) had low variability of gene expression

(Hough et al., 2009). This population was further fraction-

ated (Figure 1D), P7 cells selected on the highest combined

surface expression of GCTM2 and CD9 were reported to

have the highest self-renewal capacity and had the lowest

CoV,whereas cells in the P4 fraction isolated from the other

end of the FACS spectrum had the highest CoV of this

series. The increased gene expression variability in the P4

fraction is consistent with a mixed cell population with

transitioning phenotypes, where higher numbers of cells

were either transiently primed toward a lineage, or

committed to differentiation.

Gene Expression Variability Is a Network Feature

Persistent in Different Network Types

Given that all the stem cell populations contained some

degree of heterogeneity, we exploited this to find highly

stable parts of amolecular stem cell network.Wepostulated

that genes with low CoV would identify genes with stable

expression across the cell population and highly variable

genes may be informative about parts of the network that

reflect cell-cell differences within the pluripotent cell pop-

ulation. We tested this hypothesis by extending known

pathways (the PluriNet; Müller et al., 2011) and KEGG

Extracellular matrix receptor interaction pathway) to

construct a pluripotency network that consisted of 1,150

genes (see Experimental Procedures for detail).

We examined the relationships between elements of this

network using several approaches: the first was based on

the degree of coexpression (Pearson correlation, Figure 2A),

which should reflect coordinated patterns of expression

across different cell populations. The second and third
hors
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Figure 1. Expression Variability Is Concordant with Population Heterogeneity
(A) and (C) display the average log2 expression levels and the corresponding CoV profiles of each cell phenotype from three independent
experimental series.
(B) and (D) illustrate the same metrics between subfractions of a stem cell colony with differing pluripotency phenotypes. The x axes
describe the cell phenotype and the experimental series, and the y axes describe the population metric as either coefficient of variation or
average log2 gene expression.
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used both known and predicted protein-protein interac-

tions (PPI network Figure 2C; Figure S2A; STRING, Fig-

ure S2B), to ask whether the formation of signaling

complexes might also impact on the stability of the

network. In all three cases, molecules with a large number

of connections (a high degree of connectivity) displayed

the most stable expression.

For the coexpression network, we assessed the connectiv-

ity (degree) of genes that were coexpressed in iPSC from the

Briggs iPSC cell data set (n = 18; Briggs et al., 2013) and

defined three network regions, the clique, leaf, and disjoint

regions (Figure 2A; Table S1). The dense central network re-

gion (clique) represented genes that were coexpressed with

a large number of other genes. Nanog was not included in

any of the network regions, as the canonical transcript was

not present on the HT12-V3-Illumina chips (see Experi-
Stem C
mental Procedures for further detail). However many

other known pluripotency regulators including POU5F1,

DNMT3b, SOX2, DPPA4, LIN28, CLDN7, FGFR4, and

ZFP42 (REX1) were represented in the clique region, as

wellOVOL2,USP44, and SRFP2, which have emerging roles

in pluripotency (Fuchs et al., 2012; Mirotsou et al., 2007;

Zhang et al., 2013). The unifying feature of this region of

the coexpression network was enrichment for genes with

low expression variability (Figure 2B, p, 0.00234 Wilcoxon

rank sum) rather than common amplitude of expression.

For example, POU5F1 and SOX2 were highly expressed,

DNA damage repair factor C1orf86 was expressed at a low

level, and the mesodermal specification marker HEY2 was

intermediate.

Themajority (85%) of genes in the coexpression network

formed small, disjointed subnetworks, such that any gene
ell Reports j Vol. 3 j 365–377 j August 12, 2014 j ª2014 The Authors 367
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in this region was coexpressed with a relatively small num-

ber of partners (Figure 2A). Among genes in this region

were a number of G-coupled protein receptors (e.g.,

GPR124, GPR137), ribosomal proteins (e.g., RPL24, RPS2),

and small nucleolar RNAs (e.g., SNORA10, SNORD109A).

This region of the network was enriched for the most vari-

able genes, suggesting that they may be expressed in some

cells, but not in others. These showed functional enrich-

ment formitotic and cell cycle biological processes (Bonfer-

roni-adjusted p value < 0.05; Figure S2C), which is consis-

tent with an asynchronously dividing cell population.

The concordance between gene expression variability

and network connectivity was also evident when we exam-

ined other types of relationships between the genes in our

pluripotency network. For example, we built edges be-

tween the genes based on known protein-protein interac-

tions (Figures 2C, 2D, and S2A). The network regions

with fewer physical (PPI) relationships were highly en-

riched for the most variable genes, and genes with many

protein partners were less variable (p, 2.53 10�5 Wilcoxon

rank sum). The gene overlap between the clique regions of

the coexpression network and PPI network was substantial

(Figures 2E and S3), indicating that genes whose expression

is correlated with a large number of partners, are also likely

to interact with a large number of partners at the protein

level. We predict that as the cells transition out of a

pluripotency phenotype, the network structure (coexpres-

sion or protein partnerships) would change. This led us to

investigate whether differences in expression variability

of the network members might also reflect phenotypic

differences between pluripotent and nonpluripotent cell

populations.

Differences in Gene Expression Variability and

Network Connectivity Reflect Changes in Stem Cell

Phenotypes

The Hough ESC data set provided an opportunity to

examine changes in the expression of genes in a series of
Figure 2. Gene Expression Variability Is Concordant with Networ
(A) Coexpression network derived from iPS unrelated (Briggs) data set
log2 expression greater than or equal to 0.995. Identifiable substructu
The color of each node reflects the region to which it has been assig
(B) CoV profiles for each region in the coexpression network in the iPS
and y axis describes the coefficient of variation. The p values assess
network region (p, 0.05, Wilcoxon rank sum).
(C) Protein-protein interaction (PPI) network derived from genes i
Cytoscape. An edge A/B is drawn whenever there is experimental dat
gene. The densely connected region (defined as the clique) clearly sepa
produced in this network.
(D) CoV profiles for each region in the PPI network in the iPS unrelated
expression variability between each network region (p, 0.05, Wilcoxo
(E) Venn diagram illustrates the overlap between genes in the coexpres
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stem cell fractions with varying potential for differentia-

tion and self-renewal (Hough et al., 2009). We used the

existing coexpression network, and analyzed the changes

in the pattern of expression variability for each human

ESC (hESC) fraction. The overall pattern of variability in

each network region was high in P4 and low in P7 (Fig-

ure 3A–3C), consistent with our observations concerning

global gene expression variability in these populations

(Figure 1D).

If expression variability is an important network

descriptor, then genes that change from highly variable

in the P4 fraction to highly constrained in the P7 fraction,

or vice versa, might identify changes in the pluripotency

network that permit cells in the population to transition

between these states. We sought to identify coordinated

patterns of change in expression variability across the frac-

tions using K-means clustering and expected the majority

of genes to display the same trend. Four distinct clusters

were identified (Figure 3D; Table S3). Expression variability

was highest in the transitioning population (P4) and lowest

in the self-renewing fraction (P7) in 2 clusters (clusters 3

and 4), but, surprisingly, these clusters were very small

and together composed approximately 24% of the total co-

expression network. Clusters 1 and 2 (76% of the network)

displayed little change in expression variability across the

hESC fractions, potentially representing parts of the

network that are coordinately regulated across the transi-

tioning cell phenotypes. Gene families featured in cluster

1 included those coding for zinc finger proteins, ribosomal

proteins, proteasome subunits, and ATP synthases.

We next examined the molecular processes common to

genes that showed highly variable patterns of CoV across

the hESC fractions. We first assessed whether genes in the

entire coexpression network were predicted to be located

in the plasmamembrane, cytoplasm, nucleus, extracellular

matrix, or unknown (other). We then addressed whether

each cluster represented the expected proportion of each

subcellular category, shown as a percentage of the network
k Connectivity
. An edge A/B is drawn whenever there is a correlation in average
res were arbitrarily defined as the clique, leaf, and disjoint regions.
ned.
unrelated (Briggs) data set. The x axis describes the network regions
significant differences in gene expression variability between each

n the full coexpression network using the BisoGenet plug-in for
a that validates an interaction between the protein products of each
rated from the other nodes (defined as disjoint); no leaf nodes were

(Briggs) data set. The p values assess significant differences in gene
n rank sum).
sion and protein-protein interaction networks for the clique region.
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baseline in Figure 3E. A chi-square analysis revealed

skewed distributions of these subcellular categories in

clusters 1 (p, 0.02, chi-square test) and 2 (p, 0.0006, chi-

square test), with 50% reduction of plasma membrane

components in the largest cluster (cluster 1, Figure 3E).

That is, the cell-cell interaction molecules had different

levels of expression variability in the different P-fractions:

EPCAM (cluster 3, plasma membrane) and CLDN7 (clus-

ter 4, plasma membrane) showed highest variability in

the P4 group, and lowest variability in the highly self-

renewing P7 fraction. These elements have been previ-

ously identified as upregulated in human and mouse

pluripotent cell types (Nagaoka et al., 2010; Xu et al.,

2010) and are known to directly interact with key plurip-

otency regulators OCT4, SOX2, and NANOG, but the

mechanism by which they maintain pluripotency is

unknown. Clusters 3 and 4 were also highly enriched

for plasma membrane and extracellular components

respectively, but the small cluster size makes this difficult

to functionally evaluate.

It is possible that changes in the pattern of expression

variation between hESC fractions was a consequence of

the underlying coexpression network, which we con-

structed using an iPSC data set. We therefore assessed

changes in CoV across the Hough data set using the

PluriNet, which is enriched in hESC sorted using the

CD9-GCTM2 strategy (Kolle et al., 2011). Although genes

belonging to the PluriNet were used to construct our coex-

pression network the PluriNet itself represents a highly

curated PPI network, and is therefore not subject to the

same assumptions about regulatory constraint or network

connectivity as our coexpression network. Consistent

with our previous findings, the P4 fraction displayed the

lowest degree of coexpression, and the P7 fraction display-

ing the highest (Figure 4A). The PluriNet genes were ex-

pressed in all of the Hough stem cell fractions, and

the pathway showed significant differential expression

(attract ANOVA, p < 0.01) across the fractions (P7-P4).

The attract analysis identified two groups of genes, which

showed strikingly graduated expression across the stem

cell fractions (Figure 4B) with the majority expressed at
Figure 3. Differences in Gene Expression Variability and Network
(A–C) Box plots illustrating gene expression variability in each coexpre
to differentiating (P4) phenotype. The x axes describe the subfracti
coefficient of variation. The p values assess significant differences b
rank sum).
(D) Four clusters of genes within the coexpression network display
analysis). Cluster 1, n = 566; cluster 2, n = 211; cluster 3, n = 188; clu
Hough data set, and the y axes describe the aggregate mean for CoV
(E) Percentage change in the proportion of gene products predicte
extracellular matrix for each cluster relative to the network. The total
and 2 (p, 0.0006, chi-square test) are significantly different from tha
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the highest level in the P7 fraction, and lowest level in

the P4 cells. In contrast, clustering the PluriNet genes by

CoV generated three subsets (Figure 4C; Table S4): The

CoV changes across every cluster are suggestive of differ-

ences in regulatory constraints on the PluriNet were

different for each fraction, and possibly most critical in

the transitioning fractions. For example, key pluripotency

regulators POU5F1 and DNMT3b belonged to cluster 2,

which together with cluster 1 was most variable I the

P4 fraction, with variability lowest in the transitioning

fractions.

Because coexpression between network elements is sug-

gestive of a regulatory relationship (Allocco et al., 2004),

high levels of regulatory constraint should manifest as

high levels of coexpression between PluriNet elements

(and vice versa). We tested this hypothesis by constructing

three coexpression networks (Figures 4D–4F; Table S5):

each representing coexpression between the 196 genes rep-

resented in the three PluriNet clusters, as cell populations

transition between adjacent fractions. Figures 4D–4F illus-

trate an increase in coexpression as cells move from

pluripotency to lineage commitment. We observe limited

coexpression between P7 and P6 fractions (Figure 4E,

Network 3), likely to be driven by divergence between the

fractions, rather than differences within either fraction

(Figure 4A). This may reflect a phenotypic transition point

that disrupts constraint on the network, resulting in

limited coexpression between PluriNet elements. As cells

in the population become primed toward a lineage, the

degree and the range of coexpression increased (Figure 4D).

For example, the cell-signaling molecule LCK displayed a

steady increase in connectivity (degree) from 7 in Network

3 (pluripotent) to 22 in Network 1 (differentiating). This

profile is consistent with increased constraint on lineage

specific markers and a reduction in the possible number

of lineages a cell can commit to as the population becomes

more sensitive to differentiation signals. Such structural

differences in the network are likely to describe regulatory

changes that a stem cell undergoes during transition from a

plastic (pluripotent), to a more constrained (differenti-

ating) phenotype.
Connectivity Reflect Changes in Stem Cell Phenotypes
ssion network region as a stem cell moves from a self-renewing (P7)
on (P4-P7) from the Hough data set, and the y axes describe the
etween stem cell fractions within each region (p, 0.05, Wilcoxon

ing distinct CoV patterns between subfractions (K-means cluster
ster 4, n = 65. The x axes describe the subfraction (P4-P7) from the
.
d to be located in the plasma membrane, cytoplasm, nucleus or
proportions of each location in clusters 1 (p, 0.02, chi-square test)
t of the coexpression network.
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Figure 4. Differences in Coexpression Describe Differences in Regulatory Constraint
(A) The degree of coexpression within each colony subfraction (Figure 4A). The x axis represents the degree of coexpression for all genes in
the PluriNet, and y axis represents the density.
(B) Probe sets driving phenotypic differences between stem cell fractions for the PluriNet. Log2 (expression) on the y axis and sample
phenotypes are listed across the x axis. Each point represents the average expression for each cell type.
(C) Three clusters of genes within the PluriNet with distinct CoV patterns between subfractions (K-means cluster analysis).
(D–F) Coexpression networks illustrate the degree of coexpression between colony subfractions P4-P5 (D), P5-P6 (E), and P6-P7 (F).
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DISCUSSION

The role of cellular heterogeneity in stem cell biology is

controversial, perhaps in part because the field is driven

by the need to obtain ‘‘purer’’ populations of stem cells

with predictable growth and differentiation properties.

mESCs can be manipulated into a ‘‘ground state’’ of self-

renewal using MEK/ERK and GSK3 inhibitors (Wray et al.,

2010), a state that can be recapitulated by genetic manipu-

lation of the levels of Pou5F1 and stabilization of the

expression of Nanog (Karwacki-Neisius et al., 2013).

Although this raises questions about the stability of stem

cell phenotypes in culture (Karwacki-Neisius et al., 2013;

Smith, 2013), it provides evidence that variability in the

expression of members of the pluripotency network is a
372 Stem Cell Reports j Vol. 3 j 365–377 j August 12, 2014 j ª2014 The Aut
key driver of phenotypic variability in stem cell popula-

tions. Understanding the functional heterogeneity of

stem cells requires laborious phenotyping, expression

profiling is a commonly adopted phenotyping method.

However, bioinformatics workflows focus on average popu-

lation measures, and rarely consider how representative

these measures are for individual cell behaviors. Although

our population-based CoV approach does not trace the

variability of individual cells, it does estimate the vari-

ability across the entire population. Our analyses suggest

that profiling experiments used to benchmark new stem

cell cultures should consider both relative expression, and

expression variability of the pluripotency network.

We have shown that expression variability is associated

with network structure in a surprisingly generalizable
hors
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manner. In three independently constructed networks we

observed that gene expression variability was greatest in

network regions with fewer connections. Conversely,

highly connected network regions also exhibited the

most stable, least variable pattern of expression. These ob-

servations were reproduced across different types of net-

works, as well as independently generated stem cell data

sets (iPS and hES), and this suggests that gene expression

variability is an intrinsic network property.

There are a few caveats that should be considered in the

interpretation of our findings. In the first instance, we

chose to use quantile normalization, a method that is

commonly applied to microarray data sets, and this may

impact on the stability and distribution of variance across

the data sets that we used. The use of background correc-

tion may amplify variability in very low-expressed probes,

and we removed these by intensity thresholding the data

prior to analysis. The strength of the correlations that we

observed across numerous data sets gives us some confi-

dence that CoV patterns reflect an underlying biology,

and not the normalization process.We have not attempted

to assess data sets subjected to a large number of amplifica-

tion rounds, as this is known to compress the linear range

of gene expression measurements, and we predict this

would also impact on reliable variance measures. Others

have shown patterns of expression variability in single-

cell measures of stem cell populations using a variety of

means: gene dosage and protein fluctuation (Karwacki-

Neisius et al., 2013); mRNA levels that are cell cycle

dependent (Singh et al., 2013). We conclude that an assess-

ment of expression variability will become an important

aspect of single-cell profiling experiments, as well as

array-style studies that have sufficient depth of repeated

measurement.

Gene Expression Variability Is an Essential Feature of

Human Pluripotent Cell Populations

Given the repeated observations that stem cells are intrin-

sically heterogeneous under a range of culture conditions,

we asked whether heterogeneity was a key feature of

different human stem cell populations and the networks

that govern them. We identified low gene expression vari-

ability in strongly pluripotent iPS and hES populations

with high capacity for self-renewal and high variability in

heterogeneous populations with low pluripotent capacity.

This illustrates that the general trend is for increased gene

expression variability in human stem cell populations

with a transitioning phenotype, where lower levels of plu-

ripotency are associated with higher number of cells tran-

siently primed or already committed to differentiation.

Phenotypic variation in stem cell populations may also

arise from culture conditions, iPSC derivation methods

and FACS sorting protocols prior to nucleic acid isolation.
Stem C
However, it would be amistake to dismiss all heterogeneity

as a culture artifact: within a single hESC colony, key plu-

ripotency regulators (POU5F1, DNMT3b, SOX2, DPPA4,

LIN28, CLDN7, FGFR4, and ZFP42) displayed low vari-

ability in the strongly self-renewing fraction, and high

variability in the differentiating fraction. Although a popu-

lation-based CoV approach does not itself identify mecha-

nisms leading to variability between individual cells in a

population, it provides a snapshot of the level of stability

a gene displays within a population, allowing us to make

more targeted inferences regarding the contribution a

gene makes to phenotype. The identification of genes

with high variability in the population lends support to

the idea that distinct subpopulations exist within the larger

stem cell compartment. For example, changes in patterns

of variability between self-renewing (P7) and differenti-

ating (P4) phenotypes are likely to indicate changes in

the level of regulatory constraint imposed on members of

the pluripotency network, and we postulate this is a major

factor in defining the different phenotypes. Very recently

expression heterogeneity in some human ESC populations

was shown to be regulated by cell-cycle-related expression

variability in transcription factors that drive lineage

commitment (Singh et al., 2013), demonstrating that

molecular heterogeneity can describe critical features of

the pluripotent phenotype, providing a mechanism for

cells to flux between self-renewal and differentiation.

Gene Expression Variability Reflects the Level of

Regulatory Constraint on Network Members

As stem cell populations differentiate, alterations in regula-

tory control are observable via changes in expression vari-

ability in the network (Huang et al., 2007, 2009; Swiers

et al., 2006). Small fluctuating differences are unlikely to in-

fluence average measures but may signify departures from,

or altered occupancy of discrete cellular states that have

regulatory consequences, and lead to significant changes

in expression variance across the stem cell population.

We observed that transition from self-renewal to lineage

commitment was accompanied by changes in the underly-

ing network structure, such that elements became increas-

ingly coregulated as the population became more sensitive

to differentiation signals. In the Hough data set, variability

of the pluripotency network increased as cells transitioned

from highly pluripotent and self-renewing (P7) to the

more heterogeneous P4 fraction. However, different mem-

bers of the pluripotency network exhibited unique vari-

ance profiles that could be clustered across subfractions of

a hESC colony. This highlights a critical difference in

average versus variability analysis approaches: Highly

correlated changes on average reflect large changes in the

population phenotype, but these may not be coordinately

regulated within a population. For example, the increased
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connectivity and variability of POU5F1 in the transitioning

networks implies that the rate at which regulators silence

expression of pluripotency genes during lineage commit-

ment differs between members of the population. This

type of profile is likely to drive differences in competency

between the fractions to produce all germ layers in a tera-

toma (Hough et al., 2009) and captures the elements of

stochasticity inherent to lineage commitment. Such differ-

ences in variability could indicate differences in constraints

associatedwith RNAbiogenesis, and possibly RNA stability,

but without lab-based validation it is difficult to determine

which aspect is themajor contributor to the variability pro-

files that we have observed. It might be reasonable to

assume that different genes will be stabilized by multiple

convergent regulatory processes, including chromatin

state, microRNA networks, and translational efficiency.

Rather than speculating on individual processes, we pro-

pose that gene expression variability reflects the totality

of regulatory mechanisms that constrain or diversify the

phenotypic output.

Gene Expression Variance Patterns across a Network

Reflect Features of Robustness

Cells as complex systems have the tendency to produce

coherent rather than chaotic behaviors in the face of envi-

ronmental changes and perturbations. A key feature of this

coherence is what Kitano (2004) defines as robustness.

Robustness is observable in the context of gene regulatory

networks, where loss of a key regulator rarely results in cata-

strophic loss of function, and is not necessarily reflected in

phenotypic changes (Raj et al., 2010). In this regard, the

stochastic behavior of individual molecules in a network,

which are representative of the entire cell population,

may be buffered such that essential events are highly pre-

dictable, but a more relaxed state of entropy may exist in

the absence of a biological imperative. In a recent review,

MacArthur and Lemischka (2013) addressed this idea in

more detail, postulating thatmolecular and cellular hetero-

geneity can be explored in terms of entropy behaviors,

where a system that allows both highly regulated, and

highly stochastic events will also permit the full comple-

ment of phenotypes arising from a population, even

despite perturbation of key regulators in individual cells.

Although such effects become more apparent at the level

of single molecules, transcripts, and cells, population-

based analyses echo the behavior of individual cells in

the population. Our analysis is consistent with these ideas,

and proposes that the CoV describes the stability of a gene

across a cell population, and in doing so, is a surrogate esti-

mate of genes under different entropy constraints.Wehave

demonstrated that genes with different CoV have variable

input into a network, suggesting that genes with different

variability in expression make different contributions to
374 Stem Cell Reports j Vol. 3 j 365–377 j August 12, 2014 j ª2014 The Aut
phenotype. In order to confer a canalized phenotype, a

network should possess structural elements which improve

robustness against perturbation while contributing to

highly conserved core processes that are shared by allmem-

bers of the population (Kitano, 2004). This provides the

network with features of stability and flux (or adaptability),

which we suggest is reflected in genes displaying low and

high variability in expression respectively.

Elements in the disjoint region of the network with high

expression variability and low connectivity contribute to

the phenotypic heterogeneity we observe in pluripotent

stem cell populations and are likely to be independently

regulated. Genes in the largest variability cluster (cluster 1)

primarily (91%) belong to the disjoint region of the coex-

pression network, and gene expression variability remains

unchanged during lineage commitment. This profile sug-

gests these elements are unlikely to contribute to key differ-

ences between pluripotent and differentiated cell types,

but rather, are involved in a number of independently

regulated cellular functions. The diversity of regulation,

combined with reduced connectivity and increased vari-

ability is likely to confer the ability to widen the range of

phenotypes available to the population.

Elements in the network clique display low variability

and high connectivity, supporting the hypothesis that

these are the most stable elements of the pluripotency

network and are under the highest regulatory constraints.

We propose low variability and high connectivity provide

stability to the network, contributing to highly conserved

core processes common to all members of the pluripotent

cell population. Clique elements displayed this profile in

both coexpression and PPI networks, with a very high de-

gree of membership overlap. Known (EPCAM, ZSCAN10,

OCT4, DPPA4, DNMT3b, CLDN6) and emerging (OVOLD2

[Zhang et al., 2013], USP44 [Fuchs et al., 2012], SRFP2 [Mir-

otsou et al., 2007]) regulators of pluripotency are located in

the clique, consistent with previous findings that expres-

sion level of a gene correlates with the number of interac-

tions and essentiality of a gene product in PPI networks

(Jeong et al., 2001; Lehner, 2008; Pál et al., 2003). Further-

more, the coexpression network clique captured mem-

brane specific and secreted factors (CDH3, EPHA1,

MARVELD3) previously identified as concordant with

self-renewal (Eiges et al., 2001; Fuchs et al., 2012; Kolle

et al., 2009; Patel and Simon, 2010; Zhang et al., 2013).

Changes in network integrity accompanied phenotypic

divergence during a possible switch point in differentiation

(P7-P6), such that expression of these elements became less

coordinated and predictable. We conclude that high con-

nectivity and low variability classifies those stable elements

in the pluripotency network under the highest degree of

regulatory constraint. Changes in constraint during transi-

tion are likely to identify the critical phenotypic regulators
hors
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of different cell states. We therefore propose that the com-

bination of genes with high connectivity and low vari-

ability and low connectivity and high variability confer

features of robustness to the pluripotency phenotype,

providing the pluripotent cell population with the ability

to flux between self-renewal, the competency to respond

to differentiation signals, and lineage priming.

Conclusions

The global constraints on the availability of mRNA can be

inferred from the variability of gene expression, and this,

in turn, impacts on cell phenotype. Reduced gene expres-

sion variability in highly connected network regions may

be informative of the level of regulation placed on a

network element. Thus, an opportunity exists to under-

stand how densely interacting elements of the pluripo-

tency network reduce variability across the pluripotent

population, and whether regions of high variability pro-

vide an indicator of genes which are permissive of pheno-

typic plasticity. Such a metric enables us to make useful

and more targeted predictions about what regulates a cell

phenotype and may provide insight into changes in the

levels of regulation of network elements driving cell-fate

transitions.
EXPERIMENTAL PROCEDURES

Microarray Data sets
Public microarray data sets (accessions from GEO: GSE13201,

GSE42956, ArrayExpress: ID E-MTAB-1040) were derived on the

IlluminaHT-12v3microarray platform. Rawdatawere summarized

using Bead Studio (Illumina). Background correction (affy) and

quantile normalization was performed using R statistical software

Bioconductor package lumi (Du et al., 2008).We tested the distribu-

tion of variability in each phenotype and found no significant

differences (Figure S1C). Full details on data set selection and

normalization procedures are provided in Supplemental Experi-

mental Procedures.

Simulating Gene Expression Changes in the Cell

Population
We used python programming language to model a matrix of 107

cells, reflecting the size of a typical cell population in culture. A

1D array fitting a normal distribution was simulated using the

range of expression values typically seen in the linear range of a

microarray experiment (5,000–50,000 fu). The mean, median,

SD, and covariance were calculated, and normality was tested

based on D’Agostino’s K-squared test. Randomized ‘‘pooled’’ sam-

ples (representing a summary of 106 entries, or one ‘‘pool’’) were

taken from the original array and the mean and CoV of these

pooled samples were exported to a table (n = 100 pools). Increasing

percentages (we selected 1%, 5%, 10%, and 20%) of entries in the

original array were perturbed, and the degree of perturbation was

also scaled (we selected 5%�50% in increasing increments of

5%), prior to resampling randomized pooled samples for each
Stem C
perturbation, as described above. The proportional deviation

from the original population values were recorded andwere visual-

ized in a line graphwhere n = 100 for either the CoVor themean at

each point.

Population Variance

The coefficient of variation (CoV), computed for each gene by

dividing the SD of its expressionmeasures across a sample popula-

tion by its average expression. AWilcoxon rank sum test assessed

whether the differences between the distributionswere statistically

significant.

Network Construction

KEGG (Kanehisa, 2002) and PluriNet (Müller et al., 2011) pathways

were assessed using the attract algorithm (Mar et al., 2011a,

2011b). Correlated partners of the synexpression groups were

computed at a Pearson coefficient cutoff of +0.9. A single list of

genes was generated that comprised members of the ECMR

interaction and PluriNet pathways, and their correlated partners

of expression. Those gene pairs with a Pearson R value equal

to or above +0.995 and below �0.995 were selected as network

nodes. The network was visualized using a force directed spring

embedded layout in Cytoscape, where the correlation coefficient

between the pair of genes represents an edge weight (Shannon

et al., 2003). Associated with an edge was either positive (Pearson

R R 0.995; green) or negative (Pearson R % �0.995; red) correla-

tion in gene expression. Cytoscape plug-ins for BisoGenet

(Martin et al., 2010) and STRING.db (Francheschini et al., 2012)

were used for protein-protein and literature-based networks,

respectively.
Network Analyses

Network Architecture
The larger network was divided into three regions based with

different connectivity.

1. Clique: nodes that form part of the densely connected network core.

Characterized by blue circles.

2. Leaf: nodes peripherally connected to the main network hub. Char-

acterized by gray triangles.

3. Disjoint: nodes that were disconnected from the main network.

Characterized by red squares.

Figure S2A contains gene lists for each region.
Constructing Networks that Represent Pluripotent

and Transitioning Cell Populations
The PluriNet pathway was identified as significant in the attract

analysis and was decomposed into distinct modes of expression

variability. We used agglomerative hierarchical clustering with

average linkage to cluster the log2-transformed CoV data and

used the Gap statistic with 1,000 bootstrap samples to determine

the number of appropriate variance clusters. A unique list of probes

with a 1:1 mapping to official gene symbol represents all genes in

these variance clusters, and there are 60, 97, and 39 genes associ-

ated with each cluster respectively, totaling 196 unique genes

(Figure S3).

The subfractions were grouped as follows: network 1, P4 and P5

microarray data; network 2, P5 and P6microarray data; network 3,

P6 and P7 microarray data.
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Pairwise Pearson correlation was used to assess the full list of 196

probes. The genepairswith a PearsonR value equal to or above +0.9

and below �0.9 were selected as network nodes, with the correla-

tion between them representing an edge. Associated with an

edge was either positive (Pearson R R 0.9; green) or negative

(Pearson R % �0.9; red) correlation in gene expression, corre-

sponding to the Pearson R coefficient.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, three figures, and five tables and can be found

with this article online at http://dx.doi.org/10.1016/j.stemcr.

2014.06.008.

AUTHOR CONTRIBUTIONS

E.A.M.: conception and design, data analysis and interpretation,

manuscriptwriting. J.C.M.: conception, data analysis and interpre-

tation, manuscript editing and approval. A.L.L.: provision of study

material, manuscript editing and approval. M.F.P.: provision of

studymaterial, manuscript editing and approval. J.Q.: conception,

manuscript editing and approval. E.W.: data interpretation and

manuscript editing and approval. C.A.W.: conception and design,

data interpretation, manuscript editing and approval, financial

support.

ACKNOWLEDGMENTS

E.A.M. is supported by an Australian Postgraduate Award scholar-

ship and receives an AIBN student stipend. C.A.W. is supported

by a QLD government Smart Futures Fellowship. This work was

supported by an ARC special research initiative to Stem Cells

Australia (C.A.W., E.W., A.L.L., and M.F.P.) and a grant from the

National Heart, Lung, and Blood Institute of the Unites States

NIH (1R01HL111759; J.Q.). The authors wish to thankMr. Othmar

Korn and Mr. Rowland Mosbergen for their programming advice

and assistance with data processing within the Stemformatics

environment.

Received: January 10, 2014

Revised: June 18, 2014

Accepted: June 20, 2014

Published: July 24, 2014
REFERENCES

Allocco, D.J., Kohane, I.S., and Butte, A.J. (2004). Quantifying the

relationship between co-expression, co-regulation and gene func-

tion. BMC Bioinformatics 5, 18.
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Figure S1 Legends: 

S1A.  Mean changes in a small percentage of the population have little effect on the population mean, 

but are reflected in large changes to the population variance.  Y‐axis shows the proportional shift 

as % deviation from the original population value. X‐axis shows the amplitude of perturbation 

imposed on the cell population. Legend: Solid line and filled symbols for CoV values, hatched 

lines and open symbols for Mean values. Red lines: 1% of the cells changing; Orange lines: 5% of 

the cells changing; Blue lines 10% of the cells changing. Green lines 20% of the cells changing. 

S1B.  Genes with low mean expression tend to show increased standard deviation.   

We have displayed the standard deviation as a function of mean expression for all expressed 

genes in the iPS unrelated (Briggs) population.  Y axis displays mean expression and X axis 

displays standard deviation of expression.  Genes with a low mean expression tend to display a 

higher standard deviation, perhaps due to a small proportion of cells in the population 

expressing the gene at a detectable level.  Genes with a high mean expression do not tend to 

contribute to the standard deviation disproportionately. 

S1C.  There are no significant differences in gene expression variability between phenotypes.  Density  

plots of gene expression variance were computed using a Gaussian kernel density estimator for 

the coefficient of variation (R statistical software) for all detected genes in each dataset.  Y‐axes 

display the density of log2(expression) and the Y‐axes display the log2(CoV) of gene expression.  

Datasets were independently normalised using quantile normalisation (lumi Bioconductor 

package for R).  Distributions were not statistically different (Levene’s test; lawstat CRAN 

package for R) between phenotypes.   

 

 

 

 

 

 

 

 

 

 

 



Figure S2. 

 

 

 



Figure S2 Legend: 

Figure S3 displays CoV profiles for each region of the 3 networks generated:  Protein‐Protein (S2A and 

S2B) and co‐expression (S2C) in 2 cell phenotypes (iPS and hES) from an independent dataset (Vitale).    

X‐axis describes the network regions and Y‐axis describes the coefficient of variation.  P‐values assess 

significant differences in gene expression variability between each network region (p, 0.05, Wilcoxon 

rank sum). 

 

Figure S3. 

 

   

Figure S3 Legend: Elements are shared between network cliques.  Venn diagrams in Figure S3C display 

the overlap in membership between the co‐expression network clique, with the BisoGenet and STRING 

network cliques. 

 

Table S1:  Gene lists for the full co‐expression network, clique and disjoint regions 

Table S2:  Table of significantly enriched terms in the disjoint region of the co‐expression network 

Table S3:  K‐means clustering gene lists 

Table S4:  List of K‐means clusters of the PluriNet genes across sub‐cellular fractions 

Table S5:  Gene lists for 3 co‐expression PluriNet networks 

 



 

SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Microarray datasets: 

All microarray data was generated on the Illumina HT‐12 platform, and raw data was summarized using 

Bead Studio (Illumina, Inc).  Background correction (affy) and quantile normalization was performed 

using R statistical software Bioconductor package lumi (Du et al., 2008). We tested the distribution of 

variability in each phenotype and found no significant differences (Supplementary information 1C).  All 

downstream analyses were performed using quantile normalised data with background correction, and 

only probes passing the Illumina detection threshold were included in the analysis.  A probe was 

considered detected if its p‐value was ≤ 0.01 in at least 75% of individuals in the same phenotype. We 

had previously tested the impact of 5 different normalisation strategies on the genome wide variance 

distribution, and showed that Quantile normalization offered the least pertubation of variance patterns 

seen in the raw data(Mar et al., 2011a). 

 

The Illumina probe (ILMN_1659013) assigned to Nanog maps to a retrotransposed variant (NanogP1), 

which may be under different regulatory control to the canonical transcript. The probe mapping to the 

canonical transcript (ILMN_3307710) was not represented in the datasets we selected (surveyed using 

the Illumina HT12‐V3 chips), so Nanog was excluded entirely from our analysis.  

 

Isogenic and unrelated iPS cell phenotypes (Briggs et al., 2012) 

The full iPSC (induced pluripotent stem cell) experimental series (GEO accession number GSE42956) 

assessed the derivation of bona‐fide iPS cells from patients with Down’s syndrome and healthy controls. 

All iPS cells were generated from fibroblasts using non‐viral episomal reprogramming, and FACS sorted 

on TRA160 expression prior to profiling. 6 iPSCs lines from the same donor formed the isogenic iPS cell 

population (iPS_isogenic)(Briggs).  This population was used to assess changes in CoV independent of 

genetic background.  The unrelated iPS population (iPS_unrelated)(Briggs) encompassed all 18 iPSC 

samples derived from 3 different donors, thus representing a total population with mixed genetic 

background. 

Human embryonic stem cells with varying pluripotency potential (Hough et al., 2009) 

The hESC experimental series (GEO accession number GSE13201), surveyed four different fractions (P4, 

P5, P6, P7) of HES2 cells that had been FACS sorted based on two surface markers (GCTM2 and CD9) 

whose expression was highly correlated with self‐renewal. These fractions were concordant with the 



architecture of a hESC colony, such that the cells from the P4 fraction had the lowest proportion of self‐

renewing cells (defined as the least pluripotent) and generally located in the middle of the colony, 

whereas cells from the P7 fraction were found on the edge of the colony and had the largest number of 

self‐renewing cells (defined as the most pluripotent phenotype).  Where samples from all fractions were 

combined to produce the full colony, the population was named hES_all_P_fractions (Hough). 

Phenotypic variance in induced pluripotent stem cells (Vitale et al., 2012) 

The full experimental series available in Array Express (ID E‐MTAB‐1040) compared human ESC (Mel1) 

with completely reprogrammed iPSC grouped by high or low expression of the pluripotency cell surface 

marker SSEA4. The data in this study represented a subset of cell types representing 9 control iPSC 

(grouped as iPS_high and iPS_low) and 3 hESC samples from the larger dataset.  

 

Simulating gene expression changes in the cell population: 

We used python programming language to model a matrix of 107 cells, reflecting the size of a typical cell 

population in culture.   A 1D array fitting a normal distribution was simulated using the range of 

expression values typically seen in the linear range of a microarray experiment (5000‐50000 FU).  The 

mean, median, standard deviation, and co‐variance were calculated, and normality was tested based on 

D’Agostino’s K‐squared test.  Randomized ‘pooled’ samples (representing a summary of 106 entries, or 1 

‘pool’) were taken from the original array and the mean and CoV of these pooled samples were 

exported to a table (n=100 pools).  Increasing percentages (we selected 1, 5, 10 and 20%) of entries in 

the original array were perturbed, and the degree of perturbation was also scaled (we selected 5 ‐50% in 

increasing increments of 5%), prior to resampling randomized pooled samples for each perturbation, as 

described above. The proportional deviation from the original population values were recorded, and 

were visualised in a line graph where N= 100 for either the CoV or the mean at each point. 

 

Population variance analyses: 

We examined the average gene expression variance distributions for each population across the three 

data sets which were processed as described above, and log(2) transformed. As a measure of variance 

we used the coefficient of variation (CoV), computed for each gene by dividing the standard deviation of 

its expression measures across a sample population by its average expression. This provides a snapshot 

of expression variability for each gene across a population of cells.  Basing our analysis on CoV protects 

against detecting patterns in variability influenced by trends in absolute expression alone.  Log 

transformation protects highly up‐regulated genes from contributing to CoV disproportionately, and 



thus provides an additional variance stabilizing measure.  Box‐plots were generated from average and 

CoV values of all probes. Data were considered to be outliers when falling greater than 1.5 times the 

inter‐quartile range and are indicated by open circles. Density plots of gene expression variance were 

computed using a Gaussian kernel density estimator for the coefficient of variation in R statistical 

software. 

 

Constructing a co‐expression network from known pathways, enriched in the pluripotent phenotype: 

Pathway‐based significance between fibroblast and iPSC phenotypes in the Briggs et al. (2012) dataset 

was determined using the attract algorithm (Mar et al., 2011b; Mar et al., 2011c). All pathways in KEGG 

were assessed, and the PluriNet originally described by Muller et al. (2007) was assessed individually 

against all pathways in KEGG(Franz‐Josef Muller, 2008) (Kanehisa et al., 2002). Gene sets were identified 

for the synexpression groups of PluriNet and ECMR‐interaction (Extracellular Matrix Receptor) 

pathways. Correlated partners of the synexpression groups were computed at a Pearson coefficient cut‐

off of +0.9. The list of probes representing the PluriNet and ECMR‐ interaction pathways and their 

correlated partners of expression was mapped from probe to official gene symbol level (for a full 

description of methods see Supplementary Information 3: Mapping) using python. Correlated partners 

of expression of the synexpression groups identified in PluriNet and the ECMR‐interaction pathways 

were generated using the attract algorithm. The Pearson R correlation threshold was set at above or 

equal to +0.9. A single list of genes was generated which comprised members of the ECMR‐interaction 

and PluriNet pathways, and their correlated partners of expression. Those gene pairs with a Pearson R 

value equal to or above +0.995 and below ‐0.995 were selected as network nodes. The network was 

visualized using a force directed spring embedded layout in Cytoscape, where the correlation coefficient 

between the pair of genes represents an edge weight (Shannon et al., 2003). Associated with an edge 

was either positive (Pearson R >= 0.995; green) or negative (Pearson R <= ‐0.995; red) correlation in 

gene expression. 

 

Constructing protein‐protein interaction networks in Cytoscape: 

Cytoscape plug‐ins (STRING.db and BisoGenet) were used to construct edges representing protein‐

protein interactions. This produced 2 different protein‐protein interaction networks with node colour 

and shape.   BisoGenet (Martin et al., 2010) is a Cytoscape plugin which integrates data from well‐known 

interaction databases including DIP, BIOGRID, HPRD, BIND, MINT and INTAC. STRING.db (Francheschini 

et al., 2012) is a database which provides known and predicted (scored) associations between proteins, 



which results in comprehensive protein networks covering >1100 organisms. We imported our co‐

expression node list into STRING.db to form a medium‐stringency network for Homo sapiens. Details 

provided in Supplementary Information S3B. 

 

Network analyses: 

Network architecture: 

The larger network was divided into 3 regions based with different connectivity:  

1. Clique: Nodes that form part of the densely connected network core. Characterized by blue 

circles. 

2. Leaf: Nodes peripherally connected to the main network hub. Characterized by grey triangles. 

3. Disjoint: Nodes that were disconnected from the main network. Characterized by red squares. 

 Supplementary Information S2A contains gene lists for each region 

The force directed spring embedded algorithm pushes nodes with a higher degree toward the centre 

(clique region), and nodes with a reduced degree further away. 

CoV profiles: 

Box‐plots were generated from the CoV values for each group, in the iPS_unrelated (Briggs) and the 

hES_P_fractions (Hough) datasets. A Wilcoxon rank sum test assessed whether the differences between 

the distributions were statistically significant.  

 

Constructing networks which represent pluripotent and transitioning cell populations 

The PluriNet pathway was identified as significant in the attract analysis, and was decomposed into 

distinct modes of expression variability. We used agglomerative hierarchical clustering with average 

linkage to cluster the log2‐transformed CoV data and used the Gap statistic with 1000 bootstrap 

samples to determine the number of appropriate variance clusters. A unique list of probes with a 1:1 

mapping to official gene symbol represents all genes in these variance clusters, and there are 60, 97 and 

39 genes associated with each cluster respectively, totalling 196 unique genes. (Supplementary 

Information S4) 

The sub‐fractions were grouped as follows: 

Network 1: P4 & P5 microarray data 

Network 2: P5 & P6 microarray data 

Network 3: P6 & P7 microarray data 



For each group we selected the full list of 196 probes and performed a pair‐wise Pearson correlation of 

gene expression was performed using R statistical software. The gene pairs with a Pearson R value equal 

to or above +0.9 and below ‐0.9 were selected as network nodes, with the correlation between them 

representing an edge. The networks were visualized using a force directed spring embedded lay out in 

Cytoscape (Shannon et al., 2003), where the correlation coefficient between the pair of genes 

represents an edge weight. Genes were represented as circular nodes, and their pair‐wise correlation of 

expression represented as an edge. Associated with an edge was either positive (Pearson R >= 0.9; 

green) or negative (Pearson R <= ‐0.9; red) correlation in gene expression, corresponding to the Pearson 

R coefficient. 
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