Supporting Online Material for:

3'LIFE: A Functional Assay to Detect miRNA Targets in High-Throughput

Justin M. Wolter, Kasuen Kotagama, Alexandra C. Pierre-Bez, Mari Firago and Marco Mangone*

* To whom correspondence should be addressed. Tel: (480) 965-7957; Email: mangone@asu.edu

This PDF includes:

Supplementary Figures 1-8 Supplementary Table 1 – Primers used for cloning Supplementary Table 2a - 3'LIFE hits - *let-7c* Supplementary Table 2b - 3'LIFE hits - *miR-10b* Supplementary Table 3 - Literature review Supplementary Materials and Methods

Table of Contents Supporting Online Material

Supplementary Figure 1:	Predicted miRNA targets have high false negative rates	3
Supplementary Figure 2:	3'LIFE assay plasmid maps	4
Supplementary Figure 3:	Expression and splicing of pri-miRNA from pLIFE-miRNA vector	5
Supplementary Figure 4:	PGK promoter is 80% weaker than CMV promoter	6
Supplementary Figure 5:	Development of nucleofection transfection buffers	7
Supplementary Figure 6:	3'LIFE cloning pipeline	8
Supplementary Figure 7:	miRNA delivered using both weak and strong promoters identify comparable targets	9
Supplementary Figure 8:	Comparative analysis of 3'LIFE with AGO-HITS-CLIP	10
Supplementary Table 1:	Primers used for cloning	11
Supplementary Table 2a	3'LIFE hits - <i>let-7c</i>	1J
Supplementary Table 2b	: 3'LIFE hits - <i>miR-10b</i>	24
Supplementary Table 3:	Literature review	27
Supplementary Materials	and Methods	3Î

Supplementary Figure 1. Predicted miRNA targets have high false negative rates. We have superimposed all the experimentally validated miRNA targets of five cancer-related miRNAs (x-axis, black dots) to target predictions produced by a panel of widely utilized prediction algorithms, TargetScan (A) (5), DIANA microT-CDS (B) (42), and PicTar (C) (8). The Y-axis represents the normalized targeting score assigned to each prediction, with the black horizontal line representing the normalized mean. We show the same five representative miRNAs in each panel. These miRNAs were selected for this analysis based on 1) their significant presence in the literature, 2) their correlation with oncogenic pathways, and 3) their uncharacteristic high number of validated gene targets when compared to other less studied miRNAs. (D) Among 67 experimentally validated targets for these five miRNAs, 34% were not predicted by TargetScan, 47% were not predicted by DIANA-microT-CDS, and 52% were not predicted by PicTar. Of note, these algorithms produce thousands of predictions that are yet to be tested, representing >98% of predicted targets. This comprehensive list was compiled utilizing miRTarbase (40) and by our own manual literature review of up-to-date

resources.

Supplementary Figure 2. 3'LIFE assay plasmid maps (**A**) pLIFE-3'UTR (**B**) pLIFE-miRNA. Positions of restriction sites used to clone various elements are noted. Plasmids are available through DNASU Plasmid Repository (<u>www.DNASU.org</u>, clone IDs:EvNO00601503 and EvNO00601504).

http://dnasu.org/DNASU/GetCloneDetail.do?cloneid=601503 http://dnasu.org/DNASU/GetCloneDetail.do?cloneid=601504

4

Supplementary Figure 3

Supplementary Figure 3. Expression and splicing of pri-miRNA from pLIFE-miRNA vector (**A**) Top: Total RNA from HEK293T cells transfected with pLIFE-miRNA plasmid was extracted, and cDNA was synthesized using a polydT reverse primer. The second strand PCR reaction was performed using a forward primer that anneals in the open reading frame of RFP, and a reverse primer that anneals downstream of the 3' splice site in the 3'UTR. Middle: Gel electrophoresis depicts PCR of plasmid DNA and cDNA, with a shift of the expected size given proper intron/miRNA splicing. Bottom: Sequencing of the PCR products confirmed that the miRNA is properly spliced out of the RFP mRNA transcript (**B**) Bright field (left) and fluorescent (right) images of HEK293T cells used in the above experiment. RFP expression functions both as a marker for transfection efficiency, and signals transcription of the primary miRNA transcript.

CMV Max-GFP + CMV-dsRed2-miR-10b

CMV Max-GFP + PGK-*dsRed2-miR-10b*

B

Α

Supplementary Figure 4: PGK promoter is 80% weaker than CMV Promoter. (A) We have compared the strength of the CMV promoter related to the PGK promoter in cotransfection experiments using fluorescence microscopy. While the expression of GFP driven by a CMV promoter is constant in both experiments (compare panel 1 with 3), the expression of dsRed2 included in the pLIFE is much weaker using the PGK promoter (compare panel 2 with panel 4). (B) Quantification of fluorescence produced by these two promoters shows that CMV promoter is at least five times stronger than the PGK promoter, results comparable to those obtained by Qin, et al. 2010 (52).

Supplementary Figure 5

Supplementary Figure 5. Development of nucleofection transfection buffers. We tested 11 electroporation buffers against 8 different pulse codes. 100k HEK293T cells were transfected with 50 ng pmaxGFP plasmid (Lonza) and compared against the SF cell line solution (Lonza) (data not shown). (A) The highest performing buffers were each retested with various permutations of pH and buffer composition to determine optimal transfection conditions. Based on fluorescence and cell survival PBS 1.5% HEPES pH 7.0 and pulse code FF120 (red box) was chosen for the 3'LIFE assay. (B) HEK293T cells transfected with GFP in PBS 1.5% HEPES pH 7.0 buffer and pulse code FF120 performed in 6 replicates. Cells were cultured for 48 hours following transfection, and fluorescence was analyzed using flow cytometer. Light blue line is negative transfection control without GFP. The percentage of transfected cells is consistent between experiments. (C) Transfection efficiency of previous experiment (b).

Supplementary Figure 6. 3'LIFE cloning pipeline. This cloning pipeline was used to clone the 384 3'UTRs, and the miRNAs used in the 3'LIFE assay. 1. Primers used to amplify 3'UTRs from the human the genome anneal in the terminal exon of each gene and 150 nt downstream of the longest 3'UTR annotation in Refseq HG19 annotation. miRNA were amplified using primers that anneal ~200 nucleotides upstream and downstream from the pre-miRNA annotation from miRbase. All primers contain 5' universal Gateway elements to facilitate cloning in pLIFE Gateway compatible plasmids. 2. 3'UTRs were amplified using touchdown PCR cycling conditions (TD-PCR) in 96-well plates and used in BP cloning reaction. BP reactions were transformed in DH5a cells and plated in 48 well culture plates. Screens for successful clones were performed using colony PCR and size based selection for one colony. If first colony was not positive, up to eight additional colonies were picked and analyzed using colony PCR. 3. Successful 3'UTR clones are re-

arrayed into 96-well plates and tested for targeting by each miRNA in the 3'LIFE assay.

8

Supplementary Figure 7. miRNA delivered using both weak and strong promoters identify comparable targets. (A) Comparison of 87 genes screened in the 3'LIFE assay using pLIFE (strong promoter) and pLIFE-PGK (weak promoter) for targeting by *let-7c* and *miR10b*. The yellow panel highlights the repression from both miRNA delivery methods. (B) Top hits produced with pLIFE compared with hits produced with pLIFE-PGK. Of the top hits produced using pLIFE-miRNA, 77% of them were also repressed using a weaker promoter, but to a lesser extent. (C) Venn diagram showing the overlap between hits produced using both miRNA delivery vectors. 97% of genes were either repressed or not repressed using both vectors. (D) We studied the seed region in

three statistically significant hits detected using the pLIFE-PGK for *miR-10b* that were not targted by pLIFE (middel panel in C). Two of three have a perfect seed element in their 3'UTRs, suggesting that although at a low frequency (1.7%), some genes may exhibit dosage-dependent targeting.

9

CLASH 3'UTR Target	Targeting miRNA	Target Region	Interaction Type	# of chimeric reads	3'LIFE Repression Index	3'LIFE <i>p</i> -value
EZH2	let-7a	CDS, 3'UTR	7-mer	4	0.75	<0.01
EN2	let-7e	3'UTR	noncanonical	1	0.77	<0.025
CCND3	let-7b	3'UTR	none	1	0.83	<0.05
FXR2	let-7b	CDS, 3'UTR	none	1	0.85	
HSF2	let-7a	3'UTR (2x)	noncanonical	2	0.85	
SNX6	let-7a	3'UTR	noncanonical	1	0.91	
NUP153	let-7b	3'UTR	noncanonical	2	0.94	
MYC	let-7b	3'UTR	noncanonical	1	1.00	
HES1	let-7b	3'UTR	none	3	1.00	

B

Α

<i>let-7c:</i> l	JGAGGUA	GUAGGUUGL	JAUGGUU
------------------	---------	-----------	---------

- *let-7a:* UGAGGUAGGUUGUAUAGGUUGUAUAGUU
- *let-7b:* UGAGGUAGUUGUGUGUUGUGUU

```
let-7e: UGAGGUAGGAGGUUGUAUAGUU
```

Supplementary Figure 8: Comparative analysis of 3'LIFE with AGO-HITS-CLIP. (A) In 2011, Kudla, et al. (PNAS), developed a method to isolate RNA:RNA interactions using immunoprecipitation approach, followed by ligation of the two complementary RNAs, resulting in a chimeric sequence composed of the two interacting RNAs. Recently, this technique, termed cross-linking and sequencing of hybrids (CLASH) was applied to the AGO protein and miRNA:mRNA interactions (50), providing a potential solution to the issue of identifying which miRNA is targeting the mRNA footprint obtained from original AGO-HITS-CLIP approach. The CLASH dataset was also conducted in HEK293T cells, which provided a complementary approach to cross validate hits obtained from 3'LIFE. We compared our results with this dataset. Unfortunately, of the 272 chimeric reads obtained for *let-7c* and *miR-10b*, only one gene was present in the 3'LIFE library (EIF3A), and the target footprint mapped to the open reading, thus was not comparable to 3'LIFE. However, CLASH did identify 21 genes which were targeted by a family member of *let-7c* or *miR-10b* which were included in the 3'LIFE library. (B) Alignments of let-7 family members shows that these miRNAs share identical seed regions (red box), and diverge by 1-2 nucleotides in the 3' end of the miRNA (yellow boxes). Of these 21 genes, 12 mapped to coding sequences, while 9 mapped to 3'UTRs. Of the 9 overlapping 3'UTRs in the two datasets, 3 of them were significantly repressed in the 3'LIFE (p<0.05). Of these 3, the gene with the highest repression in 3'LIFE, EZH2, was the only gene with a canonical seed target identified by CLASH and had the highest number of reads sequenced by CLASH. The remaining eight genes had either non-canonical, or unidentifiable target sites. The only gene with canonical seed was the top hit in both 3'LIFE and CLASH, and 7 out of 9 CLASH hits have some degree of repression in 3'LIFE, although only 3 significantly. While there may be subtle differences in miRNA targets by closely related miRNA family members, this comparison suggests that binding (as shown by CLASH) is not an accurate proxy for functional repression (as shown by 3'LIFE).

Supplementary Table 1: Primers used for cloning

ARTK NM_001089395 GGTGAGAGTAAAGAGGCTTGA CCTCACCEGGGGTGTGCC ARTI NM_005163 GCCACGGGCGGCGGCTGA ACACACCTTACACCCTACAC AIX3 NM_005163 CCTGACGGGCGGCGCTGA CCTTTACACCTTACGTTAGGTACAGAC AIX3 NM_001185 CTGACGTGGACCAGTGA CCTTTACACCTTACAGTAGAGAG ARNAA NM_001231 GCAGAATCCGGAAGCATGA CTGCTCATGTGGACACGGTGAT APPL2 NM_01312 GCAGAATCCGCAGTCGT TTTGGATATGTGGGGGGGTAAG ARID3A NM_002224 CACATCTACCTCCTGTGTTTTGAGTGGCGGTGAG AGTCAAATAAATGAATGGCGGGGGAAG ARID3A NM_005452 CCACACGTGGTCCTGGTTTGG TGGAAGGGGGGGGAAG ARNDA NM_005452 CCACAGCTTGGCCCTCTG TGTGATGGGGGGCAACTGA ARNT NM_00512 GGTATTGTGGGGGAATA TACCCTCCCAAAGAGAGCTCCAAGG ARTI NM_00512 GGTATGTGGGGGAATATCCAGAGCTA CAATCTCCACATGGCTCCCAAG ARTI NM_00512 GGTATGTGGGGAATTCCAGACGAGCTA CAATCTCCACATGGCTCCAAG ARTI NM_00512 GGTATGTGGGGAATTCCAGAGCTA CTATTCCCACTGGCTCAAG ARTI NM_00512 GGTAGTATGGGGAAATTCCAGAGCTA CTATTCCCAAGGGGGG	Alias	RefSeq ID	Forward Primer	Reverse Primer	
ANT1 NM_005133 CCCACCGCACCGCCTGA ACCACACCTTTCCCTTACTGTTCACACC ANX37 NM_006942 CTGACTGACCCACGGTA CCTTTACACCTCTCCTTACTGTCACACC ANX47 NM_001356 CTGGCTATTGTGGGCCAGTAG CTTTACACCTTACACTTACAGGTAGAGGA APPL2 NM_000383 TTCTGGGTCTTACCTTTGTGGCCAGTAA CTACTCACTTACTGTGTGCGCAGGAGTA ARD3A NM_00224 CACATCTACACTCACATAATACTCGTTTGTGTCTACTTGTGTCGCGGGGTGAGG ARD3A NM_005244 CACATCTACCTCACATAATACTCGTTGTGTGTCTTTATTGGTCGCGGGTGAGG ARD3A NM_005244 CACACTCACTCCCCCTTTA TGTAGAGGGGTGGCGCACGGC ARD3A NM_005244 CACACTGGTCCCCCTTTG TGTAGAGGGGTGGCCACGG ARD3A NM_005244 CACACTGGTCCCCCTTG TGTAGAGGGGTGGCCACAGG ARNT NM_104315 CGACTTACCAACTGGTCACGCCTTA CAAGGTTGCCACAGGGGCACAGG ASSL1 NM_003170 TGGTTAGGGGGCACTGGCA CAAGGTTGCCACAGGGCCACCCC ASSL1 NM_003170 GAGGACCTGGCTA CAAGGTTGCCACAGGG ATTS NM_003171 GAGGACCCGTAGCTGCTA CAATTCCCACTGAGGCACAGG ATTS NM_00174 ACAGGACCCGTAG CTATACCACTGCAAGGCGGACTACACAGG	ААТК	NM 001080395	GGTGAGAGTAAAGAGGCTTGA	CCTCCACCGGGGTGTGCC	
AXX3 NM_006432 CTGAACTGGACCACGTGA CCTTTACACCCTCCTTGTGACGAC ANXA7 NM_00038 TTCTGGCTATGTGGCCAGTAG CTGAACCTTAAATTTGCTAAGGTGATGTATA APPL NM_00038 TTCTGGGTCTTACCTTGTGACATCTGTTTA ATTTGGAATTAAAAGGCAAGTTTATTCTAATT APPL2 NM_00038 TTCTGGGTCTTACCTGTGTGCATA CTACTCATGTTGACTGGAAGGGTGTTTTTTTGA ARIDA NM_00522 CACATCTACCTCAATTACTCGTCATT AGTTGATGGCTGGCGGGGTGAGAG ARIDA NM_00545 CACCAGCTGGTCCCTCTG TTGAGATGGCCTGGCGGGGTGAGAG ARNJ NM_00512 GGCTTACGCACTGGTGGGGGAGATA CACGGTGGCCCATGG ASCL1 NM_00512 GGGTTGCCCTGTGGGGGAGAT TACATAAGGCCCCAAGCA ASTI NM_00512 GGGTTGCCCTGTGGGGGAGAT CAAGGTGCCCCAAGCA ASTI NM_00512 GGAGCCCCTACGACTGA CAAGTTCTCACCTAGGCCCCAAGC ATF3 NM_00512 GAGGACCCGTACGACTGA CTTTACAGAGACGCCCAAGCACGAT ATF3 NM_00522 GCAACAAAGGCACCGTAC CATCTCCTCTGAGCCAGGGGGGTTTACACCT ATF3 NM_001268 GAGGACCCTGAAGCAGATCTACAAG CTCTAGAGCAGGGCCCTTAGACCCTGA ATTNU NM_00282 GCACCAACGACAGCTGCTA </td <td>AKT1</td> <td>NM 005163</td> <td>GCCAGCGGCACGGCCTGA</td> <td colspan="2">ACACAGCCTGTCCCCAAAC</td>	AKT1	NM 005163	GCCAGCGGCACGGCCTGA	ACACAGCCTGTCCCCAAAC	
ANXA2 NM_00136 CTGGCTATTGTGGGCCATAG CTGAACACTTAAAATTGCTAGGTAAGTAATTA APPL2 NM_000038 TTCTGGGTCTTACCTTGTGACTCGTTTA ATTGAATTAAAGGCAAGTTTAACTGATTT ARNDA NM_018317 GCAGAATCCGAAGCATAA CTACTCACTGGAACTATATTTGGCCAGTCATG CTACTCACTGGAACTGGTTTTGACTAGGAAATGCAAGGCAGTGGCGCAGTGG ARNDA NM_005242 CACACTCTACTCACTCAATTGCTCGCCTT TTGGAAAGGCCTGGCCACTGG ARNDA NM_005242 CACACACTGGTCCCCTCG TTGAAGAAGGCCTGGCCACTGG ASCL1 NM_005130 CGACTTACCAACTGGTTCTG TGGATGGGACTGGCCAATGC ASCL2 NM_005130 TGATTGTGCCTTGTGGTGAGATA TACACCACCAAGGGCTCAA ATF3 NM_005130 TGATTGTGCCCTTGTGGTGAGATA TACACTACCAAAGGGCTCCAAGGACTAA ATF3 NM_005130 TGCAGTAAAAAGGACATTGCAGAGCTTA CATATCCACTCTGACGCCAAAGAATGACTACAAA ATF3 NM_015338 TGTATTGCGATGCCCCTAG GTATTTTCAGTAAGGAAGTTCAACAAA ATF3 NM_01674 CACCAAACGACTGTGACACCTA GTATTTTCAGTAAGGAGGACTTCACAAA ATF3 NM_01785 CACCAAACGCCGTAA TTTGCATAGGCTTGCCAACTGGCCTCCAAAGAATGACTTTCAGGAAGACTTCAATAAGGACTTGAAGTAAATAGGAGGCTGCCACTA ATF4 NM_0104282 TAACCCAG	ALX3	NM 006492	CTGAACTGGACCACGTGA	CCTTTACACCCTCCTTAGTGTCAGAC	
APE NM_00038 TTCTGEGETCTTACCTTGTGACATCTGTTTA ATTTGAATTAAAAGGCAAGTTAACTTACTTATTAG ARD1A NM_018373 GCAGAATCCGAAGCATAA CTACTCATGTTGACTGGACAGTGATG ARD1A NM_00522 CACATCTACCTCAATTAACTCGATGCCATG TTTTGGATTAGCTGAAATAAATGACAGGGT ARD3B NM_00522 CACATCTACCTCAATTACCTCAATTACTGCTTGCCTTA AGTTCATTGGCTCGCGGGGGGAAG ARNT NM_17822 CTACATATGTTTCCCCTCTT AGTTCATGGCAGCGGGGGTGAGG ARNT NM_005170 TGGTTAGGGGGCTACTGA CGAGTGGCACTGGCCAATGG ASCL1 NM_005170 TGGTTAGGGGGCTACTGA CACAGCTAAGCACTGGCTA ASTI NM_005170 TGGTTAGGGGGCTACTGA CACAGATAAAAGAGGAACTTGCAGAGTT ASTI NM_005170 TGGTTAGGGGGCTGCTA CACAGATAAAAGAGGAACATTGCAGAGT CACAGATCAAAAGAGGGACCTGTA ATFI NM_005171 GCAGGCCCTAGCTGA CTCTACAGCTTTTAGGCAGGGGGTTCACCTT ATFIS NM_005273 CACAGATGAGCGCTGTA CTCTAGCAGGCCTGACAGG ATFIN NM_002882 GGAACCTAGTAGCTGAT CTCTCAGCATTGAGGGGGGTTACCCTT ATRN NM_002873 CACAGACAGAAGTGTGAA CTCTCAGCATTGAGGGGGGTTACCCTT ATRN	ANXA7	NM 001156	CTGGCTATTGTGGGCCAGTAG	CTGAACACTTAAAATTTGCTAAGGTAGTAG	
APPL2 NM_018371 GCAGATICGGAAGCATAA CTACTCATGTTGACTGGATGTTTTTTGA ARIDIA NM_139333 TGATGTACTGTTTTGATTGGCCATGCATG TTTTGGATATAGTAAATAAATGACAGGGT ARID3A NM_005242 CACATCTACCTCAATATAACTGGTTGCTTA AGTTCATIGGCCCGCGGC ARID3 NM_005243 CACATCTACTCAACTGGTTCCCTCTG TTGAAGAAGGCGTGGCCAATG ARNT NM_178427 CTACTACTGTTCCCCCCTTTTCAGAATA GCACATGCCTCCA ASCL1 NM_005130 GGATGTGGCCACTGGGCCAATGG CAAGGTGCCCAATGGCCTCCA ASL1 NM_005131 GAAGGATCTTTTGCGAGATA TAACCTCCCAAAGGGGTTCCAAGTAA ATF3 NM_005131 GAAGGATCCTTTGCGTGAGATA CTATAAGGTGCCCAAAGGGGTTCCAAGTAA ATF3 NM_001674 ACAGATAAAGAAGGACATTGCAAGGACTA GTATTTTCAGAGAGGACTACAGA ATFS NM_001674 ACACAAAAAGCTGGAAGACATTGCAAGGACTA GTATTTTCAGAGAGACAACTAGGGGTTACACAA ATAU NM_01288 GAAGGACCCGTAAGCTGATA GTATTTTCAGAGAGACAACTAGGGGGCAACTAAGG AGTAGTAGAGAGAGATATTTCAAAGGAGCTGAA CTTAAAGCTGCCCCCCAAACTAAGGGCCTAAGT CACCAAACAAAGCGCCTTAAGTCTCGAAGACGCTGA ATAU NM_002828 GACGACCCCGTAAGCTGGA CATTTAAGCTAGAGGACAATTGGCCCCCCCCCCAA <tr< td=""><td>APC</td><td>NM 000038</td><td>TTCTGGGTCTTACCTTGTGACATCTGTTTA</td><td colspan="2">ATTTGAATTAAAAGGCAAGTTTATCTAATT</td></tr<>	APC	NM 000038	TTCTGGGTCTTACCTTGTGACATCTGTTTA	ATTTGAATTAAAAGGCAAGTTTATCTAATT	
ARIDIA NM_139135 TCATGTACTGTTTTGATTGCCCATCATG TTTTGAATATATAATAATAATGACAGGGT ARIDIA NM_005224 CACATCTACCTCANATAACTCGTGCCTTA AGTTCATTGGCTCCCCCGGG ARIDIA NM_178427 CTAACTAGTCAATTAACTCGTTGCCTTA AGTTCATTGGCTCCCCCGGG ARIDIA NM_109120 CGACTTCACCAACTGGTCCTG TTGAAGAGCGTGCCCATGG ASCLI NM_00130 TGGTTAGGCGGCTACTGA CAACGTGCCCAAAGAAGAGAGCTCCCAAGCAAAGAAGAGCTCCCAAGTGAA ASLI NM_001338 TGTATTGTGCCCTTGTGGTGGGAGAT TAACCTCCCCAAAAGAAGAGAGCCCCAAGT ASTI NM_0013383 TGATGTGCCCAAGTGCCAAAGAGAGCCCCAAAGAAGAGGGCTCCAAGTGCCCAAAGAAGAGCCCCAAAGAAGAGCCCCCAAA CTATTCCCAAAGGAACTACTACAAA ATFS NM_0012058 GAGGACCCGTAGCTAG CTACTACCACCGAAGTACCTACAACAA ATFN NM_002293 CACCAAACACGCGTAG CTACTACGACCACTAGCTTTGCACTAGACCACAAA ATNN NM_002293 CACCAAACACGGTAGCTTTACAATTA TTGTAGGATACTTAGACCAACAAAGCCGGCTAGTTGAA BAG3 NM_002293 CACCAAACACGGTAGCTTAAGGCGGA CATTTAACCATTGAGCGGGGCTAGTTGA BAG3 NM_002420 CACCAAACACGCGTA CATTTACAATTGGGCGGCGCTAGTTGA BAG3 NM_002420 CACCAACACGCGTA CATT	APPL2	NM 018171	GCAGAATCCGAAGCATAA	CTACTCATGTTGACTGGAAGTATTTTTTGA	
ARID3A NM_005242 CACATCRACTCACCTCAGTTACTCGTTGCCTTA AGTTCATTGGCTCGCGGG ARID3B NM_005465 CACCAGCTGGTCCCTTG TTGAAGAGGCGTGGGTGAGG ARID3A NM_005455 CACCAGCTGGTCCTGG TTGAAGAGGCGTGGGTGAAGG ASCL1 NM_005130 TGGTTAGGGGCTCTGG GCAGGTGCCCATAGC ASCL2 NM_005131 GGATGTCACCAACTGGTGGGAGATA TAACCTCCCAAAGGCTGCCAAGGC ATF1 NM_005131 GAAGGATCTTTATTCCAATAAAGTGTTTG TCATAAAGTGCTGCCCAAGGCCAAGGA ATF3 NM_015338 TGTATTGGGGCTACTGA CAACGTACCTCAAGGCTGCCCAAGGCAAGCAA ATF3 NM_01567 ACAGGATCAAGGAATTACATTGCAGAGCTA ACTTACCCTCAAGGCCCCAAG ATF3 NM_01568 GAGGACCCGTAGCTGCTA GTATTTCCAATGGCAACCAGACTTGCTTGATGTGGGGTTTCACCTT ATOH7 NM_145178 TTCCAACTGGCAACTAG TTCTCATCAGCACCAGAACTAATGCTGAAGCACACGAACCAGAACTAAGGG BAG2 NM_002281 TAACCCAGCACCAGCAGTTCATAT TTTGTATCAATAGGACCAGACTACTTTCAACTGAG BAG2 NM_002281 TAACCCCAGCAGCAGTTCTTAAGCTCAATA TTTGAACTCAGCCCCTA BAG2 NM_002281 TAACCCCAGCAGCAGTTCTTAAGCTCCATTTTCAATGAGGCCTATATATA	ARID1A	NM 139135	TGATGTACTGTTTTTGATTGGCCAGTCATG	TTTTGGAATATAGTAAATAAATGACAGGGT	
ARID3B NM_D06465 CACCAGCTGGTCCCTCTG TTGAAGAAGGCGTGGGGTGAAG ARNT NM_178427 CTAACTATGTTTCCCCCCTTTTCAGAATAG AGCCAAGATCGTCGCCATGG ASCL1 NM_D0510 TGGATTGGACKTGGCCCATTGG TGGATGGACKTGGCCCATGGC ASKL1 NM_D05170 TGGTTAGGCGGCTACTGG CAAGGTCCCCAAAGGACGCCCCAAAGCAAGGCCCCCAAAGCAAGGAGCTCCCAAGTGAAAGAAGGACCTCCAAGTGAAAGAGAGCCCCAAAGCAAGGAGCCCCAAAGCAAGGAGCTCCCAAGTGAAAGAGAGCCCCAAAGCAAGGAGCCCCAAAGCAAGGCCCCAAAGCAAGGCAGCTCCCAAGTGCAAAGGAGCACCCCAAAGGAGCCCCAAAGCAAGC	ARID3A	NM 005224	CACATCTACCTCAAATAACTCGTTGCCTTA	AGTTCATTGGCTCCGCGG	
ARNT NM_179427 CTAACTATGETTCCCCCCTTTTCAGAATAG ACCAAGATCGGGCCATGG ASCL1 NM_004316 CGACTTCACCAACTGGTTCTG TGGATGGGGCATGGC ASCL2 NM_005130 TGGTTAGGGGCTACTGA CAAGGTGTCCCAATGGCTCC ASSL1 NM_005131 GTGATGGGGCATACTGA CAAGGTGTCCCAATGGCCCCAGGCTAC ATF1 NM_005171 GAAGGATCTTTATTCCAATAAACAGGACATTGCAGCACT CCAAGGTGCTGCCCAAGGCAACGAA ATF3 NM_005174 ACAGGATTAAAACAAGGACATTGCAGGGCTA CAATTCCCACTGCAGGCACCTAG TCTCATCAGGACCACGAGATTCACTT ATNP NM_102058 GAGGACCCGTAGCTGCTA GTATTTTCAGTAGAGACTGACCCAAGA ATTACCCACAGCACGCACTTGA ATNP NM_102393 CACCAACAGCAGTTGTAA TTCTCATCAGGACCACGGGGCTATT ATTACCCAGGACCCGGCACCGTA BAG2 NM_004281 TAACCCAGCAGCAGCTTAA CATTTCTCTTGAGGACACGATTATCATAGA GCACAAATTCATTCGGAAATGA BAG2 NM_004281 TAACCCAGGCAGCCTTAAGTTCTGAAGCGGA CACTTATCTTTCAGAAGGACCCTTTAGTTCCCCCCA BCCIP NM_004281 TAACCCAGGCAGCCTGA CACTTATCTTATAGGGCTCTCCCCA BCCIP NM_0131450 AGGGGACGCAGCTTCAAGTTCTGAAGCCCAGGACCACCCCGA CCCCCCTTACGTTCAGGATAGACCACAGACCCCCCCCA	ARID3B	NM 006465	CACCAGCTGGTCCCTCTG	TTGAAGAAGGCGTGGGTGAAG	
ASCL1 NM_00316 CGACTTCACCAACTGGTTCTG TGGTTAGGACGCATAGC ASCL2 NM_003170 TGGTTAGGGTGCTGCTGA CAAGGGTCCCAATGGCTCC ASSL1 NM_015338 TGATTGGCTTGGCTGGGAGAT TAACCTCCCCAAAGAGAGCAACTGCCAAGAGA ATF3 NM_01573 ACAGATAAAGAGAAGAACATGCAGGAGTA GTATTGTGGCTGCCAAGTGAAGAGAACTGCCAAGTGCAAGAGAACTACCATCTGGAGGCCCCAAGTGAAGAGAACTACCTAGGATGCCCCAAGTCAACAGA ATF5 NM_012068 GAGGACCCGTAGCTGCAA GTATTTTCAGGAAGACTACTACAA ATN0 NM_012088 GAGACCCGTAGCTAA GTATTTTCAGGAAGTACTTCAACAGACTACTTGAGCAGGCTTACAA ATN0 NM_002821 CACCAACAGCACGTTAA TCTCAGAGACTCATGCAGCCGGCTATTTAGAGCAGACTCATTGAAGCCCGGGCTATTT BAG2 NM_002821 CACCAACAGCAGCAGTA CAATTCATCTCATGCGGGCTATTTGCACCCGGGCTATTTGGAGCGGGCGATAATTTGAAGCCTCATTCCACCCCCCAAGCCGGTA BC111 NM_018010 TCGCAGAGCCCTTAGGTTCTGA CTCTCTTAAGCTCTAGCGGGAATAATTCACCCCCCCTA BC111 NM_0180191 TCCCCAAGCGGCGCTGA ACCTGAGCGGAAAGGCAAGTACTTAGCCCGGGCAAATTCAGA BC111 NM_001918 CAGCTCCCCCCAAAGCCGCGTA CACCCGTAGGCAAAGCGC BC111 NM_001918 CAGCTCCTCAGCCGTA ACCTGAGCGCGAAAGGCACGTA BC121 NM_001918 </td <td>ARNT</td> <td>NM 178427</td> <td>CTAACTATGTTTCCCCCCTTTTCAGAATAG</td> <td>AGCCAAGATCGTGCCACTG</td>	ARNT	NM 178427	CTAACTATGTTTCCCCCCTTTTCAGAATAG	AGCCAAGATCGTGCCACTG	
ASCL2 NM_005170 TGGTTAGGGGGCTACTGA CAAGGTGTCCCAAATGGCTCC ASXL1 NM_005171 GAAGGATCTTTATTGCCATGGGGAGATA TAACCTCCCCAAAAGGAGCCCCAAAGGACATTA ATF1 NM_005171 GAAGGATCTTTATTCCAATAAAAGTGTTTG TCATATAAGGAGTGAGCCCCAAAGA ATF3 NM_001674 ACAGATAAAAGAAGGAACATTGCAGAGCTA ACTATCCCACATGGATGCCCCAAA ATF5 NM_012068 GAGGACCTTTATTTATTCCAATAAAAGTGTTTG GTATTAAGGACTAGGACCCCTAA ATW1 NM_02293 CACCAACAGCAGCACCTAA TTCTAAGAGATACTTGAACGAGATACTTACAA BAG2 NM_002821 TAACCCAGCAGCACCGTA CAATTCTCTCTTGAGCGGGGCTATT BAG2 NM_002821 TAACCCAGGAGCACCGTA CAATTCTCTCTTGAGCGGGGCTAATTGA BAG2 NM_002821 TAACCCAGGAGCACCGTA CATTAAACTCAACCCAGCGGGCTATTGA BAG2 NM_002821 TAACCCAGGAGCACCTAA CATTAATACTAATGGGCCACCTCACCCAA BCCIP NM_03810 TCGCTCTCTGAGCAGATTCAA CATTAAACTCAACCAGGGGGATAATTCAG BCL11 NM_03112 TCACTCTTAGGGGAATGCA CACCAGATCAAGGGGGGATAAATTCAG BCL211 NM_001312 CACCCATAGCGGAAAGCATTA TAAGCAGGGGGATAAATTCAG BLC12 NM_001312	ASCL1	NM 004316	CGACTTCACCAACTGGTTCTG	TGGATGGGACTGGCCATAGC	
ASXL1 NM_015338 TGTATTGTGCCTTGTGGTGAGATA TAACCTCCCCAAAGAAGAGAGCCCCAAGGTATA ATF1 NM_001512 GAAGGATCTTTATTCCAATAAAGTGTTTG TCTATAAGGTGCTGCCAAGGTAAGAGAGAACTACTACAAAA ATF3 NM_001574 ACGATACAAGAGAGAGACTTTGCGAGGCTT ACTATCCCCATCTAGTGATGCCCCAAGT ATF3 NM_001574 ACGATACAAGAGAGAGACTTCTAGCAGGCT GTATTTTCAGTAGAGCCCCAAGTACCACATA ATF0 NM_002893 CACCAACAGCAGTGTAA TCTCAGAGGCAGCTGTAAGTCTCTTGAGCCGGGCTATT ATNN NM_002892 GCAACAAAATGCTGCAAGAGCAGATTCAATTA TTTGTATACAATAGGCCTTAAGCCCCCTA BAG3 NM_002893 GTCTGTTCCCCCAGTATTAGAAGCAGATTCAATTA CAACTTATCAGACGCCTTATCCCCCAGGATATTTCAAGTGTGGCCCTTATCTCCACCCA BCCIP NM_018014 TGGAGGACAGATACTTCAA CACCCAATGCTGTGA CACCAATCTATATTAGACCACGAG BCL11A NM_0018014 TCGAGGGCAGCTG CACCAATCTATATATAGCCCACGAG BCL11A BCL11A NM_0018014 TGGAGGCAGCTGTA TCACTTACTGAGGCTAAAGTCACACGAG BCL11A NM_0018014 TCGAGGCGCCTTA TCACCGTACAGCTGGGTAAAGTCACACGAG BCL11A NM_0018014 TCGAGAGCCCTTA TCACCGTACAGCTGGGTAAAATTCAG BCL11A NM_0018014	ASCL2	NM 005170	TGGTTAGGGGGCTACTGA	CAAGGTGTCCCAATGGCTCC	
ATF1 NN_005171 GAAGGATCTTTATTCCAATAAAAGTGTTTG TCATAAAGTGCTGCCAAGTCAACAGA ATF3 NN_012068 GAGGACCCTACGTGCTGCTA GTATTTCCATAGTGATGCGCCACCTA ATF3 NN_012068 GAGGACCCTACGTGCTGCTA GTATTTTCCATAGGAGAGGGGCTTCACCTT ATN1 NN_002373 CACCAACAGCAGGTGTAA TCTCATCAGCTTTTGAGCCAGGACTACTACAA ATXN2 NM_002381 TAACCCAGCAGCCCGTA CAACAAATGCTGAAAGCGAGATTCAATTA BAG2 NM_002381 TAACCCAGCAGCCCGTA CAATTTCTCCTTCAGCCGGGCTTTT BA228 NM_013420 AAGTGGCACAGAATGCTTAAAGTAGCGGA ACTTAAACTCACCCCTTATTTCCAACCA BCL11 NM_010141 TCGAGAGCCCTCTAAGTTCTGA TCTCTTACTGAGTGGGCACCTG AGAGTCCCACAGGCGCG BCL211 NM_00134250 GGAAGTTAAAGAGAATGA TCACTCTCAGCGGAGACCTG AGAGTCCCACAGGCACACACAG BCL31 NM_001342530 GGAAGTTAAAGGAATGTATTGAACATGTA TAAGTGTAAAGAGGAAATTCAAATACTGAGGG BHLHB9 NM_001342 CAAGCCTCCCCAGCCCTAA TAAGTCCTAGAGGAAAGGCACTTCAA BHLHB9 NM_001342530 GGAAGTGAAAGGCATTATTGAAACATGTA TAAACAAGTAAAATTAGGGCAACTCTCAA BHL1 NM_00134250 GGAAGTGTAAGAGAGCTTA T	ASXL1	NM 015338	TGTATTGTGCCTTGTGGTGAGATA	TAACCTCCCAAAAGAAGAGCTCCAAGTATA	
ATF3 NN_001574 ACAGATAAAAGAAGGAACATTGCAGAGCTA ACTATCCCATCTAGTGATGCCCCCAAA ATF5 NN_012068 GAGGACCCGTAGCTGCTA GTATTTTCAGTAGAGATGGGACTCATTA ATH5 NN_002873 CACCAACAGCGCTAG TCTCAGCTTTTTAGAGATGGGACTCATTA ATN0 NN_002828 GCAACAACAGCGCACCTAG TCTCAGAGTACCTGAAGGACTAGTTACATTG BAG3 NN_002821 TAACCCAGCAGCACCACTA CAATTATCCTCTTCTGGGGGCATT BAG3 NN_002821 TAACCCAGCAGCACCATA CAATTAAGGACTAGTTACATTGA BAG3 NN_002831 TAACCCCAGCAGCATA CAATTAATGCCTTTAGTGTCTCTCTTGGA BAG2 NM_002831 TAACCCCAGCAGCATA CACCAATCTATATAGGACTTACTTCACAGCGGGGGCT BAG2 NM_00380 AGTTGGACAGATTATGAATA CACCCAATCTATATAGGACTTACTTCACACG BCL11 NM_0018014 TCGAGAGGCAGCTG AGAAGTCCCAAACACAG BCL3 NM_00178 AGCTCCTCAGAGGCAGCTG AGAGTCCAAAGGGAAAGCTCAACAG BCL4 NM_00174 CAAGCCTCTCAACCCTA TAAGTGTTAAGGGACAACTCTAGTTAAATTCAG BHHE92 NM_001214 CAAGCCTCTCACCCCTA ATGTCCAGAGGAGACTCTAATTT BMP1 NM_001214 CAAGCCTCCTCACCCCTA	ATF1	NM 005171	GAAGGATCTTTATTCCAATAAAAGTGTTTG	TCATAAAGTGCTGCCAAGTCAACAGA	
ATFSNN_012068GAGGACCCGTAGCTGCTAGTATTTTCAGTAGAGATGGGGTTTCACCTTATW1NN_020273CACCAACAGCCACCTAGTCTCATCACTTTTTTGAGGAACTACTACAAGGBAG2NM_002821CACCAACAATGCTGAAAGCAGATTCAATTATTTGCATCACCACACACAAAGGGBAG3NM_002821TAACCCAGCAGCACCTACAATTCCTCTTGTAGGCCGGGCTATTBAG3NM_002821TAACCCAGCAGCACCTACAATTCCTCTCTTGAGCCGGGCTATTBAC8NM_002821TAACCCAGCAGCACCTACAATTCCTCTCTTGCAGCCGGGCTATTBAC9NM_002821TAACCCAGCAGCACCTACACTAAACTCACCCCTCTCCCCCCABC111NM_018014TCGAGAGCCCTTAAGTTCGACTCTTTAACGATGGGCCTCTGGBC1211NM_001919TCACTCTTCAGTGGGAATGATCACCGTACAGGTGGAAAAATTCAGBC1211NM_001919TCACTCTCCAGCAGAAGCACTATAAGCGCTAACGCGCBHHB9NM_001142530GGAAGTTAAAGAGATTATTGAAACAATGTATAAGCGTAAAGAGGCAAGCCTCAABC101NM_001142530GGAAGTTAAAGAGATTATTGAAACAATGTATAAACAGGTAAAATTAGGGCAAAGCCTCAABH1H89NM_001142530GGGATGTGGGTGCCCCTATAAACATTAAAAATTAGGCTTATTAAATTATTTBM14NM_00112CAAGCCTCCTCACCCCTATAAACATTAAAATTAGGCTATTAAATTATTTBM14NM_001200GGGTTGGGTGGCCCCTATAAAACTTACAAACTTAACTTGCCCAAACATTAAATTATTTAT	ATF3	NM 001674	ACAGATAAAAGAAGGAACATTGCAGAGCTA	ACTATCCCATCTAGTGATGCCCCAAA	
AT0H7NM_145178TTCCAGATGGCCACCTAGTCTCATCAGCTTTTTGAGGAACTACTACAAATXN2NM_002973CACCAACAGCAGTTGTAATCTCAGAGATACCTTGAACCAGAACTAACGGGBAG2NM_004281TAACCCAGCAGCAGCGTATCTTGAGACTACCTTGAACCAGAACTTTTGABAG3NM_004281TAACCCAGCAGCACCGTACAATTCTCTCTTGAGCCGGGCCTATTBAG2NM_013450AAGTGGACAGATACTTTCAAAGTGGAGCTGAACTTTAACTTCACCCTCTTCCACCCABCCIPNM_018014TCGAGGACCCTTAAGTTCTGACCACCATCTCTATATTAGCCTTATTCCACCABCL11ANM_018014TCGACGAGGCGCGGAAATGATCCTCTTCTGAGGGGGATAAATTCAGBCL3NM_001919TCACTCTCCCAGGAGGCGCGAGAGTCCCAGGGGGATAAATTCAGBCL3NM_001196CTCCCCCAAGGCTGCTGAACCTAGCCTACCGGGGAAAAGGCCACABCL3NM_001142530GGAAGTTAAAGAGGATTATTGAACAATGTATAAGCAGGAAAAGGCCAAGTCTCAAABMHHE9NM_001214CAAGCCCCCTCCACCCCTATAAACAAGGAAAACTCTATACAGTTAAAAATABM11NM_005180ATCAGCAACTTCTTGGTGGTGTCGGCTATCAACAAAGGAAAACTCTTAACAATTTTBMP6NM_00129GATGGGTGCGGCGCGCGCATCTCTGCATCAAAAAACTATCCCCCAAAAAATAACTTGCCTCCAACAACTCTACACCBMP6NM_00129GATGGGTGCGGCGCGCAATCTCTGCGCTAAAAAAACAATAACTTGCCTCCAAAAAAAA	ATF5	NM 012068	GAGGACCCGTAGCTGCTA	GTATTTTCAGTAGAGATGGGGTTTCACCTT	
ATXN2 NM_002973 CACCAACAGCAGTTGTAA TCTAGAGATACCTTGAAAGCAGATACTTAAGGG BAG2 NM_004282 GCAACAAATGCTGAAAGCAGATTCAATTA TTTGTATATCAATAGGACTAGTTACTTTGA BAG3 NM_004282 GCAACAAAATGCTGAAAGCAGATTCAATTA CATTCATCTCTGTAGCCGGGGAGTATT BAG3 NM_004280 AAGTGGACAGATACTTTCAAAGTGAGCTGA ACTTAAACTCACCCCTCTATTCCACCCA BC111 NM_013014 TCGACGCCCTTAAGTTGTGA CACCAATCTATATATAGCCTTATTCCACAA BC111 NM_0101191 TCACCTCTCAGTCGGAAATGA TCACCGTACAGGGGAGTAAATTCAG BC1211 NM_00114 TCGACGCAGCTG AGAAGTCCACAGAGGCCGC BC1211 NM_001142530 GGAAGTTAAAGAGATTATTGAAACAATGTA TAAGTGTTAAAGAGGAAAAGGCAAGCTCAA BHLHB9 NM_001142530 GGAAGTTAAAGAGAACTTATGAAACAATGTA TAAGTGTTAAAGAGGAAAAGGCAAGTCTCAA BHLHB9 NM_001714 CAAGCCTCACCCCTA TTAAACAAGTTAATGGGCTACTTCTAATT BHLB NM_001714 CAAGCCTCACCCCTA TGACTTACCAAACAACATTATT BMP4 NM_001200 GGATGTGGGTCGCGCTA TACTTCCCTAAACAACTTAACCACAC BMP4 NM_0012120 GATGGGTGGACGCCCTA ACTTCAACACCTTTATATATACCCACAC BMP4 NM_001229 GATGGGTGGACGCCCCAT ACTTTCCCTAACCACCACCCCCCCCCC	ATOH7	NM 145178	TTCCAGATGGCCACCTAG	TCTCATCAGCTTTTTGAGGAACTACTACAA	
BAG2NM_004282GCAACAAAATGCTGAAAGCAGATTCAATTATTTGTATATCAATAGGACTAGTTACTTTGABAG3NM_004281TAACCCASCACCGTACAATTCTCTTTGACGCGGCGCTATBA228NM_013450AAGTGGACAGATACTTTCAAAGTGAGCTGACATTCATCTTTGACCCGGGCTATTBC111NM_013801TCGAGGCCCTTAAGTTCTGACACCAATCTATATATAGCCTTATTCCACABCL11NM_00111TCACTCTTCACTCGGAAAATGATCACCGTACGGGGCAGCAGCGBCL21NM_001178AGCTCCAGGAGGCAGCTGAGCAGGCCAGAGGGCAGCACACAGGBCL3NM_001176CTCCCCCAAGCCTGCTGCAACCTAGCTCACTCTCTCTCTCAAAAGCGCCBHLB9NM_0011203GGAAGTAAAGCAATTATGAACAATGTATAACGTAAAGGGCAAAAGCCAAGCCBHLB9NM_0011203GGAAGTAAAGGCAATATGGAACAATGTATAAACAAGTAAAATGAGGCTACTTCTAATTBIC01NM_001214CAAGCCCCCTCACCCCTAATGTCCAGTGAAAAGCCAAATATATTTBM11NM_001200GGGTGTGGGGTGTCGCTATCACCTATCAAATAACTTGCCCTGCCCGCAAATTTTGCATCAACAACTCTTACACCCBMP6NM_00129GATGGTGAATCCCAAGATGGCAAAATCTGGATGTGATATAATCACACTTTACCCCBMP81NM_001299GATGGTGAATCCCAAGATGGTAAAATCTGGATGTGATATAAACAAAGGTAATTAACCACCTTTACCCCBMP81NM_003972CCTGGAAAATTTATGCATCTCCAAGAAATTACAAGGAAACACAAAAGGTAATTAACCACCTTTCAAAAAAAA	ATXN2	NM 002973	CACCAACAGCAGTTGTAA	TCTAGAGATACCTTGAACCAGAACTAAGGG	
BAG3NM_004281TAACCCAGCAGCACCGTACAATTCTCTCTTGAGCCGGGCTATTBA228NM_013450AAGTGGACAGATACTTTCAAAGTGAGCTGAACTTAAAACTCACCCCTCTCCACCCABCCIPNM_0138450GTCTGTTTCCCCCAGTATTAGAATACACCAATCTATATATAGCCTTATCCCACABCL11ANM_018014TCGAGAGCCCTTAAGTTCTGATCTCTTACTGATGGGCCTCTGGBCL21NM_001191TCACCTTTCCGCTGGATGGATCACCGTGCACAGGTGGACACAGBCL3NM_005178AGCTCCAGGAGGCGGGACCTAGCCCGACAGGGACACACGBCL4NM_001142530GGAAGTTAAAGAGCTTATTGAAACAATGTATAAAGCAGAAAATTAGGGCTACTTCAATBHLH82NM_001142530GGAAGTTAAAGAGAATATTTGAACACATGTATAAAGCAAGAAAATTAGGGCTACTTCAAATBHLH822NM_001142530GGAAGTTGAGGGAGCCCTTATAAAGCAAGAAAATTAGGGCTACTTCAAATBM1NM_001142CAAGCCACCTCCTCACCCCTAATGTCCAGTGAAGACCTTCTTTAAAAATABM1NM_001200GGGTTGTGGGTGCCGCTATGACTTAACAACATAACTTAGCCACATTTTBMP2NM_001218AAGAGCTTGTGGATGCCCACTAACTTTGCATCAACACTTAACCACBMP81NM_001218AAGGCTTGTGGTGCCCACTAACTTGCATCAACACTTTAGCCTCCAAAAAAAABMP81ANM_00299GGATGTTGGGTGCCCCATAACTTGACACAGAGCTCCACTTTAGCCBMP81ANM_000393GGACACAATTACAACTAAAAATATATCTAACAAAGCAAGACTCCACTCTCCAAAAAAAAABTAC1NM_000393GGACACAATTACAACTAAAAATATATCTAACAAAGCAAGACTCCACACTCTCCAAAAAAAAABTAC1NM_000393GGACACAATTACAACAAAAGGGAGGGAGGAAAATTACTGGGGAGCAGAATTACACCACGGAAGGCTCACCTTGABTAC1NM_0012393AATGGGCAGCACACTCAAAAAAAATATCCAAGAAAAAAAA	BAG2	NM 004282	GCAACAAAATGCTGAAAGCAGATTCAATTA	TTTGTATATCAATAGGACTAGTTACTTTGA	
BA22BNM_013450AAGTGGACAGATACTTTCAAAGTGAGCTGAACTTAAACTCACCCTTTCCACCCABC21PNM_078469GTCTGTTCCCCCAGTATTAGAATACACCAATCTATATATAGCCTTATTCCACAABC111ANM_018014TCGACGCCCTAAGTATGAATACACCATCTATATATAGCCTTATTCCAGBC121NM_001191TCACTCTTCAGTGGGAAATGATCACCGTACAGGTGGATAATTCAGBC121NM_00112530GGAAGTTAAAGAGATTATTGAAACAATGTATAACGGCTACTCCAAAAGACGCCBHLHB9NM_00112530GGAAGTTAAAGAGATTATTGAAACAATGTATAAGTGTTAAGAGGAAAAGGCAAGTCTCAABHLHE2NM_001214CAAGCCTCCTCACCCCTAATGTCCAAGGAAAAGGCAAGTCTCAAATTABIN1NM_001200GGGTTGTGGGTGTCGCTATGACATGACAGAAAAGCCTTGACCCCGCAAAATTTTBMP2NM_001200GGGTTGTGGGTGTCGCGTATGACTTATCAAAATTAACTGCCTGCAAAATTTTBMP4NM_130850GGATGTGGGTGCCGCTGATACTTCCTGTCCCTACAACTTAACCACBMP6NM_001218AAGAGCTTGTGGAGTGCCACTAACTTTGGATCCAAACTTAATCAACCACCBMP6NM_00299AATTGGGCAGATGTGAACAGGAAATCAAAAGGTATTTAAGCTGCCTBRCA1NM_00299AATTGGGCAGATGTGGACAGGAAATCCAAACGAATTTATTATTTTTATGTTBRCA2NM_00059GGACACATTACAACAAAGGTGAACATCACAAAGCAAGCTCCACCACAAAAAAAAAAAAAAAAAAAA	BAG3	NM 004281	TAACCCAGCAGCACCGTA	CAATTCTCTCTTGAGCCGGGCTATT	
BCCIPNM_078469GTCTGTTCCCCCAGATTAGAATACACCAATCTATATATAGCCTTATTCCACAABCL11NM_018014TCGAGAGCCCTTTAGTTCTGATTCTTACTGATGTGGCCCTCTGGBCL211NM_001917TCACTCTTCATGTGGAATGATCACCGTACAGGTGGACAATATTCAGBCL211NM_001706CTCCCCAAGGCAGCTGAGAAGTCCCAGAGGGAAAAAGCACACAGBCL3NM_001705CTCCCCAAAGCCTGCTGAACCTAGCCTCATCTCAAAAGAGCAGBHHB9NM_001142530GGAAGTTAAAGAGATTATTGGAACAATGTATAAGGTGTAAGAGGAAAAGGCAAGTCTCAABHHB22NM_001142CAAGCCTCCTCACCCCTATAAACAGTGATAAATAGGCATCTTAATTBICD1NM_001714CAAGCCTCCTCACCCCTAATGCTCAGTGAAAAGAGCATCTTATTTBMP1NM_001210GGGTTGTGGGTGCGCGCTGTTAAAGTTTTTAGCCTTTAAAAAATATTTTBMP2NM_001200GGGTTGTGGGTGCGCCGCTGATACTTCCTGCTCCACACACTTTAACCACBMP4NM_003850GGATGTGGGTGCCGCTGATACTTCCTGCTCCACACACTTAACCACBMP41NM_003299GATGGTGGATGCGCACTAACTTGCATCCAAACACTCTTAACCACBMP81ANM_007299AATTGGCAGATGTGGACAGGAAATACAAAAGGTATTTAAGCTGCTBRCA1NM_000399GGACACATTACAACTAAAAATATTCTCACAGGAAATACAAAAGGTAATTAAGCTGCATBRCA1NM_000399GCTGGAAAATTGCATCGCAAGGTGACGAAAATTACCTGGAAAATTAACAAATTATCAACTCAAATATACAACTTCGAAGAGGTGAGGAAAATTABRCA1NM_003972CCTGGAAGCTGAGGAAGGTGACGTTAAGCTCCAAGACTCAATATACTGGATGGGBZvu1NM_014670ATTGAACCAAGAAGGTGAAGAAATTACCTGGAATCAAACAGAGAGGGGGGGGAGAAAATTACCTGAATACGAAGCTGAAGAAGGTGAACTAAATTTGACACACAGGCAAAATCGAAAGGTGAGGAAAGCCCTACCTGGGATCAAACCGAAGGTGAGAAAAGCACCAACN	BAZ2B	NM 013450	AAGTGGACAGATACTTTCAAAGTGAGCTGA	ΑCTTAAACTCACCCTCTTCCACCCA	
BCL11ANM_018014TCGAGAGCCCTTAAGTTCTGATCTCTTACTGATGTGGCCTCTGGBCL21NM_001191TCACTCTTCAGTCGGAAATGATCACCCTACGGTGGATAAATTCAGBCL3NM_005178AGCTCCAGGAGGCAGCTGAGAAGTCCCAGAGTGACACACAGBCL4NM_001142530GGAAGTTAAAGAGATTATTGAAACAATGTATAAGTGTTAAGAGGAAAAGGCAGTCTCAABHLH82NM_01142530GGAAGTTAAAGAGCCTTATAAACAAGTAAATTAGGGCTACTTCAAATTABHLH822NM_001214CAAGCCCCCCCCCCAATGTCCAGTGAAGAAATTAGGGCTACTTCAATTABM1NM_001214CAAGCCTCCTCACCCCTAATGTCCAGTGAAGAACTTAGTGAAAAATABM11NM_001210GGGTTGTGGGTGCCGCTATTAAAGTTTTTAGCCTTTTAAAAATATTTTBMP2NM_001200GGATGTGGGGTGCCGCTGATACTTCCTGCTCCAACCTTAACCCACBMP6NM_001218AAGAGCTTGTGGATGCCACTAACTTTCCATCCAAACTTAACCACBMP8NM_001229GATGTGTGAATCCCAAGATGTGAAAAATCTGGATGGTATAATACACATTTATAGCTCCCACABRA1NM_00229AATGGGCAGATGTGAGACAGGAAATACAAAAGGCAAGCTCCATCCCCAAAAAAABTA1NM_003972CCTGGAAAATTACACAAAAAAAAAAAAAAAAAAAAAAAA	BCCIP	 NM_078469	GTCTGTTCCCCCAGTATTAGAATA	CACCAATCTATATATAGCCTTATTCCACAA	
BCL2L1 NM_001191 TCACTCTTCAGTCGGAAATGA TCACCGTACAGGGGGATAAATTCAG BCL3 NM_005178 AGCTCCAGGAGGCAGCTG AGAGTCCCAGAGTGACACAG BCL6 NM_001706 CTCCCCAAAGCCTGGA ACCTAGCTCAACGCAGCAGCG BHLHB9 NM_001123530 GGAAGTTAAAGAGATTATTGAAACAATGTA TAAGTGTTAAAGAGGAAAAGGCAAGTCTCAAT BHLHE2 NM_00174 CAAGGTCCCCCCTA TAAGCGTAAATTAGGGCAACTCTCAATT BID1 NM_005180 ATCAGCAACTTCTTCTGGTG TTAAAGTTTTAGCCTTTAAAAAATATTTT BMP2 NM_00174 CAAGCTTCTGCGTGCCCTA TGACTTATCAAAATAATTGCCCGCATTTTAAAAATATTTT BMP2 NM_001718 AAGAGCTTGTGGGTGCCCCTA TGACTTATCAAATTACACACCAACTTTTACCACC BMP4 NM_001718 AAGAGCTTGTGGATGCCACTA ACTTTGCATCCAACACTCTTCACCC BMP81 NM_001718 AAGAGCTTGTGGATGCACATG CATGTGATATACACACTTTTACCCCC BMP81 NM_001718 AAGAGCTGTGTGAT CATGTGATATACCACATTTTTTAGCATCTCACC BMP811 NM_000329 GGACACAATTACAACTAAAAATCTG GATGGATTAATGCACACACCCCT BRCa2 NM_000329 GGACACAATTACAACTAAAAAATATAACAAATATACAACAAAAAA	BCL11A	NM 018014	TCGAGAGCCCTTAAGTTCTGA	TCTCTTACTGATGTGGCCTCTGG	
BCL3 NM_005178 AGCTCCAGGAGGCAGCTG AGAAGTCCCAGAGTGACACACAG BCL6 NM_001706 CTCCCCAAAGCCTGCTGA ACCTAGCCTCATCTCAAAAGCACGC BHHB9 NM_001142530 GGAAGTTAAAGAGATTATTGAAACATGTA TAAGGTGTAAAGGAAAAGGCTTCA BHHHE2 NM_01142530 GGAAGTTAAAGAGAATTATGAACATGTA TAAACAAGTAAAATTAGGGCTACTTCTAATT BICD1 NM_001714 CAAGTCCCCCCCCCACCCCTA ATGTCCAGTGAAGAAACTCTAGGTTAAAAATA BM11 NM_005180 ATCAGCAACTTCTTCTGGTTG TTAAACAATAACTTGCCCTACAACTAAATTTTT BMP2 NM_001200 GGGTTGTGGGTGCCGCTA TGACTTATCAAATAACTTGCCCAACATTTTT BMP4 NM_01380 GAATGTGGGTGCCGCTGA TACTTCCTGCCTACACCTCAACTTAACCAC BMP5 NM_001718 AAGAGCTTGTGGATGCCACTA ACTTTGCATCAACACACACTTTATTTACCAC BMP6 NM_001739 AATGGCAAGTGTGTGAA CAGGAAATACACAACACACCAC BMP71A NM_004329 GAGTGTGGCAAGTGTGTGAA CAGGAAATACACAAAAAAAAAAAAAAAAAAAAAAAAAAA	BCL2L1	NM 001191	TCACTCTTCAGTCGGAAATGA	TCACCGTACAGGTGGATAAATTCAG	
BCL6NM_001706CTCCCCAAAGCCTGCTGAACCTAGCCTCATCTCAAAAGAGCGCBHLHB9NM_001142530GGAAGTTAAAGAGATTATTGAAACAATGTATAAGTGTTAAGAGGAAAAGGCAAGTCTCAABHLHE22NM_01142530GGAAGTCCCCCCACCCCTATAAACAAGTAAAGAGGCTACTTCTAATTBHLHE22NM_001714CAAGCCCTCCTCACCCCTAATGTCCAGTGAAAACTCTAGTTAAAAATABMI1NM_001714CAAGCCTCCTCCACCCCTAATGTCCAGTGAAACTCTAGTTAAAAATABMI1NM_001200GGGTTGTGGGTGCGCTATGACTTATCAAATAACTTGCCTGCAAATTTTBMP2NM_001200GGGTTGTGGGTGCCCCTATGACTTATCAAATAACTTGCCTGCAACCCCBMP4NM_01218AAGAGCTGGTGGATGCCACTAACTTTCCATCCAACACTCTTAACCABMP6NM_001718AAGGCTGGATGCCACTAACTTTGCATCCAACACTCTTAACCABMP71ANM_00329GATGGTTGAATCCCAAGATGTAAAAATCTGGATGTGATATAATCACATTTATTTTATGTTBRCa1NM_0007299AATTGGCAAGATGTGTGACAGGAAATACAAAAGGATTCTAACCAAAAAAAABTAF1NM_0003972CCTGGAAATTTTAGCATTCTCTCAAGTATAAAAAAATATTCAACTCAAAAAAAABTAF1NM_014670ATCTGAAGCTGAAGAGGGAGACTGTTTAGCTACACGCCAGGAAACGCACCND3NM_01136017GATGCAAGCCAATCGGAAGGGGAGGAAAATTACTGGGGTTGACCAGGAAACGCAACCND3NM_00136017GATGTCAAGCCATACACCTGAGGAACTGACTATATTGGATCAACCACAGGGAACCND2NM_001789TACAGTGGTCGGAGGAAACCTAAATCTTGCAAATCTGAAGAAGGCACATGCCNL0NM_0010299ACAGTGGTCGCGGGGAACTGTGTGTGTGTAACAGCATGACCTTGATCDK12NM_001360AGAACCACCAGGAAACCTAAATCTTGACCAGGCAGGAAACCTTAACCTCGGATCGCAGAGAGCCCTACTGTGGTGTCTGCACAGGCTGGGGCGGGTGA	BCL3	NM 005178	AGCTCCAGGAGGCAGCTG	AGAAGTCCCAGAGTGACACACAG	
BHLHB9NM_001142530GGAAGTTAAAGAGATTATTGAAACAATGTATAAGTGTTAAGAGGAAAAGGCAAGTCTCAABHLHE22NM_152414ACAGTGCACCGGAGAGCCTTATAAACAAGTAAATTAGGGCTACTTCTAATTBICD1NM_001714CAAGCCTCCTCCCCCCTATTAAAGAGAGAAAATTAGGGCTACTTATTAAAAATABMI1NM_001718ATCAGCAACTTCTTCTGGTTGTTAAAGTTTTTAGCCTTTTAAAAATAATTTTBMP2NM_001718AAGAGCTGGGGTGCCGCTGATACTTCCTGTCCCACAACTTAACCACBMP4NM_001718AAGAGCTTGTGGATGCCACTAACTTTCCTGTCCAACACTTTAACCACBMP6NM_001718AAGAGCTTGTGAGTGCCACTAACTTTGCATCCAAACTTTATTTTATGTTBRCA1NM_00329GATGGTTGAATCCCAAGATGTGAACAGGAAATACAAAAGGTATTTAAGCTGCCTBRCA2NM_000392GGACCAATTACAACAACTATACAAAATTATCTAACAAAGCAAGACTCCACAAAAAAAAABTAF1NM_0003972CCTGGAAAATTTAGCATTCTCTCAAGTATAAAAAAATATTCAACTCAAAAAAAAABZW2NM_0114670ATTCGAAGCGGAAGGGGAGAAATTACTGGGATTACAAGAGGGGAGGGGBZW2NM_01136017GATGTCACAGCCATACACCTGAAGACTCTGACCACGCCAGGGAACCND3NM_00136017GATGTCACAGCCATACACCTGAGACTCTGACACCCCGGAGAACACCTGCCND3NM_001789TACAGTCGTCGAAGAGGTAATCCGGAGGATTCCTTGCCCATATACTGGATCAGACCACCTGCDKN12NM_00075CTACATAGGAGAAGCTCTGACTGTGCATATACAGGACACCCTGACCCTGCDKN14NM_00075CCACATAAGGAGAAGCCTCTACTGTGCATATACTGGATCAACCACAGTTTTCDKN2NM_001789TACAGTCGTCGAGAGAGCTCCAGATTCTCTGACAACCACCCTGGACCCCGCTGCDKN14NM_000075CTACATAAGGAGAAGCCCTACTGTGCTTATATTGGACAACCACCAGGATTCCAGGCDKN2NM_001289 <td>BCL6</td> <td>NM_001706</td> <td>CTCCCCAAAGCCTGCTGA</td> <td>ACCTAGCCTCATCTCAAAAGACGC</td>	BCL6	NM_001706	CTCCCCAAAGCCTGCTGA	ACCTAGCCTCATCTCAAAAGACGC	
BHLHE22NM_152414ACAGTGCACGGAGAAGCCTTATAAACAAGTAAATTAGGGCTACTTCTAATTBICD1NM_001714CAAGCCTCCTCACCCCTAATGTCCCAGTGAAGAACTCTAGTTAAAAATABMI1NM_001700GGGTTGTGGGTGCCGTGTTAAAGTTTTTAGCATCTAATTTTBMP2NM_001200GGGTTGTGGGTGCCGCTATGACTTATCAAATAACTTGCCTGCAAATTTTBMP4NM_130850GGATGTGGGTGCCGCTGATACTTCCTGTCCCTACAACTTAACCACBMP6NM_001718AAGAGCTTGTGGATGCCACTAACTTTGCATCCAACACTTCATCCCBMP6NM_001718AAGAGCTTGTGGATGCCACTAACTTTGCATCCAACACTTTATTTTATGTTBRCA1NM_004329GATGGTGAATCCCAAGATGTAAAAATTGGATGTGAATTAAACGTACCCAACGTGCCTBRCA2NM_00059GGACACAATTACAACTAAAAAATATTCTAACAAAGCAAAAGGTACTTCCCAAAAAAAABTAF1NM_003972CCTGGAAAATTTACAACTAAAAAATATTCTAACAAAGCAACACAAAAATATTCAACTGAAAAAAABZW2NM_014670ATCTGAAGCGGAAGGGGAGGGACTGGGATTACAGGTGGAGGAAAATTACTGGAATAGCAATCGGAATGGGAAGGGGAACTCTGACCAGGCAGGGAAACCND3NM_001136017GATGTCACAGCCATACACCTGTAGGAACTGACTATATTTGGGTCAGAGACCATGCCN2NM_001380CTTCTCCAAGAAGGTAACCTAAATTTTTGCACACACCTCAAACACCACAGGAAACCTAACDKN1NM_00075CTACATAAGGATGAAGGTAATCCGGAGGTGATCCTGGTGTGGCTAGAGACCCTTCDKN1NM_00189TACAGTCTCCGAGGAGAACCCTACTGTGCTGTTGTTTTTGCAGCACACCTGGCGGGGCDKN1NM_00189CTTCTCCAAGAGGAGTCCTGATCTTGCAAGAGGCTGCCGTGGACDKN1NM_00180ATGGGGCCGCGGGGACCCAGGCCCAGGCCAGGCCAGCCCAGCDKN1NM_00180ATGGGGCAGGCTGCGGGGACCCAGGCCCAGCCCAG <td< td=""><td>BHLHB9</td><td>NM_001142530</td><td>GGAAGTTAAAGAGATTATTGAAACAATGTA</td><td>TAAGTGTTAAGAGGAAAAGGCAAGTCTCAA</td></td<>	BHLHB9	NM_001142530	GGAAGTTAAAGAGATTATTGAAACAATGTA	TAAGTGTTAAGAGGAAAAGGCAAGTCTCAA	
BICD1NM_001714CAAGCCTCCTCACCCCTAATGTCCAGTGAAGAACTCTAGTTAAAAATABMI1NM_005180ATCAGCAACTTCTTCTGGTTGTTAAAGTTTTTAGCCTTTTAAAAATATTTTBMP2NM_001200GGGTTGTGGGTGTCGCTATGACTTATCAAATAACTTGCCTGCAATTTTBMP4NM_0130850GGATGTGGGTGCCGCTGATACTTCCTGTCCTACAACTTAACCACBMP4NM_001209GATGTTGGATGGATGCCACTAACTTTGCCTACAACACTTAACCACBMP6NM_001718AAGA6CTTGTGGATGCCACTAACTTTGCATCCAACACTTTATTTATGTTBRP61NM_004329GATGGTTGAATCCCAAGATGTAAAAATCTGGATGTGATATAATCACATTTATTTTATGTTBRCA1NM_00059GGACACAATTACCACAGATGTAAAAATATATCTAACAAGCAAAGGCTCCATCTCCAAAAAAAAABTAF1NM_000392CCTGGAAATTTATGCATCTCAAGATATAAAAAAATATTCCAACACCAGAATTACCGAAABZW1NM_014038AGAATCCGAAAGGTGAGGAAAGTGATTTAGCTACACGAGATTACAGGTGAGGCAGAATAGCAS21NM_01136017GATGTCACAGCCATGGAAGAGGTGAGGAAAATTACTGGGATTACAGGTGAGGCAGAAAGCCND3NM_00138017GATGTCCAAGCCATGAGGAAACACTAAATTTTGCAACACCACGGAAACACCTGCDK4NM_00075CTACATAAGGATGAAGGTCATGATCTTGCAAATCAATCTGGATCACCTCDKN1CNM_001289GTCTCCCAAGAAGGCTCTGATCTGGGCCAGGCCAGCCAGCDNN_001800ATGGTGGCCCCGCGTGATGGGCCAGGCCACACCAGCDNN_001800ATGGTGGCCCCCGCTGTGACCCCAGCTCACACACCTGCDKN12NM_001804GAAAGAGGAGCTCTGAGGAGGCTGTCTCCAAGGCCDNF1NM_001804GAAAGAGGAGTTCTGCCATAGTGGGCAGCCACCATTTTTACGTACDN2NM_001265CCCAACAAACCATCGTAAGGAGAGCCCTACTGGGAGGCTGTCCCACCTCDN2 <t< td=""><td>BHLHE22</td><td>NM_152414</td><td>ACAGTGCACGGAGAAGCCTTA</td><td colspan="2">TAAACAAGTAAATTAGGGCTACTTCTAATT</td></t<>	BHLHE22	NM_152414	ACAGTGCACGGAGAAGCCTTA	TAAACAAGTAAATTAGGGCTACTTCTAATT	
BMI1NM_005180ATCAGCAACTTCTTCTGGTTGTTAAAGTTTTTAGCCTTTTAAAAATATTTTBMP2NM_001200GGGTTGTGGGTGCCGCTATGACTTATCAAAATAACTTGCCGCAATTTTBMP4NM_130850GGATGTGGGTGCCGCTGATACTTCCTGTCCCTACAACTAACCACBMP6NM_001718AAGAGCTTGTGGATGCCACTAACTTTGCATCCAACACTCTTAACCACBMP81NM_004329GATGGTTGAATCCCAAGACTGTAAAAATCTGGATGGTATAATCACACTTTATTTTATGTTBRCA1NM_007299AATTGGGCAGATGTGTGACAGGAAATACAAAAGGTATTTAAGCTGCCTBRCA2NM_00059GGACACAATTACAACTAAAAAATATATCTAACAAAGCAAGACTCCACTCCAAAAAAAAAABTAF1NM_003972CCTGGAAAATTTACAACTACTACTCTCCAAGTATAAAAAAAATATTCAACTCAAATATACTGAABZW1NM_014670ATCTGAAGCTGAAGAAGGTGAGCTGTTTAGCTACACCAGAATTCCTGTGTAGGGGGBZW2NM_014670ATCCGAACTGGAAAGAGTGAGAGTGTTTAGCTACACCAGGAGAAATAGCAS21NM_017766CTCCAGTTCCAGGAGAAGGAACTCTGACCAGGCCAAGGAGAGGCCND3NM_00136017GATGTCACAGCCATACACCTGAGGAACTGACTATATTTGGACCAGGAAACACTACDC25ANM_00075CTACATAAGGATGAAAGCCTAATCTTGCAAAACAACCACCAGGAAACACTAACDK41NM_000389CTTCTCCAAAGAGGTAACCCTGATCGTGTGTTTTTGCAGACAGCCAGGCCAGCDKN12NM_001800ATGGGGCCCGCTGGAGGAAGCCCTACTGTGGTTTTCCAGGACGAGCCDKN20NM_001289GCCACAAAACTCTCAATAATCATCAAGAGAGAGAGCTCAGCTCDKN12NM_001804GAAAGAGGCCTGGGTGATGGAGGCCGACCAGCCCAGCCAGCDKN20NM_001804GAAAGAGGCCCCGAGTGGTGGAGGCCGCCCCCCGCGTGACDKN20NM_001804GAAAGAGGCCTGGAGCTGATGGAGGCCGCCCCC	BICD1	NM_001714	CAAGCCTCCTCACCCCTA	ATGTCCAGTGAAGAACTCTAGTTAAAAATA	
BMP2NM_001200GGGTTGTGGGTGTCGCTATGACTTATCAAATAACTTGCCTGCAATTTTBMP4NM_130850GGATGTGGGTGCCGCTGATACTTCCTGTCCCTACAACTTAACCACBMP6NM_001718AAGAGCTTGTGGATGCCACTAACTTTGCATCCAACACTCTTCACCBMP81ANM_004329GATGGTTGAATCCCAAGATGTAAAAATCTGGATGTGATATAATCACAATTATTTTATGTTBRCA1NM_000329AATTGGGCAGATGTGTGACAGGAAATACAAAAGGTATTTAAGCTGCCTBRCA2NM_000059GGACACAATTACAAATATATCTAACAAAGCAAGACTCCCATCTCCCAAAAAAAAABTAF1NM_003972CCTGGAAAATTTATGCATTCTCTCAAGTATAAAAAAATATTCAACTCAAATATACTGAABZW1NM_014670ATCTGAAGCTGAAGAAGGTGACTGTTTAGCTACACCAGGAATTCGTGTAGGTGGBZW2NM_01136017GATGTCACAGCAGAGAGGGACTCTGGCCAGGGAACCND3NM_001136017GATGTCACAGCCATACACCTGAGGGAACTGACTTATCAGGTGAGCAGGAACCND3NM_001136017GATGTCACAGCCATACACCTGAGGAACTGACTATATTGGGTCAGAGACCATGCDC25ANM_001789TACAGTCGTCTGAAGAAGCTCTGATCTTGCCAATCAACTCAAACTCACACTCDK11ANM_000389CTTCTCCCAAGAGGAAGCCCTACTGTTGTTTTTTCGACACACCACAAGTTTTTCGTTTCDKN12NM_001800ATGGTGGCCCGGCGGATGGGCCAGGCCAGCCAGCDNFNM_00129954CCCAAAACAGAGCTCTGACCGAGGCCGACCACCTCDNFNM_001289CCCCACCCGCTGTGAGAAATGTTTTTCCCAAGCACTCDNF1NM_207327CCCGGTTCTCGGACGTGATGGGCCAGGCTGTCTCCAACCTCDNFNM_001804GAAAGAGGCTCTGAGCTTACAAAATGGACTCACCTCDNF1NM_207327CCCGGTCACCCAGTGAGACTGGAGCCACACATTTTTACGTACDNF1NM_207327 </td <td>BMI1</td> <td>NM_005180</td> <td>ATCAGCAACTTCTTCTGGTTG</td> <td colspan="2">TTAAAGTTTTTAGCCTTTTAAAAATATTTT</td>	BMI1	NM_005180	ATCAGCAACTTCTTCTGGTTG	TTAAAGTTTTTAGCCTTTTAAAAATATTTT	
BMP4NM_130850GGATGTGGGTGCCGCTGATACTTCCTGTCCCTACAACTTAACCACBMP6NM_001718AAGAGCTTGTGGATGCCACTAACTTTGCATCCAACACTCTTCACCBMP6NM_004329GATGGTGAATCCCAAGATGTAAAAATCTGGATGGTGATATAATCACATTTATTTTATGTTBRCA1NM_007299AATTGGGCAGATGTGTGACAGGAAATACAAAAGGTATTTAAGCTGCCTBRCA2NM_000059GGACACAATTACAACTAAAAAATATATCTAACAAAGCAAGACTCCATCTCCAAAAAAAAAABTAF1NM_013972CCTGGAAAATTTAGCATTCTCTCAAGTATAAAAAAATATTCAACTCAAATAATACTGAABZW1NM_014670ATCTGAAGCTGAAGAGGTGAGGGAGAGATGGTTTAGCTACACCAGAATTCTGTGTAGGTGGBZW2NM_014670ATCTGAAGCTGAAGAGGTGAGGAAAATTACTGGGATTACAGGTGTGAGCAGAATAGCAS21NM_011766CTCCAGTTCCAGGAGAGGTGAACTCTGACCAGGCCAGGGAACCND3NM_001136017GATGTCACACCCAGGCATACACCTGTAGGAACTGACTATATTTGGGTCAGAGAACCATTCDC25ANM_001789TACAGTCGTCTGAAGAAGGTAATCCGGAGTGATCCTCGTGCCATATACTGGATCACCTCDKN1ANM_000389CTTCCCAAGGAGAGGCCTACTGTGTTTTTTGCAGCAGCACACCCDKN2CNM_001800ATGGTGGCCCCGCTGTGATGGGCCAGGCCAGCCAGCDKN2DNM_001800ATGGTGGCCCCGCTGTGACCCAGGCTCACCCAGCCAGCDNF1NM_00129954CCCAAAACAGAGCTCTGATGGGGCCAGCAGATTCTCAAGGATTCCCAGTACDNF1NM_0012804GAAAGAGGAGTTCTGCATAGATCTTCCAAGAGATTCCACGTCDX1NM_001265CCCACCGTCCCCGTGAAGAGCCACGCATTCCAAGGCCDX1NM_001265CCCACCGTCCCAGTGAGAGCCACGCATTCCAAGGCCDNF1NM_0122075CTCAATAACAACCATCGTAAGAATGACTGACCCAGCTAGATTTTTAGTAGAGG	BMP2	NM_001200	GGGTTGTGGGTGTCGCTA	TGACTTATCAAATAACTTGCCTGCAATTTT	
BMP6NM_001718AAGAGCTTGTGGATGCCACTAACTTTGCATCCAACACTCTTCACCBMPR1ANM_004329GATGGTGAATGCCAAGATGTAAAAATCTGGATGGTGATATAATCACATTTATTTTATGTTBRCA1NM_007299AATTGGGCAGATGTGTGACAGGAAATACAAAAGGTATTTAAGCTGCCTBRCA2NM_00059GGACACAATTACAACTAAAAAATATATCTAACAAAGCAAGACTCCATCTCCAAAAAAAAABTAF1NM_014670ATCTGAAGCTGAAGATGTGACTGTTTAGCTACACCAGAATTCGAATATACGAABZW1NM_014670ATCTGAAGCTGAAGAAGGTGACTGTTTAGCTACACCAGGACAGAATAGCCAS21NM_014670ATCTGACGAGAGGTGAGGAAAATTACTGGGATTACAGGTGGAGCAGAATAGCCND3NM_001136017GATGTCACAGCCATACACCTGTAGGAACTGACTATATTTGGGTCAGAGACCATGCCNE2NM_057749GAAAAACACACCAGGAAAACCTAAATTCTTGCACACACCTCTAATAACAACACAGAGTCACCTCDK4NM_00075CTACATAAGGATGAAGGTAATCCGGAGTGATCCTCGTGTCCATATACTGGATCACCTCDKN1ANM_001262GGGAGCCCACAAATCTCAATATTCTTTTTTTGCAGCAGGCAGCACTCGTTTTTCDKN2CNM_001800ATGGTGGCCCCGGTGATGGGCCCAGGCCAGCCAGCDNF1NM_001804GAAAGGGGCTCTGAAGAACTTTTTTCCAGAGAGAGTATGTCTAGTTTTCCAGGCDNF1NM_00129954CCCAAAACAGAGCTCTGATGGAGCCTCCACCTGCDNF1NM_001205CTCAATAACAAGGAGTCATGAGCTACAAAAGGAGCTCTCAAGGAGCDX1NM_001205CTCAATAACAAGGACTCGCATAGCTTACAAAATGGACTCACACTTTTACGTACDK12NM_001804GAAAGAGGAGTTTCTCCGAAGCCAGGCTGCCCCCGCCDK12NM_001804GAAGAGGAGCTCGGAGCCAGGCTGCCCCCGCDNFNM_00120954CCCCACCGCGCGGAGAGCCAGCCTCACCCAGCCTCCCCGC <td>BMP4</td> <td>NM_130850</td> <td>GGATGTGGGTGCCGCTGA</td> <td colspan="2">TACTTCCTGTCCCTACAACTTAACCAC</td>	BMP4	NM_130850	GGATGTGGGTGCCGCTGA	TACTTCCTGTCCCTACAACTTAACCAC	
BMPR1ANM_004329GATGGTTGAATCCCAAGATGTAAAAATCTGGATGTGATATAATCACATTTATTTTATGTTBRCA1NM_007299AATTGGGCAGATGTGTGACAGGAAATACAAAAGGTATTTAAGCTGCCTBRCA2NM_00059GGACACAATTACAACTAAAAAATATATCTAACAAAGCAAGACTCCATCTCCAAAAAAAAABTAF1NM_003972CCTGGAAAATTTTATGCATTCTCTCAAGTATAAAAAAATATTCAACTAAAAAAAAABZW1NM_014670ATCTGAAGCTGAAGAAGGTGACTGTTTAGCTACACCAGAATTCTGTGTAGGTGGBZW2NM_014038AGAATCCGAATCGGAAGGTGAGGAAAATTACTGGGATTACAGGTGGGACAGAAAGCAS21NM_01766CTCCAGTTCCAGGAGAGTGAACTCTGACCAGGCCAGGGAACCND3NM_001136017GATGTCACAGCCATACACCTGTAGGAACTGACTATATTTGGGTCAGAGACCATGCCN22NM_001789TACAGTCGTCTGAAGAAGCTCTGATCTTGCAAATCAATCTGAACCACACACTTTCD25ANM_001789TACAGTCGTCTGAAGAAGGTCATGATTCCTCTGTCCATATACTGGATCACCTCDKN1ANM_000075CTACATAAGGATGAAGGTAATCCGGAGTGATTGCGCCAGGCCAGGCAGGACTTTCTGTTTCDKN2CNM_001262GGGAGCCACAAATCTTCAATAATGATGCAGGGCCCAGGCCAGGCDKN2DNM_001289CTCTCCGAGAGGCTGCGGTGATGGGCCAGGCCAGCCAGCDKN2DNM_001800ATGGTGGCCCCGCTGGACCCAGGCTCACCCTGGCDNFNM_001262GGAAGCCCCCGCTGGAGAAATGTTTTTCAGTATTCCCCAGCTGACDPF1NM_207327CCCGGTTCTCGACGTGAGCTACAAATGGACTCACATTTTACGTACDX1NM_001265CCCACACGCATCCCAGTGAGAGCCACGCATTCCAAGGCCERS2NM_001265CCCACCGCTCCGCGTGAGAGCCACGCATTCCAAGGCCERS2NM_001265CCCACCGCATCCAGTGAGAGCCACGCATTCTAAGGCCE	BMP6	NM_001718	AAGAGCTTGTGGATGCCACTA	ACTTTGCATCCAACACTCTTCACC	
BRCA1NM_007299AATTGGGCAGATGTGTGACAGGAAATACAAAAGGTATTTAAGCTGCCTBRCA2NM_000059GGACACAATTACAACTAAAAAATATATCTAACAAAGCAAGACTCCATCTCCCAAAAAAAAABTAF1NM_003972CCTGGAAAATTTATGCATTCTCTCAAGTATAAAAAAATATTCAACTCAAACTCAAAAAAAABZW1NM_014670ATCTGAAGCTGAAGAAGGTGACTGTTTAGCTACACCAGAATTCTGTGTAGGTGGBZW2NM_014038AGAATCCGAATCGGAAGGTGAGGAAAATTACTGGGATTACAGGTGGAGCAGAATAGCAS21NM_01766CTCCAGTTCCAGGAGAGGGAAGGTGAGACTCTGACCAGGCCAGGGAACCND3NM_001136017GATGTCACAGCCATACACCTGTAGGAACTGACCAGGCCAGGGAACCN22NM_001789GAAAAACACACCAGGAAAACCACTAAATTTTGACACACCCTCTAATAACACACACTATCD25ANM_001789TACAGTCGTCTGAAGAAGGTAATCCGGAGGATCCTCCTGTCCATATACTGGACACACTCDK4NM_000075CTACATAAGGATGAAGGTAATCCGGAGGATTCCTCTGTCCATATACTGGATCACCTCDKN1ANM_000389CTTCTCCCAAGAGGAAGCCCTACTGTTGTTTTTGCAGCAGTCTTAGTTTTCCAGCDKN2CNM_001262GGGAGCCACAAATCTTCAATAATCATCAAGAGAGATATGTCTAGTTTTCCAGCDKN2DNM_001280ATGGTGGCCCGGCTGGATGGGCCAGGCCCAGCCAGCDNFNM_00129954CCCAAACAGAGCTCTGAGCAAGAGGCTGTCCCACCTCDX1NM_001265CCCACCGTCACCAGTGAGGAGCCACGCATTCCAAGGCCERS2NM_01265CCCACCGTCACCCAGTGAGAGCCACGCATTCCAAGGCCERS2NM_01265CCCACCGTCACCAGGAAGAGCCACGCATTCCAAGGCCCRR52NM_01265CCCACCGTCACCATGTAACACTGAATGACTGAACTCTGGTGAGACAAGCTCTGCChMP48NM_176812GAACTGGGCTGGATCCATGTAACTCTGGTGAGACAAGCTCTG	BMPR1A	NM_004329	GATGGTTGAATCCCAAGATGTAAAAATCTG	GATGTGATATAATCACATTTATTTTATGTT	
BRCA2NM_000059GGACACAATTACAACTAAAAAATATATCTAACAAAGCAAGACTCCATCTCCCAAAAAAAAAABTAF1NM_003972CCTGGAAAATTTTATGCATTCTCTCAAGTATAAAAAAATATTCAACTCAAATATACTGAABZW1NM_014670ATCTGAAGCTGAAGAAGGTGACTGTTTAGCTACACCAGAATTCTGTGTAGGTGGBZW2NM_014038AGAATCCGAATCGGAAGGTGAGGAAAATTACTGGGATTACAGGTGTGAGCAGAAATAGCAS21NM_017766CTCCAGTTCCAGGAGAGGAGAGGAACTCTGACCAGGCCAGGGAACCND3NM_001136017GATGTCACAGCCATACACCTGTAGGAACTGACCACAGGCCAGGGAACCNE2NM_057749GAAAAACCACCAGGAAAACACTAAATTTTTGACACACCCTCTAATAACATCACTTCDC25ANM_001789TACAGTCGTCTGAAGAAGCTCTGATCCTGCCATATACTGGATCACCACCAGGATAACCCTCCDKN1ANM_000075CTACATAAGGATGAAGGTAATCCGGAGTGATTCCTCTGTCCATATACTGGATCACCCTCDKN1ANM_000076CGCAAGAGGCTGCGGTGATGGGCCAGGCCCAGCCAGCDKN1CNM_001262GGGAGCCACAAATCTCAATAATCATCAAGAGAGTATGTCTAGTTTTCCAGCDKN2DNM_001262GGGAGCCACAAAATCTTCAATAATCATCAAGAGAGTATGTCTAGTTTTCCAGCDKN2DNM_001262GGGAGCCCGCGTGTGACCCAAGCTCACCCTGCDNFNM_00129954CCCAAAACAGAGCTCTGAGAAATGTTTTTCAGTATTCCCCAGCTGTACDPF1NM_001265CCCAACAGAGGTTCTGCCATAGCTTACAAAATGGACTCACATTTTTACGTACDX1NM_001265CCCCACCGTCACCAGGAGAGAGCCACGCATTCCAAGGCCERS2NM_0122075CTCAATAACAACCATCGTAAGAATGACTGACCAGCTAGATGTTTTTAGTAGAGAGGGGCHMP4BNM_176812GAACTGGCTGGATCCATGTAACTTCTGGTGAGACAAGCTCTGC	BRCA1	NM_007299	AATTGGGCAGATGTGTGA	CAGGAAATACAAAAGGTATTTAAGCTGCCT	
BTAF1NM_003972CCTGGAAAATTTTATGCATTCTCTCAAGTATAAAAAAATATTCAACTCAAATATACTGAABZW1NM_014670ATCTGAAGCTGAAGAAGGTGACTGTTTAGCTACACCCAGAATTCTGTGTAGGTGGBZW2NM_014038AGAATCCGAATCGGAAGGGGAGAGGACTGGGATTACAGGTGTGAGCAGAAATAGCAS21NM_011766CTCCAGTTCCAGGACAGTGAACTCTGACCAGGCCAGGGAACCND3NM_001136017GATGTCACAGCCATACACCTGTAGGAACTGACTATATTTGGGTCAGAGACCATGCDK2NM_057749GAAAAACCACCAGGAAAACACTAAATTTTTGACACACCTCTAATAACACTCACTTCDC25ANM_001789TACAGTCGTCTGAAGAAGCTCTGATCTTGCAAATCAATCTGAACCACAAGTTTTCDK4NM_000075CTACATAAGGATGAAGGTAATCCGGAGTGATTCCTCTGTCCATATACTGGATCACCTCDKN1ANM_000389CTTCTCCAAGAGGAGGCCCTACTGTTGTTTTTGCAGCAGCAGTCTTGTTTCDKN1CNM_001262GGGAGCCACAAATCTTCAATAATCATCAAGAGAGTATGCTAGTTTTCCAGCDKN2CNM_001800ATGGTGGCCCGGGTGATGGGCCCAGGCCAGGCCAGGCDNFNM_001800ATGGTGGCCCGCTGTGACCCAGCTCACCCTGCDNFNM_001804GAAACAGAGAGCTCTGAGAAATGTTTTTCCAGATTCCCCAGCTGTACDPF1NM_001804GAAAGAGGAGTTCTGCCATAGCTTACAAAATGGACTCACACTTTTTACGTACDX1NM_001804GAAAGAGGAGTTCTGCCATAGCTTACAAAATGGACTCCACGCCERS2NM_022075CTCAATAACAACCATCGTAAGAATGACTGACCAGCTAGAGTATTTTAGGAGAGAGGGCHMP48NM_176812GAACTGGCCGCGTGGATCCATGTAACTTCTGGTGAGACAAGCTCTGC	BRCA2	NM_000059	GGACACAATTACAACTAAAAAATATATCTA	ACAAAGCAAGACTCCATCTCCAAAAAAAAA	
BZW1NM_014670ATCTGAAGCTGAAGAAGGTGACTGTTTAGCTACACCAGAATTCTGTGTAGGTGGBZW2NM_014038AGAATCCGAATCGGAAGGTGAGGAAAATTACTGGGATTACAGGTGTGAGCAGAATAGCASZ1NM_017766CTCCAGTTCCAGGAGAAGTGAACTCTGACCAGGCCAGGGAACCND3NM_001136017GATGTCACAGCCATACACCTGTAGGAACTGACTATATTTGGGTCAGAGACCATGCCNE2NM_057749GAAAAACCACCAGGAAAACACTAAATTTTTGACACACCTCTAATAACATCACTTCDC25ANM_001789TACAGTCGTCTGAAGAAGCTCTGATCTTGCAAATCAATCTGAACCACCAAGTTTTCDK4NM_000075CTACATAAGGATGAAGGTAATCCGGAGTGATTCCTCTGTCCATATACTGGATCACCTCDKN1ANM_000389CTTCTCCAAGAGGAAGCCCTACTGTTGTTTTTGCAGCAGCAGCCAGCDKN2CNM_001262GGGAGCCACAAATCTTCAATAATCATCAAGAGAGTATGTCTAGTTTCCAGCDKN2DNM_001800ATGGTGGCCCCGCTGTGACCCAGCTCACCCTGCDNFNM_001800ATGGTGGCCCCGCTGTGACCCAGCTCACACCTCCDPF1NM_001804GAAAGAGGAGGTTCTGGCAAGAGCCACGCATTCCAAGGCCDX2NM_001265CCCACCGTCACCCAGTGAGAGCCACGCATTCCAAGGCCDX2NM_001265CCCACCGTCACCCAGTGAGAGCCACGCATTCCAAGGCCERS2NM_022075CTCAATAACAACCATCGTAAGAATGACTGACCAGCTAGATGATTTTTAGTAGAGAATGGGCHMP4BNM_176812GAACTGGCTGGATCCATGTAACTTCTGGTGAGACAAGCTCTGC	BTAF1	NM_003972	CCTGGAAAATTTTATGCATTCTCTCAAGTA	ΤΑΑΑΑΑΑΤΑΤΤΟΑΑΟΤΟΑΑΤΑΤΑΟΤΘΑΑ	
BZW2NM_014038AGAATCCGAATCGGAAGGTGAGGAAAATTACTGGGATTACAGGTGTGAGCAGAATAGCAS21NM_017766CTCCAGTTCCAGGAGAAGTGAACTCTGACCAGGCCAGGGAACCND3NM_001136017GATGTCACAGCCATACACCTGTAGGAACTGACTATATTTGGGTCAGAGAACCATGCCNE2NM_057749GAAAAACCACCAGGAAAACACTAAATTTTTGACACACCTCTAATAACATCACTTCDC25ANM_001789TACAGTCGTCTGAAGAAGCTCTGATCTTGCAAATCAATCTGAACCACAAGTTTTCDK4NM_000075CTACATAAGGATGAAGGTAATCCGGAGTGATTCCTCTGTCCATATACTGGATCACCTCDKN1ANM_000076CGCAAGAGGCTGCGGTGATGGGCCAGGCCCAGCCAGCDKN1CNM_001262GGGAGCCACAAATCTTCAATAATCATCAAGAGAGATATGTCTAGTTTTCCAGCDKN2DNM_001800ATGGTGGCCCCGCTGTGACCCAGCTCACTCACCCTGCDNFNM_001029954CCCAAAACAGAGGCTCTGAGAAATGTTTTTTCAGTATTCCCCAGCTGTACDPF1NM_001804GAAAGAGGAGTTTCTGCCATAGCTTACAAAATGGACTCACATTTTTACGTACDX2NM_001265CCCACCGTCACCCAGTGAGAGCCACGCATTCCAAGGCCERS2NM_02075CTCAATAACAACCATCGTAAGAATGACTGACCAGCTAGATGTATTTTAGTAGAGAATGGGCHMP4BNM_176812GAACTGGGCTGGATCCATGTAACTTCTGGTGAGACAAGCTCTGC	BZW1	NM_014670	ATCTGAAGCTGAAGAAGGTGACTG	TTTAGCTACACCAGAATTCTGTGTAGGTGG	
CAS21NM_017766CTCCAGTTCCAGGAGAAGTGAACTCTGACCAGGCCAGGGAACCND3NM_001136017GATGTCACAGCCATACACCTGTAGGAACTGACTATATTTGGGTCAGAGACCATGCCNE2NM_057749GAAAAACCACCAGGAAAACACTAAATTTTTGACACACCTCTAATAACATCACTTCDC25ANM_001789TACAGTCGTCTGAAGAAGCTCTGATCTTGCAAATCAATCTGAACCACAAGTTTTCDK4NM_000075CTACATAAGGATGAAGGTAATCCGGAGTGATTCCTCTGTCCATATACTGGATCACCTCDK11ANM_000389CTTCTCCCAAGAGGAAGCCCTACTGTTGTTTTTTGCAGCAGCAGTCTTTCTGTTTCDKN1CNM_000076CGCAAGAGGCTGCGGTGATGGGCCAGGCCCAGGCCAGGCDKN2CNM_001262GGGAGCCACAAATCTTCAATAATCATCAAGAGAGAGTATGTCTAGTTTTCCAGCDKN2DNM_001800ATGGTGGCCCCGCTGTGACCCAGCTCACTCACCCTGCDNFNM_001029954CCCAAAACAGAGGCTCTGAGAAATGTTTTTTCAGTATTCCCCAGCTGTACDPF1NM_001804GAAAGAGGAGTTTCTGCCATAGCTTACAAAATGGACTCACATTTTTACGTACDX2NM_001265CCCACCGTCACCCAGTGAGAGCCACGCATTCCAAGGCCERS2NM_022075CTCAATAACAACCATCGTAAGAATGACTGACCAGCTAGATGTATTTTTAGTAGAGAATGGGCHMP4BNM_176812GAACTGGGCTGGATCCATGTAACTTCTGGTGAGACAAGCTCTGC	BZW2	NM_014038	AGAATCCGAATCGGAAGGTGAGGAAAATTA	CTGGGATTACAGGTGTGAGCAGAATAG	
CCND3NM_001136017GATGTCACAGCCATACACCTGTAGGAACTGACTATATTTGGGTCAGAGACCATGCCNE2NM_057749GAAAAACCACCAGGAAAACACTAAATTTTTGACACACCCTCTAATAACATCACTTCDC25ANM_001789TACAGTCGTCTGAAGAAGCTCTGATCTTGCAAATCAATCTGAACCACAAGTTTTCDK4NM_000075CTACATAAGGATGAAGGTAATCCGGAGTGATTCCTCTGTCCATATACTGGATCACCTCDK11ANM_000389CTTCTCCCAAGAGGAAGCCCTACTGTTGTTTTTGCAGCAGCAGTCTTTCTGTTTCDKN1CNM_000076CGCAAGAGGCTGCGGTGATGGGCCAGGCCCAGCCAGCDKN2CNM_001262GGGAGCCACAAATCTTCAATAATCATCAAGAGAGAGTATGTCTAGTTTTCCAGCDKN2DNM_001800ATGGTGGCCCCGCTGTGACCCAGCTCACTCACCCTGCDNFNM_001029954CCCAAAACAGAGGCTCTGAGAAATGTTTTTTCAGTATTCCCCAGCTGTACDPF1NM_207327CCCGGTTCTCGGACGTGATGGAGGCTGTCTCCACCTCDX1NM_001804GAAAGAGGAGTTTCTGCCATAGACTTACAAAATGGACTCACATTTTTACGTACDX2NM_001265CCCAACCGCTCACCCAGTGAGAGCCACGCATTCCAAGGCCERS2NM_022075CTCAATAACAACCATCGTAAGAATGACTGACCAGCTAGATGTATTTTAGTAGAGAATGGGCHMP4BNM_176812GAACTGGGCTGGATCCATGTAACTTCTGGTGAGACAAGCTCTGC	CASZ1	NM_017766	CTCCAGTTCCAGGAGAAGTGA	ACTCTGACCAGGCCAGGGAA	
CCNE2NM_057749GAAAAACCACCAGGAAAACACTAAATTTTTGACACACCTCTAATAACATCACTTCDC25ANM_001789TACAGTCGTCTGAAGAAGCTCTGATCTTGCAAATCAATCTGAACCACAAGTTTTCDK4NM_000075CTACATAAGGATGAAGGTAATCCGGAGTGATTCCTCTGTCCATATACTGGATCACCTCDKN1ANM_000389CTTCTCCCAAGAGGAAGCCCTACTGTTGTTTTTTGCAGCAGAGCAGTCTTTCTGTTTCDKN1CNM_000076CGCAAGAGGCTGCGGTGATGGGCCAGGCCCAGCCAGCDKN2CNM_001262GGGAGCCACAAATCTTCAATAATCATCAAGAGAGAGTATGTCTAGTTTTCCAGCDKN2DNM_001800ATGGTGGCCCCGCTGTGACCCAGCTCACTCACCCTGCDNFNM_001029954CCCAAAACAGAGGCTCTGAGAAATGTTTTTTCAGTATTCCCCAGCTGTACDPF1NM_207327CCCGGTTCTCGGACGTGATGGAGGCTGTCTCCACCTCDX1NM_001804GAAAGAGGAGTTTCTGCCATAGCTTACAAAATGGACTCACATTTTTACGTACDX2NM_001265CCCAACCGTCACCCAGTGAGAGCCACGCATTCCAAGGCCERS2NM_022075CTCAATAACAACCATCGTAAGAATGACTGACCAGCTAGATGTATTTTTAGTAGAGAATGGGCHMP4BNM_176812GAACTGGGCTGGATCCATGTAACTTCTGGTGAGACAAGCTCTGC	CCND3	NM_001136017	GATGTCACAGCCATACACCTGTAG	GAACTGACTATATTTGGGTCAGAGACCATG	
CDC25ANM_001789TACAGTCGTCTGAAGAAGCTCTGATCTTGCAAATCAATCTGAACCACACAGTTTTCDK4NM_000075CTACATAAGGATGAAGGTAATCCGGAGTGATTCCTCTGTCCATATACTGGATCACCTCDKN1ANM_000389CTTCTCCCAAGAGGGAAGCCCTACTGTTGTTTTTTGCAGCAGCAGTCTTTCTGTTTCDKN1CNM_000076CGCAAGAGGCTGCGGTGATGGGCCAGGCCCAGCCAGCDKN2CNM_001262GGGAGCCACAAATCTTCAATAATCATCAAGAGAGATATGTCTAGTTTTCCAGCDKN2DNM_001800ATGGTGGCCCCGCTGTGACCCAGCTCACTCACCCTGCDNFNM_001029954CCCAAAACAGAGGCTCTGAGAAATGTTTTTTCAGTATTCCCCAGCTGTACDPF1NM_207327CCCGGTTCTCGGACGTGATGGAGGCTGTCTCCACCTCDX1NM_001804GAAAGAGGAGTTTCTGCCATAGCTTACAAAATGGACTCACATTTTTACGTACDX2NM_001265CCCACCGTCACCCAGTGAGAGCCACGCATTCCAAGGCCERS2NM_022075CTCAATAACAACCATCGTAAGAATGACTGACCAGCTAGATGTATTTTTAGTAGAGAATGGGCHMP4BNM_176812GAACTGGGCTGGATCCATGTAACTTCTGGTGAGACAAGCTCTGC	CCNE2	NM_057749	GAAAAACCACCAGGAAAACACIAA		
CDK4NM_000075CTACATAAGGATGAAGGTAATCCGGAGTGATTCCTCTGTCATATACTGGATCACCTCDKN1ANM_000389CTTCTCCCAAGAGGAAGCCCTACTGTTGTTTTTTGCAGCAGTCTTTCTGTTTCDKN1CNM_000076CGCAAGAGGCTGCGGTGATGGGCCAGGCCCAGCCAGCDKN2CNM_001262GGGAGCCACAAATCTTCAATAATCATCAAGAGAGATTGTCTAGTTTTCCAGCDKN2DNM_001800ATGGTGGCCCCGCTGTGACCCAGCTCACTCACCCTGCDNFNM_001029954CCCAAAACAGAGCTCTGAGAAATGTTTTTTCAGTATTCCCCAGCTGTACDPF1NM_207327CCCGGTTCTCGGACGTGATGGAGGCTGTCTCCACCTCDX1NM_001804GAAAGAGGAGTTTCTGCCATAGCTTACAAAATGGACTCACATTTTTACGTACDX2NM_001265CCCACCGTCACCCAGTGAGAGCCACGCATTCCAAGGCCERS2NM_022075CTCAATAACAACCATCGTAAGAATGACTGACCAGCTAGATGTATTTTTAGTAGAGAATGGGCHMP4BNM_176812GAACTGGGCTGGATCCATGTAACTTCTGGTGAGACAAGCTCTGC	CDC25A	NM_001789			
CDKN1ANM_000389CTTCTCCAAGAGGAAGCCCTACTGTTGTTTTTGCAGCAGTCTTTCTGTTTCDKN1CNM_000076CGCAAGAGGCTGCGGTGATGGGCCAGGCCCAGCCAGCDKN2CNM_001262GGGAGCCACAAATCTTCAATAATCATCAAGAGAGAGTATGTCTAGTTTTCCAGCDKN2DNM_001800ATGGTGGCCCCGCTGTGACCCAGCTCACTCACCCTGCDNFNM_001029954CCCAAAACAGAGCTCTGAGAAATGTTTTTTCAGTATTCCCCAGCTGTACDPF1NM_207327CCCGGTTCTCGGACGTGATGGAGGCTGTCTCCACCTCDX1NM_001804GAAAGAGAGGAGTTTCTGCCATAGCTTACAAAATGGACTCACATTTTTACGTACDX2NM_001265CCCACCGTCACCCAGTGAGAGCCACGCATTCCAAGGCCERS2NM_022075CTCAATAACAACCATCGTAAGAATGACTGACCAGCTAGATGTATTTTTAGTAGAGAATGGGCHMP4BNM_176812GAACTGGGCTGGATCCATGTAACTTCTGGTGAGACAAGCTCTGC	CDK4	NM_000075			
CDKN1C NM_000076 CGCAAGAGGCTGCGGTGA TGGGCCAGGCCAGCCAGC CDKN2C NM_001262 GGGAGCCACAAATCTTCAATA ATCATCAAGAGAGATATGTCTAGTTTTCCAG CDKN2D NM_001800 ATGGTGGCCCCGCTGTGA CCCAGCTCACTCACCCGG CDNF NM_001029954 CCCAAAACAGAGGCTCTGA GAAATGTTTTTTCAGTATTCCCCAGCTGTA CDPF1 NM_207327 CCCGGTTCTCGGACGTGA TGGAGGCTGTCTCCACCT CDX1 NM_001804 GAAAGAGGAGTTTCTGCCATA GCTTACAAAATGGACTCACATTTTTACGTA CDX2 NM_001265 CCCACCGTCACCCAGTGA GAGCCACGCATTCCAAGGC CERS2 NM_022075 CTCAATAACAACCATCGTAAGAATGACTGA CCAGCTAGATGTATTTTTAGTAGAGAATGGG CHMP4B NM_176812 GAACTGGGCTGGATCCATGTA ACTTCTGGTGAGACAAGCTCTGC	CDKN1A	NM_000389			
CDKN2C NM_001262 GGGAGCCACAAATCTTCAATA ATCATCAAGAGAGGTTGTCTAGTTTTCCAG CDKN2D NM_001800 ATGGTGGCCCCGCTGTGA CCCAGCTCACCCCGCTG CDNF NM_001029954 CCCAAAACAGAGCTCTGA GAAATGTTTTTTCAGTATTCCCCAGCTGTA CDPF1 NM_001804 GAAAGAGAGGAGTTTCTGGCATA GCTTACAAAATGGACTCACATTTTTACGTA CDX1 NM_001804 GAAAGAGGAGTTTCTGCCATA GCTTACAAAATGGACTCACATTTTTACGTA CDX2 NM_001265 CCCACCGTCACCCAGTGA GAGCCACGCATTCCAAGGC CERS2 NM_022075 CTCAATAACAACCATCGTAAGAATGACTGA CCAGCTAGATGTATTTTTAGTAGAGAATGGG CHMP4B NM_176812 GAACTGGGCTGGATCCATGTA ACTTCTGGTGAGACAAGCTCTGC	CDKN1C	NM_000076			
CDNR2D NM_001800 ATGGTGGCCCCGCTGTGA CCCAGCTCACTCACCCGCTGTG CDNF NM_001029954 CCCAAAACAGAGCTCTGA GAAATGTTTTTTCAGTATTCCCCAGCTGTA CDPF1 NM_207327 CCCGGTTCTCGGACGTGA TGGAGGCTGTCTCCACCT CDX1 NM_001804 GAAAGAGAGGAGTTTCTGCCATA GCTTACAAAATGGACTCACATTTTTACGTA CDX2 NM_001265 CCCACCGTCACCCAGTGA GAGCCACGCATTCCAAGGC CERS2 NM_022075 CTCAATAACAACCATCGTAAGAATGACTGA CCAGCTAGATGTATTTTTAGTAGAGAATGGG CHMP4B NM_176812 GAACTGGGCTGGATCCATGTA ACTTCTGGTGAGACAAGCTCTGC	CDKN2C	NM_001262			
CDNF NM_001029954 CCCAAAACAGAGCTCTGA GAAATGTTTTTCAGTATTCCCCAGCTGTA CDPF1 NM_207327 CCCGGTTCTCGGACGTGA TGGAGGCTGTCTCCACCT CDX1 NM_001804 GAAAGGGAGTTTCTGCCATA GCTTACAAAATGGACTCACATTTTTACGTA CDX2 NM_001265 CCCACCGTCACCCAGTGA GAGCCACGCATTCCAAGGC CERS2 NM_022075 CTCAATAACAACCATCGTAAGAATGACTGA CCAGCTAGATGTATTTTTAGTAGAGAATGGG CHMP4B NM_176812 GAACTGGGCTGGATCCATGTA ACTTCTGGTGAGACAAGCTCTGC	CDKNZD	NM_001800			
CDX1 NM_001804 GAAAGAGGAGTTTCTGCCATA GCTTACAAAATGGACTCACATTTTTACGTA CDX2 NM_001265 CCCACCGTCACCCAGTGA GAGCCACGCATTCCAAGGC CERS2 NM_022075 CTCAATAACAACCATCGTAAGAATGACTGA CCAGCTAGATGTATTTTTAGTAGAGAATGGG CHMP4B NM_176812 GAACTGGGCTGGATCCATGTA ACTTCTGGTGAGACAAGCTCTGC		NIVI_001029954			
CDX1 NM_001204 GAAAGAGGAGTTTCTGCCATA GCTTACAAAATGGACTCACATTTTTACGTA CDX2 NM_001265 CCCACCGTCACCCAGTGA GAGCCACGCATTCCAAGGC CERS2 NM_022075 CTCAATAACAACCATCGTAAGAATGACTGA CCAGCTAGATGTATTTTTAGTAGAGATGGG CHMP4B NM_176812 GAACTGGGCTGGATCCATGTA ACTTCTGGTGAGACAAGCTCTGC		NINI_207327			
CERS2 NM_022075 CTCAATAACAACCATCGTAAGAATGACTGA CCAGCTAGATGTATTTTTAGTAGAGATGGG CHMP4B NM_176812 GAACTGGGCTGGATCCATGTA ACCATCGTAGAGATGACAAGCTCTGC		NM 001265			
CHMP4B NM_176812 GAACTGGGCTGGATCCATGTA ACAGCATGA ACCTGGGGGAGACAAGCTCTGC	CERS2	NM 022075			
		NIM 176912			
	CNNM2	NM 017649		ΑΓΑΑΑΑΓΓΩΤΟΤΟΤΟΓΟΤΤΤΟΟΤΑΓΓΑΤ	
	CODSE	NM 006933			
	COPSE	NM 006710		CTCCTGATCCTCTGACTTCTTGAATTC	
	CPI X1	NM 006651	CAGGACATGCTCAAGAAGTAG		
	CREB3L3	NM 032607	GGCGGGAGACGAGCTGTG	TGCCCGGCGCCTCTCCCT	
	CREB3L3	NM_032607	GGCGGGAGACGAGCTGTG	TGCCCGGCGCCTCTCCCT	

CREB3L4	NM_001255981	GCATGCAGATGAGATGTG	GGTTTCCTTCCCTTCTGTAACTTGGA	
CREG1	NM_003851	TAATTCTTCTCTGTTCCCCTTTCTAGGTGA	GCTTTTTGCCAATTAGAAAGAGTGGTATTA	
CREM	NM_182721	CAAAGATCTTTATTGCCATAAAGTAGAGTA	TCTCCCACCACACACTGATCAGAT	
CRK	NM_016823	CCCGATGAGGACTTCAGCTGA	AGGAATCCTTAGGACTTGAGTAGCG	
CTCF	NM 006565	CAGCATGATGGACCGGTG	CCCGCCAAGATCATATCGTCC	
CTF1	NM 001142544	GCCCGGGGGCTCGGCCTG	GGGCTGGCAGAGGGCACC	
CTNNB1	NM 001904	CTGGTTTGATACTGACCTGTA	AAGTAGGGCCCTCTCTATCGCTA	
DEC1	NM 017418	GCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		
	NM 022105	CCACTTCCACCTTCTCTCTAA		
	NM 005618			
	NM 019074			
	NM 001028402			
	NM 005220			
	NIM_003220			
	NIVI_001934			
DIVIRTI	NIM_021951			
DNIVITI	NIVI_001379			
DINIVIT3B	NM_175848	GAAGGACTACTTIGCATGTGAATA		
DOCK11	NM_144658			
DONSON	NM_017613	AGAGACIACATITATAATIGGAGATCCIGA		
DPF1	NM_004647	GCTTACATCACCCTCACCTAG	CAAAGCCGGGGAGAGGGCA	
DPF2	NM_006268	CIACCAGAACCAGAACTCCTCTTG	CATAITGGGGTTCCACAAAAAATTTTAAT	
E2F1	NM_005225	ACCCCCTGGATTTCTGA	AGCCCACTGTATTTGTTACATGTTTACTAA	
E2F4	NM_001950	TGATGTGCCTGTTCTCAACCTCTG	CCCGCCCCACACCAAGGT	
E2F5	NM_001083589	TCTGTTTGATGTCCAGATACTAAATTATTA	TATTGTTGTCTGTGTTTTTAAATATAATAC	
E2F6	NM_198256	AGTGAAGAATTGCTTGAAGTAAGCAACTGA	GGATCGCTCAAGGTTTCTGAAGGAA	
EBF4	NM_001110514	GGGCCTGGCATACTCCTA	CCAACAGTCCCCAAGAACAGAC	
EBP	NM_006579	AAAAGCCAAGAGCAAGAAGAACTG	TCTGGCGGGGGGGTCAGTG	
EGR1	NM_001964	CTTTTCTCCCAGGACAATTGAAATTTGCTA	ATACTCAGTCCTCATAAATAACGAACTCCA	
EGR2	NM_000399	CGGACCCGGACACCTTGA	CAGGCTAGCAAAGAAGATCTGGAGA	
EGR4	NM_001965	TCCTTCGCTTCTCTCTGA	CGCAGTTCCTGGCAGGTGT	
EHMT1	NM_024757	TGCCGCCGACCCCCTATG	CTGCCTGGAACGTCCCCT	
EHMT2	NM_025256	CCCCCTGTCAACACATGA	CATAGTGGCCCCCCACCT	
EIF3A	NM_003750	GGATGGACCACAGTACGACGTTAA	TCCTAGCCACATATGCTTTCTTTGTTATAT	
EIF3J	NM_003758	ATATGTACAAGACTATGAAGACTTCATGTG	TTCCTATTTAAAATAGATTGATTTTAGATG	
EIF4A2	NM 001967	CATGAATGTGGCTGACCTTATTTA	GCAGATGGTGCTGATGAACATTTG	
ELF1	NM 172373	CTGCTGGAACCCAACTCTTTTAG	TCTCAAAAACAAAACAAAACAAAAGTGTGT	
ELF2	NM 201999	ACAGAAGGACTAGTGACATGTGAGAAATAA	CAAAAGGTCTGATTGTGAAACAAATGGTTT	
ELF3	NM 004433	GGTTCTCCAGAGTCGGAACTG	TGTAAGTAAAAGCCTTTTTCCAAATGGCTC	
ELF5	NM 001422	CAGGAAGACAAGCTATGA	CTTGGGCAACAAGCAAGAACC	
ELK1	NM 005229	GGGCCCCAGAAGCCATGA	GATATGCAGTCCCTACTATTGTTTCTCACA	
ELK3	NM 005230	ACTGCTTTCTTCAAACTCTCAGAAATCCTG	CCTGGAATAGCATGAACTTGATGTAGCTTT	
FMX1	NM 004097	CATCGATGTCACCTCCAATGACTA	GGTCTGGATGTCGTAAGGGAAAGACTTA	
EMX2	NM 004098	GGAGGAAATAGACGTGACCTCAGATGATTA	ATCTTTCTTTAAAATGCCTGAGAATCCATC	
FN1	NM 001426	GACAAAGACGAGAGCGAGTAG	TCTGGGTCGCGCTTCCCC	
FN2	NM 001427			
FPHA8	NM 020526	GCCCCGCCGCACCTCTG	GCACTAATCCTACCTCCCCAGACA	
FRBR2	NM 004448			
FRBB3	NM 001982			
EDE	NM 006494		CCTCCATTCCCCCATTCTCATTA	
ECD3	NNA 001214002			
	NIM_001214902			
	NNL 001202240			
	NIVI_004460			
FHLI	NM_001449			
FIZ1	NIVI_032836			
FOS	NM_005252			
FOSL1	NM_005438	ACCCICCICGCITTGTGA	GCGGATGTAGCCCCACTTGT	
FOXA1	NM_004496	CCCGTCCTAAACACTTCCTAG	ATGCAAAATAGCGGCTACCCTAAAATGT	
FOXA2	NM_021784	CCCATTATGAACTCCTCTTAA	TTGAAGTGGATTTAGAGAAATAAGATGGAT	
FOXC1	NM_001453	CGTCTACGACTGTAGCAAGTTTTG	CCAGCGAGATTTAAACGGGGC	

FOXD2	NM_004474	TAGTGGCTGCCACTTCTG	CTTGCATCCTCTAAGCTCAAACCC		
FOXE3	NM_012186	GCTGGAGCGCTACCTGTG	CCTGCTGGAGAATCACTTCCTAATC		
FOXI1	NM_144769	GGAGGGCACCGAGGTCTA	AGAGGTGAAAAGAGTCTTGATATGCATTCT		
FOXL1	NM 005250	CACGGTACTCCACTTCCAGTA	TCTCCACTCCTTCCCCTCCAT		
FOXL2	NM 023067	TCGCGCCTCGATCTCTGA	ACAAAGCAGCAGCGACAG		
FOXM1	NM 021953	CAGTTTATTCCTGAGCTACAGTAG	TGTGTGCCTGTGCAAGTGCT		
FOXN1	NM 003593	GCCCGTGGCCCTGGCATG	TTTCTGGAGGAGGAGGAGTGAGATTGTG		
FOXO4	NM 005938	GTTTCTTCTTCCCACAGATCCCTG			
FOX01	NM_033260				
ECT	NM 006250				
ELITO	NIM 004490				
	NIM 004960				
FARZ	NINI_004860				
GATAZ	NINI_052058				
GATAS	NIM_002051	GGTCACCGCCATGGGTTA			
GATA6	NM_005257		CACTGGCTATGGACACTGTCCC		
GCFC1	NM_016631	GAATTTAAGTCTTIGATCGAAGGAAAATAG			
GCM2	NM_004752		ACAACIGIIICCCAGGICAIAAIAIGAACA		
GGNBP2	NM_024835	GACAACGGCTGGAGCAAATTA	CAATTCTCATCAAAGGAAGATTTTTGTCTT		
GNAI1	NM_002069	AAATAATCTAAAAGATTGTGGTCTCTTTTA	CCAAATGTGGCATCACATCTCATAGCT		
GNAI2	NM_002070	GGACTGCGGCCTCTTCTG	TGAAGCTCAGAGCGTGGG		
GNAQ	NM_002072	TTGAACCTGAAGGAGTACAATCTGGTCTAA	AACAATGTCATCTTAAGGACAAAGAAAAGA		
GTF2H1	NM_005316	GCGTCTGATGAAGAAAACGTG	GCATGTGCTACCATGCCTG		
GTF2I	NM_001518	ACCAGACCCCACGTGGTA	TCTGAGAAACACCGCAAGTGG		
HDAC1	NM_004964	GGAGGTCAAGTTGGCCTG	AAACCTCAAGGGAGGAGTTAAGGC		
HDAC3	NM_003883	AATGACAAGGAAAGCGATGTGGAGATTTAA	AATAATAAATGTAGAATACATACACAGGGC		
HDAC5	NM_005474	CAGGAGCCTGCCCTGTGA	TACAGGACAGATCTTGCGCC		
HDAC6	NM 006044	TATGCCCCACCCACACTA	TTCAGTTAGTTTTTTGGGGGCAATGGA		
HES1	NM 005524	GAGGCCGTGGCGGAACTG	TAGTTCATGGAGGATTGGTGAAAAGTTTGA		
HES5	NM 001010926	CTCTGGCGGCCCTGGTGA	GACCCCACCCTTCTTCCG		
HES7	NM 001165967	TGGAGACCTTGGCCCTGA	AAGTAAGGAATGGGGGCAAATCTTAAGAGTG		
ΗΗΔΤ	NM 018194	GACCTACGCCACGGACTA	GCACCACCATTCAGAGTAACTACAAGATTT		
HIF1A	NM 181054		TACATTAAGGTGATGGCACTAAGATAAATG		
	NM 002114		TTTCACATGGTAGAAAGGCGAGTAAAGTCT		
	NM 006724				
	NM 005516	CTCTCACTCTCACACCTTCTA			
	NIM 002071				
	NIM 021059				
	NINI_021956				
HIVIBUXI	NIVI_024567	GGCCCTGGATGATGACTG			
HNFIA	NIM_000545				
HOXA1	NM_005522				
HOXA10	NM_018951	GAGCICACAGCCAACIIIAAIIIIICCIGA			
HOXA3	NM_030661	AAGCICACCIGIGA	AATTIGATICCTTICTCGAGGAATCCTTAA		
HOXA9	NM_152739	GACCGAGCAAAAGACGAGTGA	GCGGACTGGTTGTGGCAG		
HOXC11	NM_014212	TTTCTCGGGAAATCCTCTGCTGTA	CGGCTAGCACCGGCCTAT		
HOXC4	NM_014620	AGAGGACATTACCAGGTTATA	CCTTGCTTGTTCTTCTAAGGACATTGGAAG		
HOXC5	NM_018953	TTCCAAAATGAAAAGCAAAGAGGCTCTTTA	AATTTCACCTCCCTCTACTCACTG		
HOXC6	NM_004503	AGAAGAGGAGAAGCAGAAAGAGTG	GAAGGCCGGGGCCGGGCG		
HOXD1	NM_024501	GTCCCAAGAGCCTTCGTG	AACAGAGCAAGACTCCGTGTCAAAAAAAAA		
HOXD10	NM_002148	CGCCAACCTCACGTTTTCTTA	CCTCCAGCTTTTCTCCCCCAT		
HOXD11	NM_021192	GCAGTATTTCACTGGAAACCCCTTATTTTG	TCGATTTTCAGTTGCATGGGTTCTG		
HOXD3	NM 006898	CAAACTGACGCATCTGTA	CCCGAGAACCAATTTATGCACTAGACT		
HOXD8	NM 019558	AGCCGAAGGCCTGACAAATTA	TTTTTTTTTTTAAACAGCGCGGAATGTGT		
HOXD9	NM_014213	GAAATGCCCCAAAGGAGACTG	GAGACACATCAGAGAGATCTGTCAGGT		
HRAS	NM 005343	AAGTGTGTGCTCTCCTGA	GAGCACCACAGCCCAGAC		
HSF1	NM 005526	GGACCCCACTGTCTCCTA	CTGGGGAGTCGGGCAGGC		
HSF2	NM 001135564	GGATAGTGATATGCCACTTTTAGATAGCTA	TCCAGTGATAATATTCTTACACTATTTGGG		
ID1	NM 181353	GAGATCCAGATCCGACCACTA	TTAAAGACACCGGAAACACTCATTCAG		
ID2	NM 002166		CALCENCIE CONVICTOR CONTINUES		
102	NM 002167				
105	NIM 002107				
	NIN 001242452				
IKF5	NIVI_001242452		TGAGATACTATCTCACCTGTCAGGTTG		

ITFG2	NM_018463	CCTCCAGGATCCCACCTA	AGTATAATTGAGAGGAATTTGAAAGCAATG	
JAK2	NM_004972	GGATCAAATAAGGGATAACATGGCTGGATG	GATTTCTGCATCCAGAACTATTAAAATGCT	
JARID2	NM_004973	CAAAAGTGCTTCGAGCTCATCATG	ATGGAAACCATTAGGTTAGGCTGAAG	
JUN	NM 002228	ACGCAGCAGTTGCAAACATTTTGA	TTCTAGTTTGACTCTTCCTAAATTCTTTGC	
KL	NM 004795	CTCGAAGAAAGGCAGAAGAAGTTACAAATA	TGGGTCGCCCTCCCACCC	
KLF4	NM 004235	CTCGCCTTACACATGAAGAGGCATTTTTAA	GTTTTTTTTAATAAAAAAGGTATTTTAA	
KLF5	NM 001730	TATGAAGAGGCACCAGAACTG	CAGAGCGAGACTCCGTCTCAAAAAATAAAT	
KRT1	NM 006121	TCTACCACTTATTCCGGAGTAACCAGATAA	GGTGAAATGTTGCCTGGTTGG	
KRT12	NM 000223	CAAGTTCAGGAAATTGAAGAACTAATGTAA	CTTAATCCTCAAACCCTGACATCTTCATCC	
LMX1A	NM 177398	TCCATGCAGAATTCTTACTTCACATCTTGA	TTGAAGACCCTTTTCTCCTTATGTTTTGCT	
LRFN1	NM 020862	CTGGAGAGTACCGTGTGA	ATCTTCCCATCTTCCTTCAGTCTCACTTAG	
LRFN2	NM 020737	ATGGAGAGCACGGTCTAG	TCTTGTCAATTGGCAACAATTACCCACTAC	
LRRN1	NM 020873	CGACACATCCAGAAGCTATTACATGTGGTA	CACTGCCCATTAGGTGCTAGTCAGT	
	NM 005583	AGCCCAGAGGTGCGGTGA	CTTCTGTCCAAGCGCCGG	
MAB2111	NM 005584	ACCAACCCGAAAAGTTTGGAAAAACTTTAG	ΑΤGCACTGTATTTTATTTTAAAATAACTTA	
MAF	NM 005360		GTCAGATACATTGTAAAAAAATTATTACATG	
MAF1	NM 032272	GGTCCCAGTGATCTGTATTTG	CTCTGCCTCCATTTCAGCAACT	
ΜΔΕΔ	NM 201589	CCCGACTTCTTCCTGTAG	CTECTCACTTTCTCCCTECT	
MAER	NM 005461			
MAEE	NM 001161572			
MAG	NIM_001101373			
MAY	NM 1/5112			
	NNA_005596			
	NM_005586			
IVIED 28	NM_025205			
INICB	NM_005931			
MILL3	NM_170606		AACTTATTIGAAAATCTAAGAAAACCAAGT	
MILL4	NM_014727			
MLL5	NM_182931			
MLPH	NM_024101	GGTGGCCCACCAGTCCTA	GAGAAACCACTGACTTCTGTCAATCTTTAG	
MLX	NM_170607		GAGGCAGAAGTACTGTAAGGAGTGGA	
MMP11	NM_005940	TGCCAACACTTTCCTCTG	GCAGAAGGAGCCCTGAGCA	
MSH3	NM_002439	GGAAGAAACACAGACTTCTCTTCTTCATTA	GTTAATGAACAGAAAGGTCCCAAATGAACA	
MSX2	NM_002449	TGGCATGTACCACCTGTCCTA	CCCCACCACCACCAATCAC	
MTOR	NM_004958	CTTAGGTGCCCTTTCTGGTAA	TGGGAACAGTCTGAGGAAAGGGA	
МҮВ	NM_005375	CCGGACGCTGGTCATGTG	TGTTCTTTCTTTTCCATTGTAATGATTCCT	
MYBBP1A	NM_014520	AAGGCAGGGAAGCCCTGA	CAGGTGGAATACTCACCCACCAA	
MYBL2	NM_002466	TCGGACCCTCATCTTGTCCTG	AAACAGGGTCAAGGGCTCAG	
MYC	NM_002467	GCTACGGAACTCTTGTGCGTA	GAACTTAAAGACCTTAAGGCCCCCA	
MYCBP	NM_012333	GAGGAGAAGCGTGCTGAATAG	TTTAGGCCCAGCAGTTTGGGTATT	
MYCL1	NM_001033082	AAAAGAATTGCATACCTCACTGGCTACTAA	ATGTCTGAAATGGCATTTCAGGAACC	
MYCN	NM_005378	AATTGAACACGCTCGGACTTGCTA	GGGACAATGACTCATGCCCC	
MYF5	NM_005593	TAGTTCCAGGCTTATCTATCATGTGCTATG	CCTAAACTGGGTACATGAGAATGGTAAATA	
MYF6	NM_002469	GGAGGAAGTGGTGGAGAAGTA	AGGAAAGCCAAATTTCCTTTCAATTGG	
MYOD1	NM_002478	CCCGATATACCAGGTGCTCTG	TTTGCACCCCTCCTTCCTTC	
MYOG	NM_002479	GATGAAACCATGCCCAACTGA	AAGAGCAGGGGTCCCCAG	
MZF1	NM_001267033	AACGCAGCAACCTGCTGA	ATGCTAGGAGCCACCTCTCTCA	
NAB2	NM_005967	TGAGGCCAGCCGGCAGTG	CCAGGGTGAGAGTCTGGGTC	
NANOG	NM_024865	CATGCAACCTGAAGACGTGTG	AGGTTCAAGCGATTCTCCTGC	
NCOA6	NM_014071	TCCAAGCGAAGAAAATCCAAGTAA	AAGCCAAGAATGAGGTGAGGGA	
NCOR2	NM_006312	CTCTCCGACAGCGAGTGA	TTACCAAGGGTATAAATATTCAACTTGCAA	
NFE2L2	NM_001145413	AGTAAGAAGCCAGATGTTAAGAAAAACTAG	TATTTCTCTGTAACCCTGGTACTAGAAATG	
NFKB1	NM_003998	AGGACCTCTAGAAGGCAAAATTTA	AAACACTTTCCTTTTGATAATTATTTGTTC	
NFXL1	NM_152995	TACATCACCCATGATGTCAATTAA	AACATATCTACTTTTAGATACTTTTAGGT	
NFYC	NM_014223	CCAGGTGACCGGCGACTG	AGGTACACAGCATTAAGTTCCCTTAGCT	
NHLH1	NM_005598	CCACGTGCTGGACGTCTG	TGTGGCCCCTTTTCTCTGTCTT	
NHLH2	NM 005599	CACGTCCTGGACGTGTAG	ΑΤCAAATATTTCACTACATAAATATGTTTA	
NKX2-1	NM 003317	TACGGTCGGACCTGGTGA	CCTGGCCTCCTTACCTCCTTAA	
NKX2-5	NM 004387	GGTATCCGAGCCTGGTAG	AACCAGTATGGTTCCAGCAAGG	
NRF1	NM 005011	GGTGGTGACATTGGAACAGTG	CTTTACGGAGGTCCCCAGC	
NRL	NM 006177	TCCCACCTCTTCCTCTGA	GCCTGCCCTCCACCCCA	
NRM	NM 001270710	CCTGGCTCACGGGCTTGA	GGGGGCGGGTCTGCGGGG	

NRN1L	NM_198443	CCTGAGGCCTCTGGCCTA	TGGGAAATGAGTGTTTGTAAGGAGGAAGAT	
NUAK2	NM_030952	TGCTCAAAGCTCACCTGA	GAGCTACTGAGCTCACGTTTGTTTTGATTC	
NUP153	NM_005124	ATAAAGACTGCTGTTAGACGCAGGAAATAA	CAGATACTTTCAGATACTTTCCCTTTCTCT	
OGN	NM_014057	AAAAGATTACCGATAGGGTCATACTTTTAA	AATTTGAGAGTTATTTGATGGTGTTTTGCT	
OLFM1	NM 014279	CCGCTCCGACGAGTTGTA	TGGAGATCCAACAGGGACCTGT	
OLFM3	NM 058170	CATATCATCAAGACAGAGGATGACACATAG	GAATCTCTTAAATTTTCCAACTCCCAGTAG	
OLFM4	NM 006418	TGTCTTGCAGAAGCCCCAGTA	TTATAAAAGTTATTGATGTGATCTGTTGTT	
ORC5	NM 002553	ATAATAAAATACTTGTATGATTTCTTGTGA	TGGGTAGCTAATTTTAAGAAAGTGACCAGA	
OTX2	NM 021728	TGGAAATTCCAGGTTTTGTGA	TCTATTTTATGCATAGATTAGCAAAAAAAA	
PAX3	NM 001127366	TTTCATTATCTCAAGCCAGATATCGCGTAA	ATACAACTGTGGGTTGTGTGTAACCTTATTTG	
PBX3	NM 006195	TGTGCACTCGGATACCTCTAACTA	GCAGCTGTTCCTTCCCTCC	
PRXIP1	NM 020524		GAGCAAAATGGAGCCAGGGT	
DITY1	NM 002653		GAATGGTGGTGGGGAAGCG	
	NM 000225			
	NIM_014252			
	NINI_014352			
	NINI_000238			
PTHLH	NIVI_002820			
PTIVIS	NM_002824			
QSOX1	NM_002826			
RARA	NM_000964	GGCCACCCACTCCCCGTG	GGCAGCTTGGAAGGGTGC	
RARB	NM_000965	TCAGTCACCACTCGTGCAATA	ATAGACTGCCGTGCATTAGCACA	
RARG	NM_001042728	CTGAAGTCCCCAGCCTGA	TGTCCCCACCACAATCCAG	
RB1	NM_000321	CATGGATACCTCAAACAAGGAAGAGAAATG	GAAGAAATAAATTTGGAAATCTCTAGCATA	
RB1CC1	NM_014781	AAAGCCGTATCATGGAATAAGAAAGTATAA	GAAGGGTACCAATTAAGTCAAAATGGCCTA	
REV1	NM_016316	ACTTATGGAAGCACATTAAAAGTTACATAA	TTCCTGATATTTGGGCTTAGTGCTTCTAAA	
RFX1	NM_002918	GCGCTGCCCTCCAGCTAA	CCAGGCCGGCAACCTGGC	
RFX2	NM_134433	TCCCTGCAGGGCATCTAG	GGGGGACAGGGCCTAGAG	
RFX3	NM_002919	GACTGTGGAGTTATTGCAAGAGTTCCTTAA	GAAGTGGAAAAGATGAATATTTCAACTGAC	
RFX5	NM_000449	AAAGCAACACCCCCATGA	ΤΑΑΑΑΑΑCAAGCAAAATTAAACACATTTT	
RFX6	NM_173560	AGCAGCTGGAGGCACTTA	GGATATGATATGCAAATGTTTTTAAATTAT	
RHEB	NM 005614	TCTTCATGCTCGGTGATGTGA	ACAGAGTGAGACCCTGTCTTTAAAAATGTA	
RHO	NM 000539	CCAGGTGGCCCCGGCCTA	GCCTCCCAAAGTGCTGGGATTA	
RHOA	NM 001664	AAATCTGGGTGCCTTGTCTTGTGA	CCAGATTAGCTGCTGGGTGG	
RHOB	NM 004040	CAACTGCTGCAAGGTGCTATG	ATGCTCTCAAAGGGACTTCATCCTCATTTA	
RHOC	NM 175744	GGCTGTCCCATTCTCTGA	GAGCCAGGCATGACCTCATC	
RHOF	NM 019034	CTCTGCCTGCTGCTCTGA	GGCACCTGCGTTTGCCCT	
RHOG	NM 001665	TCCTGCATCCTCTTGTGA	GGGAGCCTAGAGCTTTGTTAGGGA	
RHOH	NM 004310	CTTCTCCATCAATGAGTGCAAGATCTTCTA	AAAGTGACACTCTCTTGCTTCTGTTC	
RHOT1	NM 001033566	TATGTACAAAGCATTATTGAAACAGCGATG	CCAAAGTGCTGGGATTACACGATTGA	
RHOV	NM 133639	AAGAAGTTCTTCTGCTTCGTTTGA		
RINS	NM 024832	GGAGCCCAACTTCCTGTG		
	NM 012421	GACAGATGAGCTTTGTGTGGGAAGTTCATA		
DNE1E2	NIM 172557	ΑΓΤΟΤΟΛΟΕΤΤΤΟΤΟΤΛΟΟΛΛΟΤΤΕΛΤΑ		
DNE42	NIM 017762			
RINF43	NNA 014245			
	NINI_014245			
ROCKZ	NIVI_004850			
RURB	NM_006914		GGAAACIIIACAAAGCAGGGGIIIGIAIGI	
RURC	NIM_005060			
RICA	NM_003729	AGGAATIGGGATGACAAATCCAAATCTATA		
RXRB	NM_001270401			
RYK	NM_002958		GGAGICIGAGCCAGCIIAACIGI	
SDC1	NM_002997	AAACAGGAGGAATTCTATGCCTGA		
SDC4	NM_002999	AAIGAGTTCTACGCGTGA	CICIGCCCCCACCCTCTG	
SETDB1	NM_012432	TGAATGCAGAGGACGTCTTCTTTA	CGAGAACTCCATCTAAAAAAATTCACATGC	
SIM2	NM_005069	CATCACCAACGGGAGGTG	AAAGGAATTCCTTTCCCTGGGAG	
SIX1	NM_005982	GTGGACTTGGGGTCCTAA	GAACAGAAATAGGAAAGAGTAAGAAAGAAA	
SIX2	NM_016932	GTGGACCTGGGCTCCTAG	ACCTAGCGACTGACACAAGTCG	
SIX6	NM_007374	CAGCGAGTGCGACATCTG	GTTTAAAACATATACCAGGAAGCACCAAAG	
SMAD6	NM_005585	CCTCCTCAACAACCCCAGATA	AGAGTAAATGTGACTTTCCTCCCTTTTCAA	
SMARCE1	NM_003079	CCCATACCAGAAGATGAGAAAAAAGAATAA	AGTTGGGTGAGACAAGGGC	
SNAI1	NM_005985	CTCAGGATGTCCCCGCTG	GTGACACCCAGGACTCCAAAG	

SNAI2	NM_003068	TGCTGTGTAGCACACTGA	TTTTTGTTAAAGTGGTATGCTAACAAACCA	
SNAPC1	NM_003082	ATCCAAGAAGAGGAGAAAACACTG	AGTGGGGCCAATAATGGATCTACA	
SNF8	NM 007241	AGAGAAGCCCTCCCCTGA	TTTTCTTTCCTCCAATTTAGCCACGATTGG	
SNX4	NM 003794	AATGCTAAGGAATGCTTTAGCAAGATGTAA	TGTGTACTCAATGTTTAGCTCTCACTGATA	
SNX6	NM 021249	GCAGTGTTAAATGGAGACACATAA	AGGGGCCAAGGGATGCAC	
SOHLH1	NM 001012415	GCTGGTCCCCCGCGTAA	CTACCCCAGGGCACCAGG	
SOLH	NM 005632	TEGECCCCEACCECTETE	CTTGTGAGTCACCCCAC	
SON	NM 138927		GTGTGTGTGTGTGTGTGTGTGTGTG	
SOX13	NM 005686		GCATTCCCTTCCATTAACCCAATTCC	
50/15	NM 002106			
5072	NINI_005100			
2012	NINI_005054			
50X8	NIVI_014587			
5089	NIVI_000346			
SPZ	NM_003110			
SP7	NM_152860	AGCAACTIGCIGGAGATCIGA		
SP8	NM_182700		AGCITIGCCAAATAGATCTTTCCATCTAAC	
SPDEF	NM_012391	TTCGTGCACCCCATCTGA	CAATCAATTATCCCTTGCCCTTTAGGCT	
SPEN	NM_015001	GATTGTCATTGCCTCCGTGTG	GGACTGACTGACTAGGAGGCAGAA	
SPI1	NM_003120	CGCCACCCGCCCCACTGA	TGTGTCATTGGTCCTCATGTTCC	
SREBF1	NM_001005291	ACTGTCACTTCCAGCTAG	GTAAACGTGTGTATTATATCTGGCCTCGTT	
SREBF2	NM_004599	TGCCATTGCCGCCTCCTG	TGGGGTAGGGGGGGGGGGGG	
SSRP1	NM_003146	GCGTCAGGATCCGATGAGTAG	AATGCTCGTCCAGCCGGG	
SSX1	NM_005635	CCCTGAGGAAGATGACGAGTA	GCGCTCAGCACGAGGACA	
STAT1	NM_007315	TTTGTCTTTTTACAGATGAACACAGTATAG	TAGGGCAGGTAAGGACAACATTTAGGAAAA	
STAT2	NM 005419	TTGATGCCTTCTGACTTCTAG	AAGGGAAGAAGAAATATGACAAGAGGAATG	
STAT5A	NM 003152	CAGAGGCTCCCTCTCATG	AAACCACAGCAAAGCGGG	
STAT6	NM 003153	GCCAACCCCAGTTGGTGA	CCCCAAGTCCTTTGCAATTTCTTC	
STRA13	NM 001271007	CAGCTCCTGGACTTCTAG	CCTGGGGGTGGGGCCGAG	
SUV420H2	NM 032701	CGGCGGTGAAGAGCTGTG	CCTAGTCCATCACGCTCCCAAAT	
SWI5	NM 001040011		TTATGCTAATTCCTCACAGGATGATTTTAA	
TAF4	NM 003185			
TAGINO	NM 003564			
	NM 005421			
TEVO	NIM_005994			
	NN4 000102			
TBX5	NM_000192			
IBX6	NIVI_004608			
TCERG1	NM_006706			
TCF15	NM_004609	CGAGGGCCACGGAGAIGA	I GAA I GGGACA I CACAGGAAAC I G	
TCF19	NM_007109	GGCTGGCATTCAGACCTA	GCCTGGGACACAGTAGATAGACAC	
TCF7L2	NM_030756	GCTCGTCACCAAGTCTTTAGAATA	GAGTCCAAGACCACGTTCTGGTATCTAA	
TEK	NM_000459	TGCTGAAGAAGCGGCCTA	AGGAGACCTTTTCAATCTGATGAGCTTC	
TERT	NM_198253	TTCAAGACCATCCTGGACTGA	TGACCACAACCCCATTCACTCATAG	
TFAP2A	NM_003220	AAAGAGGAGAAGCACAGAAAGTGA	GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	
TFDP1	NM_007111	CGAGAATGACGAGGACGACTG	ACAACATGTGGTGGTGGGGTTT	
TFE3	NM_006521	AGCATGGAAGAGGAGTCCTGA	TTTGCATATTGTCTTCCTCCATGCC	
TFEB	NM_001167827	GAGGGCGATGTGCTGTGA	TGAGGCGTGTGACAAGCGT	
TFG	NM_001195479	ACCTGGACCTGGTTATCGATA	ACCAAATGGCACTGTTTTCTCTGAAT	
TGFBR3L	NM 001195259	GCCCAGGAGGTCCCAGTG	TGGGCATATGGGCCCCGT	
TNFAIP3	NM 006290	TCAGTTCAAGCAGATGTATGGCTA	TTATTATTATGAAAAGCTGCCTTGCTACC	
TOPORS	NM 005802	TGTCTTGGTAGAGACTGTGATATGTCTTAA	AGGCAAAGGCAAACTGAAGGC	
TP53	NM 000546	GGGCCTGACTCAGACTGA		
TP53RP2	NM 005426		GCAAATGGGTTTGGAAACAATTCACAAA	
TRIM29	NM 021253	CCCAACAGATTGGGAGTG	CTCTGTCTCATAAATAAAATGTAGATGTCC	
TDIM71	NM 001020111			
	NIM 007344			
1111	NN4_002504			
	INIVI_003594			
	NIVI_000474			
UBIE	NIVI_014233			
USF1	NM_207005	GILAILAAGAAIGACAGCAACTAA		
USF2	NM_003367	CGAGGGCACCCGGCAGTG	CCATCCAACCAACCACTGGGTAAT	
USP6	NM_004505	TGATTACGAAAAGTACTCTATGTTACAGTA	GTACTGGTCTGTAGCCCAGGAGT	

VAMP2	NM_014232	CCTCTCTCCACAGTTTACTTCAGCACTTAA	CTCTTGCAAAGTCCAGTCCATTACCAAT
VEGFA	NM_001171627	TGTTTTCCATTTCCCTCAGATGTG	ACAACAAGGTGGGTCACCC
VIM	NM_003380	AACTTCTCAGCATCACGATGACCTTGAATA	GTGAGGTCTATCAAAAATGACAAAATTAAG
VIMP	NM_203472	TCTGGCGGATGAGGCTAA	TCCCCTCCATTATCTCCTAATCATTCTC
WT1	NM_024424	CTCCAGCTGGCGCTTTGA	TGAAGTTTGACAGAGAGAAATAAATTGTGG
XBP1	NM_005080	AGCTGGAAGCCATTAATGAACTAA	AAAGCAGGCAGTAATTAAGGTGGAAAA
XRCC3	NM_005432	GGGACCCAGTCCCACTGA	AGCTACTTAACGGTTCTGGGCC
XRCC4	NM_022550	AGAAGACCTCTTTGATGAGATTTA	ΑΤΑΑΑΤCTTTTATCAATAATCCCTGAAAAA
XRCC5	NM_021141	TTGTTCTTGTTCACAGTTGGACATGATATA	TCCTAGAAGCCCAAAGTAAAGCACT
YBX2	NM_015982	ACCACCATCCTGGAGTGA	AACCCATGATAGGGGCACTCTTC
YY1	NM_003403	TAAGGCCAAAAACAACCAGTG	TCAATAATCACTGTAATTGAGTGCAAAATA
ZCCHC3	NM_033089	CGGCGTGGCCGGGCACTA	CAACGTAGTAGGTGCTAAGTGTTGC
ZFP36L1	NM_004926	TTCAGCAGACTTTCCATCTCAGATGACTAA	GCTATAGGCTTAGCTTATAGGGATGAGAGA
ZFYVE1	NM_178441	AATAAAAAGCCCGGTGACCTTTAA	GTAAAAGACTGCAGTATTTGCAGGTAAAAT
ZKSCAN5	NM_014569	TACCTTAAGTGTAGAGGGGTCTCTGTTGTA	ATTAACAGTGATGCGGGTCTTCACT
ZMYND11	NM_006624	CTGCCGCCGGAAAAGATG	GTTTAAGTGAACAAATGATGTTTAACACAC
ZNF282	NM_003575	GCCTCCTGAGCGAGACTA	CACTACCCCCCTCCCCCA
ZNF331	NM_001079906	ACATCAGAGGATCCACAACAGTTG	CTCTGGGCCCTGACCCCG
ZNF362	NM_152493	GCGAATCTCTCTCATCTG	CTCAGTTCAGCACCTGGAGTGA
ZSWIM4	NM_023072	GCGGGAGCGTTTTGGTTG	CTGGGCAACAGAGAAAGACCAAAAAAAAAA

Primer	Sequence
SV40 let-7c target mutagenesis F	CTTGTTTATTGCAGCTTATAATGACATGTAACCATACAACCTACTACCAGTTACAAATAAAGCAATAGCATCAC
SV40 let-7c target mutagenesis R	GTGATGCTATTGCTTTATTTGTAACTGAGGTAGTAGGTTGTATGGTTACATGTCATTATAAGCTGCAATAAACAAG
SV40 miR-10b target mutagenesis F	CTTGTTTATTGCAGCTTATAATGACATGTACAAATTCGGTTCTACAGGGTAGTTACAAATAAAGCAATAGCATCAC
SV40 miR-10b target mutagenesis R	GTGATGCTATTGCTTTATTTGTAACTACCCTGTAGAACCGAATTTGTACATGTCATTATAAGCTGCAATAAACAAG
SV40 gateway F	GGGGACAGCTTTCTTGTACAAAGTGGAACTTGTTTATTGCAGCTTATAATGGT
SV40 gateway R	GGGGACAACTTTGTATAATAAAGTTGGACGGTATACAGACATGATAAGATACA
pmiRint pro mut F	GTATCATATGCCAAGTACGCCCCCCTCGAGATGGCCTCCTCCGAGAACGTC
pmiRint pro mut R	GACGTTCTCGGAGGAGGCCATCTCGAGGGGGGGCGTACTTGGCATATGATAC
CMV (Spel)	ATGACTAGTAGTTCCGCGTTACATAACTTACGGT
CMV (Sacl)	GAGCTCTGCTTATATAGACCTCCCACCGTA
L2R3 (AsiSI) F	ACGTGCGATCGCACCCAGCTTTCTTGTACAAAGTTGG
L2R3 (Mlul) R	ACGTACGCGTGTAAAACGACGGCCAGTGAATTATC
miR10b 400 asisi F	ACGTGCGATCGCAAGAATATTCTGGTTGTTCGCC
mir10b 400 noti R	ACGTGCGGCCGCTCTTTCTTTCTTTCAGCACCC
let7c 400 asisi F	ACGTGCGATCGCGACATTTTACGTGACCTATGCTG
let7c 400 noti R	ACTGGCGGCCGCCCATTAGAAATACCATTTTGACA
PGK BamHI F	CATGGATCCTGGTACCTACCGGGT
PGK Pstl R	CATCTGCAGTGTCTAGAGTCGAAAGG
TIC mut Pstl F	GGACGTGGTTTTCCTTTGAAAAACACCTGCAGTAATCCATGGAAGACGCC
TIC mut Pstl R	GGCGTCTTCCATGGATTACTGCAGGTGTTTTTCAAAGGAAAACCACGTCC
SV40 pA For (Nsil)	ACGTATGCATAACTTGTTTATTGCAGCTTATAATGGT
SV40 pA Rev (XmaJI)	ACGTCCTAGGGACGGTATACAGACATGATAAGATACA
TIC P2RP3 mut F	GTCCAAATTGTAACTAGAGATCTCCGCGCGCGCTAGCGGGACGCGCCCTGTAGCGG
TIC P2RP3 mut R	CCGCTACAGGGCGCGTCCCGCTAGCGCGCGGGGGGAGATCTCTAGTTACAATTTGGAC
P2R-P3 BgIII F	CATAGATCTGTAAAACGACGGCCAGTCTTAAGC
P2R-P3 Nhel R	CATGCTAGCCAGGAAACAGCTATGACCATG
MS2 BgIII F	ACGTACAGATCTACATGAGGATCACCCATGTCT
MS2 Apal R	ACGTACGGGCCCACATGGGTGATCCTCATGTTT
pLIFE ampli F	GGCGGAAAGTCCAAATTGTAACTAGAGATC
pLIFE ampli R	CAGGAAACAGCTATGACCATGTAATACGACTCACTATAG

Supplementary Table 2a - 3'LIFE hits - let-7c

Rank	Score	Refseq	Position	Alignment (top 3'UTR, bottom miRNA)
1	0.52	E2F5	1-37	5' GAUUCCAUGGAAACUUGGGACUGUUAUC <mark>UACCUC</mark> UAA 3' :
2	0.58	CREM	779-804	5' AGUAAACCACAAAAAAUACCUCAGG 3' 3' UUGGUAUGUUGGAUGAUGGAGU 5'
3	0.58	RHOB	922-951	5' CUGACCACACUUGUACGCUGUAACCUCAUC 3' : :: 3' UUGGUAUGUUGGAUGAUGGAGU 5'
4	0.60	HOXD1	510-535	5' UUUAAAAAAGCGGUUUC <mark>UACCUC</mark> UCU 3' : : 3' UUGGUAUGUUGGAUGAUGGAGU 5'
5	0.60	XBP1	798-836	5' GGAACACCUGCUGAGGGGGGCUCUUUCCCUCAUG 3' : :: : : 3' UUG-GUAUGUUGGAUGAUGGAGU 5'
6	0.65	SETDB1	330-351	5' GGAGCCUGUGUAUCUAC <mark>UAUCUC</mark> CAG 3' : : : 3' UUGGUAUGUUGGAUG <mark>AUGGAG</mark> U 5'
7	0.65	SREBF1	805-837	5' GGCCUCCAUGGGGUCAGUUGUCCCUUCUCACCUCCCA 3' : : 3' UUGGUAUGUUGGAUG <mark>A-UGGAG</mark> U 5'
8	0.66	РВХЗ	892-923	5' UGUAGCUUAGAGUGCUCACUUAC <mark>UACCUC</mark> UGA 3' : 3' UUGGUAUGUUGGAUGAUGGAGU 5'
9	0.68	ID1	173-199	5' CGUCCCUUCCAACCCGCC <mark>GGUCUC</mark> AUU 3' : :: 3' UUGGUAUGUUGGAU-G <mark>AUGGAG</mark> U 5'

10	0.69	MAF1	246-274	5' ACUGCCCUGCCCAAAUGAACUGCCACAGC 3' : : 3' UUGGUA-UGUUGGAUGAUGGAGU 5'
11	0.70	BHLHB9	1802-1825	5' CUUUGCAUGUCAAUAAAUAUGCCUCUAC 3' : : : : 3' UUGGUAU-GUUGGAUG-AUGGAGU 5'
12	0.70	NRM	-2-25	5' UGAUCAGCAAGACCUCCGCUACCUCCGG 3' : : : 3' UUGGUAUGUUGGAUGAUGGAGU 5'
13	0.70	BCCIP	215-247	5' UUUUCCUUUUCUAACCUAUUAAAAUACCUCACU 3' : 3' UUGGUA-UG-UUGGAUGAUGGAGU 5'
14	0.71	RFX6	450-474	5' AAAGUCAAAUGUGUAUGUUC <mark>UACCUC</mark> CAA 3' :: :: : 3' UUGGUAUGUUGGAUG <mark>AUGGAG</mark> U 5'
15	0.71	МІСВ	732-757	5' GGUUCAAGCACUUCUCG <mark>UACCUC</mark> AGA 3' : 3' UUGGUAUGUUGGAUG <mark>AUGGAG</mark> U 5'
16	0.72	HSF1	287-319	5' AGAAUUGUAUUUUGGAUUUUUACACAAC <mark>UGUCCC</mark> GUU 3' ::: : :: : 3' UUGGUAUGUUGGAUG <mark>AUGGAG</mark> U 5'
17	0.72	DLX4	165-196	5' CUAACCCUAACAGCUAAAUCAAGGACCUCAGC 3' : 3' UUGGUA-UGUUGGAUGAUGGAGU 5'
18	0.73	RHOV	807-828	5' AAGGUCACACAGCCUAG <mark>AAGCUA</mark> GAG 3' ::: : : 3' UUGGUAUGUUGGAUG <mark>AUGGAG</mark> U 5'

19	0.73	CNNM2	1207-1232	5' GAGGGCUCUGUGCCUCC <mark>UGCCUC</mark> AGA 3' :: : : 3' UUGGUAUGUUGGAUG <mark>AUGGAG</mark> U 5'
20	0.73	USF2	296-323	5' GAGGCCCUGCCACGUCCCGC <mark>UGCCUC</mark> CUG 3' :: : : ! 3' UUGGUAUGUUGGAUG <mark>AUGGAG</mark> U 5'
21	0.73	RARB	1026-1060	5' ACUCCCAAAGAAACAGGCAUAGAAUC <mark>UGCCUC</mark> CUU 3' 3' UUGGUAUGUUGGAUG <mark>AUGGAG</mark> U 5'
22	0.73	OLFM4	714-736	5' AAAGUCAGUAGAAUCUUCUACCUCAUA 3' :: : 3' UUGGU-AUGUUGGAUGAUGGAGU 5'
23	0.73	CRK	1950-1971	5' GCUAAUUUAAUGUAUUUUACCUCACA 3' : :: : 3' UUGGUAUGUUGGAUGAUGGAGU 5'
24	0.74	DNMT1	293-317	5' GUAGUUUUUAUAUGUUGUAA <mark>UAUUUC</mark> UU 3' :: : :: : :: 3' UUGGUAUGUUGGAUGAUGGAGU 5'
25	0.74	SMAD6	99-127	5' AAAACCCCCCAGAUAUCAUC <mark>UACCUA</mark> GAU 3' : : 3' UUGGUAUGUUGGAUG <mark>AUGGAG</mark> U 5'
26	0.75	ETNK2	387-413	5' GGAGGCGGGGGGGGGCUCCUUUC <mark>UACCUC</mark> CAG 3' : : : : : 3' UUGGUAUGUUGGAUG <mark>AUGGAG</mark> U 5'
27	0.75	ARID3A	382-414	5' ACAGCAGUGUGGGCCGAUCCUGUUUACCUCAUA 3' : : :: : : 3' UUGGUAUGUUGGAU-GAUGGAGU 5'

28	0.76	EZH2	15-38	5' GAAAUCCCUUGACAUCUGCUACCUCCUC 3' : : : 3' UUGGUAUGUUGGAUGAUGGAGU 5'
29	0.76	STAT2	1192-1214	5' GGGUUCAAGUGACUCUCC <mark>UGCCUC</mark> AGC 3' : : ::: : 3' UUGGUAUGUUG-GAUG <mark>AUGGAG</mark> U 5'
30	0.76	ННАТ	695-725	5' AGAGAAGUAUAACAUGGUAGUUCCUCUACCUUACA 3' : : : : 3' UUGGUAUGUUGGAUGAUGGAGU 5'
31	0.76	MYCL1	548-569	5' UGAUCAACAUUGACCAUUACCUCACU 3' : : : 3' UUGGUAUGUUGGAUGAUGGAGU 5'
32	0.77	TRIM71	174-204	5' AGAAAAGUACAACAUUGCUUAAGUCCUACCUCAUC 3' : : 3' UUGGUAUGUUGGAUGAUGGAGU 5'
33	0.77	SPDEF	36-63	5' GCCUCUCCUGCCUGCCC <mark>UGCCUC</mark> AGC 3' : : : 3' UUGGUAUGUUGGAUG <mark>AUGGAG</mark> U 5'
34	0.77	EN2	1371-1396	5' ACAGUUCUGAAACAUGUGGCUACCUUGUC 3' ::: : : :: 3' UUGGUAUGUUGGAUG <mark>AUGGAG</mark> U 5'
35	0.78	TTF1	96-118	5' GUGGUAGUGCACACCUGUAAUUUCAAC 3' ::: : : :: :: 3' UUGGUAUGU-UGGAUGAUGGAGU 5'
36	0.79	HES5	50-76	5' ACGACCAGAGGGCGAGCCUGC <mark>UCCUCUC</mark> GCC 3' : : : : : 3' UUGGUAUGUUGGAUG <mark>AUG-GAG</mark> U 5'

37	0.80	RNF7	226-254	5' UAAUUUAUUAAAGGUGGUCCUUCCUACCUCUGU 3' :: : 3' UUGGUAUGUUGGAUGAUGGAGU 5'

Supplementary Table 2b: 3'LIFE hits - miR-10b

Rank	Score	Refseq	Position	Alignment (top 3'UTR, bottom miRNA)
1	0.44	ZMYND11	524-551	5' GGUAUAUGAUUGAAUUUAGGGAA <mark>CAGGGU</mark> UGA 3' : : : : : 3' GUGUUUAAGCCAAGAU <mark>GUCCCA</mark> U 5'
2	0.47	SDC1	734-759	5' GUCGCUCAUGUG-UGCAA <mark>CAGGGU</mark> AUG 3' : : 3' GUGUUUAAGCCAAGAU <mark>GUCCCA</mark> U 5'
3	0.57	RARG	439-473	5' GUGCCUAAUGCUGUGUGAUGCACCUG <mark>CAGGGU</mark> GUG 3'
4	0.58	LYL1	151-178	5' GGGGCAAGGUCUCGGGGGUCCGGAAGGGUGAU 3' : : : : 3' GUGUUUAAGCCAAGAU <mark>GUCCCA</mark> U 5'
5	0.64	OLFM3	30-67	5' AGGCAAAUGUGACAUGUUUUCAUUGAUUUAAACAGUGUGAU 3' : : : : 3' GUGUUUAAGCCAAGAUGUCCCAU 5'
6	0.67	NCOR2	668-695	5' GAUGUAAAUGAUGUGUUGGUUUA <mark>CAGGGU</mark> AUA 3' ::: : 3' GUGUUUAAGCCAAGAU <mark>GUCCCA</mark> U 5'
7	0.68	TCF15	249-273	5' AAAACAAAGACUGUUGGUGA <mark>CAGGGU</mark> GUG 3' : : 3' GUGUUUAAGCCAAGAU <mark>GUCCCA</mark> U 5'
8	0.69	MYF5	278-306	5' AUUUCUGAUAGGGGGCCAUUGAUUGAGGGUAGC 3' : : : 3' GUGUUUAAGCCAAGAUGUCCCAU 5'
9	0.70	CRK	78-104	5' AGUCUUAAUUACCAUAUUCAGGGUACG 3' : : 3' GUGUUUAAGCCAAGAUGUCCCAU 5'

10	0.71	USP6	1960-1988	5' AUCAAAAGUAUUGGUAAUUGUAUAUGGGGUGUA 3' : : :: : 3' GUGUUUA-AGCCAAGAUGUCCCAU 5'
11	0.71	DPF2	283-311	5' GGCCCAGCCCCUGGUGAUCACAGGGUUCA 3' : : 3' GUGUUUAAGCCAAGAUGUCCCAU 5'
12	0.72	TCF19	1350-1382	5' AGUAUAAAGCCAUUUAAGAAUUCCAGAGUAGGGUGGG 3' : : : 3' GUGUUUAAGCCAAGAUGUCCCAU 5'
13	0.72	SREBF1	717-760	5' CUUAGUGGCUUUUUUCCUCCUGUGUACAGGGAAGA 3' : :: : 3' GUGUUUAAGCCAAGAUGUCCCAU 5'
14	0.73	DLX1	791-817	5' UGAGGCUGUUUGCCAAUUCAGGGUUCU 3' : : : 3' GUGUUUAAGCCAAGAUGUCCCAU 5'
15	0.73	ANXA7	94-133	5' ACCGAAAGAGCUUUCUGUCAAGGACCGUAU <mark>CAGGGU</mark> AA 3' : 3' GUGUUUAAGCCAAGAUGUCCCAU 5'
16	0.75	FXR2	174-205	5' UCCAGGAGCUAGUGGAGGGGUGUGUAACAGGGUCAU 3' : : : 3' GUGUUUAAGCCAAGAUGUCCCAU 5'
17	0.76	HOXD11	382-409	5' CCUUCCUCUUCGGUGAAUG <mark>CAGGUU</mark> AUU 3' : : 3' GUGUUUAAGCCAAG-AU <mark>GUCCCA</mark> U 5'
18	0.77	NCOA6	267-302	5' UUCACAUUUCCUAAGCAGCCUAGAGUACAGGGUGAG 3' : 3' GUGUUUAAGCCAAGAUGUCCCAU 5'
19	0.77	HOXD10	257-285	5' AUUAUUUUUUCAUCGUAAUGCAGGGUAAC 3' : : : 3' GUGUUUAAGCCAAGAUGUCCCAU 5'

20	0.77	ННАТ	252-278	5' GUGUCUUACCCAGCUACA <mark>CAGGGU</mark> GAC 3' 3' GUGUUUAAGCCAAGAU <mark>GUCCCA</mark> U 5'
21	0.77	NUAK2	701-737	5' CCGGCUAAUUUUGUAUUUUUAGUAGAGACAGGGUUUC 3' : : :
22	0.78	HOXD1	442-468	5' UUUUGAGAUGACCAAAGCUAGU <mark>UAGGGU</mark> CUC 3' : : : 3' GUGUUUAAGCCAAGAU <mark>GUCCCA</mark> U 5'
23	0.78	STAT6	920-955	5' UCCACACCUCCAAUGCUGCCUGGGAGCCAGGGUGAG 3' : : 3' GUGUUUAAGCCAAGAUGUCCCAU 5'
24	0.78	ASCL2	1112-1138	5' GACACGAGCAGUCCCUGAGGGGCGGGGUCCC 3' : : : : 3' GUGUUUAAGCCAAGAUGUCCCAU 5'
25	0.79	HIVEP2	1267-1289	5' AGCCGGUUUACAUGGGAACAGGGUUAA 3' : 3' GUGUUUAAGCCAAGAUGUCCCAU 5'
26	0.79	GATA3	240-262	5' CUCAUAUCCCCUAUUUAA <mark>CAGGGU</mark> CUC 3' : : 3' GUGUUUAAGCCAAGAU <mark>GUCCCA</mark> U 5'

Supplementary table 3 - Literature review

The following references were used to define genes detected by 3'LIFE as either having a positive or a negative role in tumorigenesis.

let-7c Targets:

Gene	References:
E2F5	(Umemura, Shirane et al. 2009; Zhao, Wu et al. 2013)
CREM	(Passon, Puppin et al. 2012; Healey, Crow et al. 2013)
RHOB	(Marlow, D'Innocenzi et al. 2010; Zhou, Zhu et al. 2011; Kazerounian, Gerald et al. 2013; Medale-Giamarchi, Lajoie-Mazenc et al. 2013)
HOXD1	(Faryna, Konermann et al. 2012; Pussila, Sarantaus et al. 2013)
XBP1	(Doane, Danso et al. 2006; Sengupta, Sharma et al. 2010)
SETDB1	(Rodriguez-Paredes, Martinez de Paz et al. 2013; Noh, Kim et al. 2014)
SREBF1	(Furuta, Pai et al. 2008; Pandey, Xing et al. 2013)
PBX3	(Ramberg, Alshbib et al. 2011; Han, Gu et al. 2012)
ID1	(Kalas, Yu et al. 2005; Swarbrick, Roy et al. 2008; Pillai, Rizwani et al. 2011)
MAF1	
BHLHB9	
NRM	(Chen, Chen et al. 2012)
BCCIP	(Liu, Yuan et al. 2001; Meng, Liu et al. 2003; Lu, Yue et al. 2007)
RFX6	(Takata, Akamatsu et al. 2010; Huang, Whitington et al. 2014)
MICB	(Groh, Wu et al. 2002; Holdenrieder, Stieber et al. 2006; Kohga, Takehara et al. 2008)
HSF1	(Stanhill, Levin et al. 2006; Dai, Whitesell et al. 2007; Dai, Santagata et al. 2012; Xi, Hu et al. 2012)
DLX4	(Tomida, Yanagisawa et al. 2007; Zhang, Yang et al. 2012; Trinh, Ko et al. 2013)
RHOV	(Cavalli, Man et al. 2008; Peng, Zhou et al. 2011; Shepelev and Korobko 2013)
CNNM2	
USF2	(Ismail, Lu et al. 1999; Pawar, Szentirmay et al. 2004)
RARB	(Farias, Arapshian et al. 2002; Liu, Nugoli et al. 2011)
OLFM4	(Koshida, Kobayashi et al. 2007; Huang, Wang et al. 2012; Li, Rodriguez-Canales et al. 2013)
CRK	(Tsuda and Tanaka 2012; Kumar, Fajardo et al. 2014)
DNMT1	(Gazin, Wajapeyee et al. 2007; Huang, Stewart et al. 2013; Wajapeyee, Malonia et al. 2013)
SMAD6	(Kleeff, Maruyama et al. 1999; Jeon, Dracheva et al. 2008)
ETNK2	
ARID3A	(Peeper, Shvarts et al. 2002; Ma, Araki et al. 2003)
EZH2	(Chase and Cross 2011; Deb, Thakur et al. 2013)
STAT2	(Yu and Jove 2004)
HHAT	(Konitsiotis, Chang et al. 2014; Petrova, Matevossian et al. 2014)
MYCL1	(Kim, Girard et al. 2006; Xiong, Wu et al. 2011; Rudin, Durinck et al. 2012)
TRIM71	(Chen, Yuan et al. 2013)
SPDEF	(Steffan, Koul et al. 2012; Buchwalter, Hickey et al. 2013; Fletcher, Castro et al. 2013; Mukhopadhyay, Khoury et al. 2013; Noah, Lo et al. 2013)
EN2	(Martin, Saba-El-Leil et al. 2005; Bose, Bullard et al. 2008)
TTF1	(Lessard, Morin et al. 2010)

HES5	(Osipo, Patel et al. 2008; Mittal, Subramanyam et al. 2009; Aste-Amezaga, Zhang et al. 2010)
	also RAS implication
RNF7	(Tan, Li et al. 2011; Lazar, Suo et al. 2013; Yang, Huh et al. 2013)

miR-10b Targets:

ZMYND11	(Wen, Li et al. 2014)
SDC1	(Yang, MacLeod et al. 2007; Ishikawa and Kramer 2010; Nguyen, Grizzle et al. 2013)
RARG	(Chen, Goyette et al. 2004; Goranov, Campbell Hewson et al. 2006; Zhao, Graves et al. 2009; Yan, Wu et al. 2010; Huang, Luo et al. 2013)
LYL1	(Nagel, Venturini et al. 2010; McCormack, Shields et al. 2013)
OLFM3	
NCOR2	(Cheng and Kao 2009; van Agthoven, Sieuwerts et al. 2009; Varlakhanova, Hahm et al. 2011)
TCF15	
MYF5	
CRK	(Tsuda and Tanaka 2012; Kumar, Fajardo et al. 2014)
USP6	(Pringle, Young et al. 2012; Rueckert and Haucke 2012)
DPF2	
TCF19	
SREBF1	(Furuta, Pai et al. 2008; Pandey, Xing et al. 2013)
DLX1	
ANXA7	(Srivastava, Torosyan et al. 2007; Torosyan, Dobi et al. 2010; Jin, Wang et al. 2013)
FXR2	
HOXD11	(Shiraishi, Sekiguchi et al. 2002; Miyamoto, Fukutomi et al. 2005)
NCOA6	(Lee, Lee et al. 2006)
HOXD10	(Ma, Teruya-Feldstein et al. 2007; Ma, Reinhardt et al. 2010; Sekar, Bharti et al. 2014)
HHAT	(Konitsiotis, Chang et al. 2014; Petrova, Matevossian et al. 2014)
NUAK2	(Suzuki, Kusakai et al. 2003; Tsuchihara, Ogura et al. 2008)
HOXD1	(Faryna, Konermann et al. 2012; Pussila, Sarantaus et al. 2013)
STAT6	(Gooch, Christy et al. 2002; Wei, He et al. 2014)
ASCL2	(de Sousa, Colak et al. 2011; Reed, Tunster et al. 2012; Zhu, Yang et al. 2012)
HIVEP2	(Fujii, Gabrielson et al. 2005; Yin, Wang et al. 2010)
GATA3	(Chou, Lin et al. 2013; Chu, Lai et al. 2013; Li, Ishiguro et al. 2014)

References:

- 1. Aste-Amezaga, M., N. Zhang, et al. (2010). "Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors." <u>Plos One</u> **5**(2): e9094.
- 2. Bose, S. K., R. S. Bullard, et al. (2008). "Oncogenic role of engrailed-2 (en-2) in prostate cancer cell growth and survival." <u>Transl Oncogenomics</u> **3**: 37-43.
- 3. Buchwalter, G., M. M. Hickey, et al. (2013). "PDEF promotes luminal differentiation and acts as a survival factor for ER-positive breast cancer cells." <u>Cancer Cell</u> **23**(6): 753-767.
- 4. Cavalli, L. R., Y. G. Man, et al. (2008). "Amplification of the BP1 homeobox gene in breast cancer." <u>Cancer Genet Cytogenet</u> **187**(1): 19-24.
- 5. Chase, A. and N. C. Cross (2011). "Aberrations of EZH2 in cancer." <u>Clin Cancer Res</u> **17**(9): 2613-2618.
- 6. Chen, C. F., P. Goyette, et al. (2004). "RARgamma acts as a tumor suppressor in mouse keratinocytes." <u>Oncogene</u> **23**(31): 5350-5359.
- 7. Chen, H., K. Chen, et al. (2012). "The integral nuclear membrane protein nurim plays a role in the suppression of apoptosis." <u>Curr Mol Med</u> **12**(10): 1372-1382.
- Chen, Y. L., R. H. Yuan, et al. (2013). "The stem cell E3-ligase Lin-41 promotes liver cancer progression through inhibition of microRNA-mediated gene silencing." <u>J Pathol</u> 229(3): 486-496.
- 9. Cheng, X. and H. Y. Kao (2009). "G protein pathway suppressor 2 (GPS2) is a transcriptional corepressor important for estrogen receptor alpha-mediated transcriptional regulation." J Biol Chem **284**(52): 36395-36404.
- Chou, J., J. H. Lin, et al. (2013). "GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression." <u>Nat Cell Biol</u> 15(2): 201-213.
- 11. Chu, I. M., W. C. Lai, et al. (2013). "Expression of GATA3 in MDA-MB-231 triplenegative breast cancer cells induces a growth inhibitory response to TGFss." <u>Plos</u> <u>One</u> **8**(4): e61125.
- 12. Dai, C., S. Santagata, et al. (2012). "Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis." J Clin Invest **122**(10): 3742-3754.
- 13. Dai, C., L. Whitesell, et al. (2007). "Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis." <u>Cell</u> **130**(6): 1005-1018.
- 14. de Sousa, E. M. F., S. Colak, et al. (2011). "Methylation of cancer-stem-cellassociated Wnt target genes predicts poor prognosis in colorectal cancer patients." <u>Cell Stem Cell</u> **9**(5): 476-485.
- 15. Deb, G., V. S. Thakur, et al. (2013). "Multifaceted role of EZH2 in breast and prostate tumorigenesis: epigenetics and beyond." <u>Epigenetics</u> **8**(5): 464-476.
- 16. Doane, A. S., M. Danso, et al. (2006). "An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen." <u>Oncogene</u> **25**(28): 3994-4008.
- 17. Farias, E. F., A. Arapshian, et al. (2002). "Retinoic acid receptor alpha2 is a growth suppressor epigenetically silenced in MCF-7 human breast cancer cells." <u>Cell Growth</u> <u>Differ</u> **13**(8): 335-341.
- Faryna, M., C. Konermann, et al. (2012). "Genome-wide methylation screen in lowgrade breast cancer identifies novel epigenetically altered genes as potential biomarkers for tumor diagnosis." <u>FASEB J</u> 26(12): 4937-4950.

- 19. Fletcher, M. N., M. A. Castro, et al. (2013). "Master regulators of FGFR2 signalling and breast cancer risk." <u>Nat Commun</u> **4**: 2464.
- 20. Fujii, H., E. Gabrielson, et al. (2005). "Frequent down-regulation of HIVEP2 in human breast cancer." <u>Breast Cancer Res Treat</u> **91**(2): 103-112.
- 21. Furuta, E., S. K. Pai, et al. (2008). "Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1." <u>Cancer</u> <u>Res</u> **68**(4): 1003-1011.
- 22. Gazin, C., N. Wajapeyee, et al. (2007). "An elaborate pathway required for Rasmediated epigenetic silencing." <u>Nature</u> **449**(7165): 1073-1077.
- 23. Gooch, J. L., B. Christy, et al. (2002). "STAT6 mediates interleukin-4 growth inhibition in human breast cancer cells." <u>Neoplasia</u> **4**(4): 324-331.
- 24. Goranov, B. B., Q. D. Campbell Hewson, et al. (2006). "Overexpression of RARgamma increases death of SH-SY5Y neuroblastoma cells in response to retinoic acid but not fenretinide." <u>Cell Death Differ</u> **13**(4): 676-679.
- 25. Groh, V., J. Wu, et al. (2002). "Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation." <u>Nature</u> **419**(6908): 734-738.
- 26. Han, H. B., J. Gu, et al. (2012). "Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer." J Pathol **226**(3): 544-555.
- 27. Healey, M., M. S. Crow, et al. (2013). "Ras-induced melanoma transformation is associated with the proteasomal degradation of the transcriptional repressor ICER." <u>Mol Carcinog</u> **52**(9): 692-704.
- 28. Holdenrieder, S., P. Stieber, et al. (2006). "Soluble MICB in malignant diseases: analysis of diagnostic significance and correlation with soluble MICA." <u>Cancer</u> <u>Immunol Immunother</u> **55**(12): 1584-1589.
- 29. Huang, G. L., Q. Luo, et al. (2013). "Oncogenic activity of retinoic acid receptor gamma is exhibited through activation of the Akt/NF-kappaB and Wnt/beta-catenin pathways in cholangiocarcinoma." <u>Mol Cell Biol</u> **33**(17): 3416-3425.
- 30. Huang, J., A. Stewart, et al. (2013). "RGS6 suppresses Ras-induced cellular transformation by facilitating Tip60-mediated Dnmt1 degradation and promoting apoptosis." <u>Oncogene</u>.
- 31. Huang, M. Y., H. M. Wang, et al. (2012). "EVI2B, ATP2A2, S100B, TM4SF3, and OLFM4 as potential prognostic markers for postoperative Taiwanese colorectal cancer patients." <u>DNA Cell Biol</u> **31**(4): 625-635.
- 32. Huang, Q., T. Whitington, et al. (2014). "A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding." <u>Nature</u> <u>Genetics</u> **46**(2): 126-135.
- Ishikawa, T. and R. H. Kramer (2010). "Sdc1 negatively modulates carcinoma cell motility and invasion." <u>Exp Cell Res</u> 316(6): 951-965.
- 34. Ismail, P. M., T. Lu, et al. (1999). "Loss of USF transcriptional activity in breast cancer cell lines." <u>Oncogene</u> **18**(40): 5582-5591.
- 35. Jeon, H. S., T. Dracheva, et al. (2008). "SMAD6 contributes to patient survival in nonsmall cell lung cancer and its knockdown reestablishes TGF-beta homeostasis in lung cancer cells." <u>Cancer Res</u> **68**(23): 9686-9692.
- 36. Jin, Y., S. Wang, et al. (2013). "Annexin A7 suppresses lymph node metastasis of hepatocarcinoma cells in a mouse model." <u>BMC Cancer</u> **13**: 522.
- Kalas, W., J. L. Yu, et al. (2005). "Oncogenes and Angiogenesis: down-regulation of thrombospondin-1 in normal fibroblasts exposed to factors from cancer cells harboring mutant ras." <u>Cancer Res</u> 65(19): 8878-8886.

- Kazerounian, S., D. Gerald, et al. (2013). "RhoB differentially controls Akt function in tumor cells and stromal endothelial cells during breast tumorigenesis." <u>Cancer Res</u> 73(1): 50-61.
- Kim, Y. H., L. Girard, et al. (2006). "Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification." <u>Oncogene</u> 25(1): 130-138.
- 40. Kleeff, J., H. Maruyama, et al. (1999). "Smad6 suppresses TGF-beta-induced growth inhibition in COLO-357 pancreatic cancer cells and is overexpressed in pancreatic cancer." <u>Biochem Biophys Res Commun</u> **255**(2): 268-273.
- 41. Kohga, K., T. Takehara, et al. (2008). "Serum levels of soluble major histocompatibility complex (MHC) class I-related chain A in patients with chronic liver diseases and changes during transcatheter arterial embolization for hepatocellular carcinoma." <u>Cancer Sci</u> **99**(8): 1643-1649.
- 42. Konitsiotis, A. D., S. C. Chang, et al. (2014). "Attenuation of hedgehog acyltransferase-catalyzed sonic hedgehog palmitoylation causes reduced signaling, proliferation and invasiveness of human carcinoma cells." <u>Plos One</u> **9**(3): e89899.
- 43. Koshida, S., D. Kobayashi, et al. (2007). "Specific overexpression of OLFM4(GW112/HGC-1) mRNA in colon, breast and lung cancer tissues detected using quantitative analysis." <u>Cancer Sci</u> **98**(3): 315-320.
- 44. Kumar, S., J. E. Fajardo, et al. (2014). "Crk at the quarter century mark: perspectives in signaling and cancer." <u>J Cell Biochem</u> **115**(5): 819-825.
- 45. Lazar, V., C. Suo, et al. (2013). "Integrated molecular portrait of non-small cell lung cancers." <u>BMC Med Genomics</u> **6**: 53.
- Lee, S., D. K. Lee, et al. (2006). "Coactivator as a target gene specificity determinant for histone H3 lysine 4 methyltransferases." <u>Proc Natl Acad Sci U S A</u> 103(42): 15392-15397.
- 47. Lessard, F., F. Morin, et al. (2010). "The ARF tumor suppressor controls ribosome biogenesis by regulating the RNA polymerase I transcription factor TTF-I." <u>Molecular</u> <u>Cell</u> **38**(4): 539-550.
- Li, H., J. Rodriguez-Canales, et al. (2013). "Deletion of the olfactomedin 4 gene is associated with progression of human prostate cancer." <u>Am J Pathol</u> 183(4): 1329-1338.
- 49. Li, Y., H. Ishiguro, et al. (2014). "Loss of GATA3 in bladder cancer promotes cell migration and invasion." <u>Cancer Biol Ther</u> **15**(4): 428-435.
- 50. Liu, J., Y. Yuan, et al. (2001). "Inhibition of breast and brain cancer cell growth by BCCIPalpha, an evolutionarily conserved nuclear protein that interacts with BRCA2." <u>Oncogene</u> **20**(3): 336-345.
- 51. Liu, X., M. Nugoli, et al. (2011). "Stromal retinoic acid receptor beta promotes mammary gland tumorigenesis." <u>Proc Natl Acad Sci U S A</u> **108**(2): 774-779.
- 52. Lu, H., J. Yue, et al. (2007). "BCCIP regulates homologous recombination by distinct domains and suppresses spontaneous DNA damage." <u>Nucleic Acids Res</u> **35**(21): 7160-7170.
- 53. Ma, K., K. Araki, et al. (2003). "E2FBP1/DRIL1, an AT-rich interaction domain-family transcription factor, is regulated by p53." <u>Mol Cancer Res</u> **1**(6): 438-444.
- 54. Ma, L., F. Reinhardt, et al. (2010). "Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model." <u>Nat Biotechnol</u> **28**(4): 341-347.
- 55. Ma, L., J. Teruya-Feldstein, et al. (2007). "Tumour invasion and metastasis initiated by microRNA-10b in breast cancer." <u>Nature</u> **449**(7163): 682-688.

- 56. Marlow, L. A., J. D'Innocenzi, et al. (2010). "Detailed molecular fingerprinting of four new anaplastic thyroid carcinoma cell lines and their use for verification of RhoB as a molecular therapeutic target." <u>J Clin Endocrinol Metab</u> **95**(12): 5338-5347.
- 57. Martin, N. L., M. K. Saba-El-Leil, et al. (2005). "EN2 is a candidate oncogene in human breast cancer." <u>Oncogene</u> **24**(46): 6890-6901.
- 58. McCormack, M. P., B. J. Shields, et al. (2013). "Requirement for Lyl1 in a model of Lmo2-driven early T-cell precursor ALL." <u>Blood</u> **122**(12): 2093-2103.
- Medale-Giamarchi, C., I. Lajoie-Mazenc, et al. (2013). "RhoB modifies estrogen responses in breast cancer cells by influencing expression of the estrogen receptor." <u>Breast Cancer Res</u> 15(1): R6.
- 60. Meng, X., J. Liu, et al. (2003). "Genomic structure of the human BCCIP gene and its expression in cancer." <u>Gene</u> **302**(1-2): 139-146.
- 61. Mittal, S., D. Subramanyam, et al. (2009). "Cooperation of Notch and Ras/MAPK signaling pathways in human breast carcinogenesis." <u>Mol Cancer</u> **8**: 128.
- 62. Miyamoto, K., T. Fukutomi, et al. (2005). "Identification of 20 genes aberrantly methylated in human breast cancers." Int J Cancer **116**(3): 407-414.
- 63. Mukhopadhyay, A., T. Khoury, et al. (2013). "Prostate derived Ets transcription factor and Carcinoembryonic antigen related cell adhesion molecule 6 constitute a highly active oncogenic axis in breast cancer." Oncotarget **4**(4): 610-621.
- 64. Nagel, S., L. Venturini, et al. (2010). "Multiple mechanisms induce ectopic expression of LYL1 in subsets of T-ALL cell lines." Leuk Res **34**(4): 521-528.
- 65. Nguyen, T. L., W. E. Grizzle, et al. (2013). "Syndecan-1 overexpression is associated with nonluminal subtypes and poor prognosis in advanced breast cancer." <u>Am J Clin</u> <u>Pathol</u> **140**(4): 468-474.
- 66. Noah, T. K., Y. H. Lo, et al. (2013). "SPDEF functions as a colorectal tumor suppressor by inhibiting beta-catenin activity." <u>Gastroenterology</u> **144**(5): 1012-1023 e1016.
- 67. Noh, H. J., K. A. Kim, et al. (2014). "p53 Down-regulates SETDB1 gene expression during paclitaxel induced-cell death." <u>Biochem Biophys Res Commun</u>.
- 68. Osipo, C., P. Patel, et al. (2008). "ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor." <u>Oncogene</u> **27**(37): 5019-5032.
- 69. Pandey, P. R., F. Xing, et al. (2013). "Elevated lipogenesis in epithelial stem-like cell confers survival advantage in ductal carcinoma in situ of breast cancer." <u>Oncogene</u> **32**(42): 5111-5122.
- Passon, N., C. Puppin, et al. (2012). "Cyclic AMP-response element modulator inhibits the promoter activity of the sodium iodide symporter gene in thyroid cancer cells." <u>Thyroid</u> 22(5): 487-493.
- 71. Pawar, S. A., M. N. Szentirmay, et al. (2004). "Evidence for a cancer-specific switch at the CDK4 promoter with loss of control by both USF and c-Myc." <u>Oncogene</u> **23**(36): 6125-6135.
- 72. Peeper, D. S., A. Shvarts, et al. (2002). "A functional screen identifies hDRIL1 as an oncogene that rescues RAS-induced senescence." <u>Nat Cell Biol</u> **4**(2): 148-153.
- 73. Peng, Y. B., J. Zhou, et al. (2011). "Normal prostate-derived stromal cells stimulate prostate cancer development." <u>Cancer Sci</u> **102**(9): 1630-1635.
- 74. Petrova, E., A. Matevossian, et al. (2014). "Hedgehog acyltransferase as a target in pancreatic ductal adenocarcinoma." <u>Oncogene</u>.
- 75. Pillai, S., W. Rizwani, et al. (2011). "ID1 facilitates the growth and metastasis of nonsmall cell lung cancer in response to nicotinic acetylcholine receptor and epidermal growth factor receptor signaling." <u>Mol Cell Biol</u> **31**(14): 3052-3067.

- 76. Pringle, L. M., R. Young, et al. (2012). "Atypical mechanism of NF-kappaB activation by TRE17/ubiquitin-specific protease 6 (USP6) oncogene and its requirement in tumorigenesis." <u>Oncogene</u> **31**(30): 3525-3535.
- 77. Pussila, M., L. Sarantaus, et al. (2013). "Cancer-predicting gene expression changes in colonic mucosa of Western diet fed Mlh1+/- mice." <u>Plos One</u> **8**(10): e76865.
- 78. Ramberg, H., A. Alshbib, et al. (2011). "Regulation of PBX3 expression by androgen and Let-7d in prostate cancer." <u>Mol Cancer</u> **10**: 50.
- 79. Reed, K. R., S. J. Tunster, et al. (2012). "Entopic overexpression of Ascl2 does not accelerate tumourigenesis in ApcMin mice." <u>Gut</u> **61**(10): 1435-1438.
- 80. Rodriguez-Paredes, M., A. Martinez de Paz, et al. (2013). "Gene amplification of the histone methyltransferase SETDB1 contributes to human lung tumorigenesis." <u>Oncogene</u>.
- Rudin, C. M., S. Durinck, et al. (2012). "Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer." <u>Nature Genetics</u> 44(10): 1111-1116.
- 82. Rueckert, C. and V. Haucke (2012). "The oncogenic TBC domain protein USP6/TRE17 regulates cell migration and cytokinesis." Biol Cell **104**(1): 22-33.
- 83. Sekar, P., J. N. Bharti, et al. (2014). "Evaluation of p53, HoxD10, and E-Cadherin Status in Breast Cancer and Correlation with Histological Grade and Other Prognostic Factors." J Oncol **2014**: 702527.
- 84. Sengupta, S., C. G. Sharma, et al. (2010). "Estrogen regulation of X-box binding protein-1 and its role in estrogen induced growth of breast and endometrial cancer cells." <u>Horm Mol Biol Clin Investig</u> **2**(2): 235-243.
- 85. Shepelev, M. V. and I. V. Korobko (2013). "The RHOV gene is overexpressed in human non-small cell lung cancer." <u>Cancer Genet</u> **206**(11): 393-397.
- Shiraishi, M., A. Sekiguchi, et al. (2002). "HOX gene clusters are hotspots of de novo methylation in CpG islands of human lung adenocarcinomas." <u>Oncogene</u> 21(22): 3659-3662.
- 87. Srivastava, M., Y. Torosyan, et al. (2007). "ANXA7 expression represents hormonerelevant tumor suppression in different cancers." Int J Cancer **121**(12): 2628-2636.
- 88. Stanhill, A., V. Levin, et al. (2006). "Ha-ras(val12) induces HSP70b transcription via the HSE/HSF1 system, but HSP70b expression is suppressed in Ha-ras(val12)-transformed cells." Oncogene **25**(10): 1485-1495.
- 89. Steffan, J. J., S. Koul, et al. (2012). "The transcription factor SPDEF suppresses prostate tumor metastasis." J Biol Chem **287**(35): 29968-29978.
- Suzuki, A., G. Kusakai, et al. (2003). "Induction of cell-cell detachment during glucose starvation through F-actin conversion by SNARK, the fourth member of the AMP-activated protein kinase catalytic subunit family." <u>Biochem Biophys Res Commun</u> **311**(1): 156-161.
- 91. Swarbrick, A., E. Roy, et al. (2008). "Id1 cooperates with oncogenic Ras to induce metastatic mammary carcinoma by subversion of the cellular senescence response." <u>Proc Natl Acad Sci U S A</u> **105**(14): 5402-5407.
- 92. Takata, R., S. Akamatsu, et al. (2010). "Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population." <u>Nature</u> <u>Genetics</u> 42(9): 751-754.
- Tan, M., Y. Li, et al. (2011). "Inactivation of SAG E3 ubiquitin ligase blocks embryonic stem cell differentiation and sensitizes leukemia cells to retinoid acid." <u>Plos One</u> 6(11): e27726.

- 94. Tomida, S., K. Yanagisawa, et al. (2007). "Identification of a metastasis signature and the DLX4 homeobox protein as a regulator of metastasis by combined transcriptome approach." <u>Oncogene</u> **26**(31): 4600-4608.
- 95. Torosyan, Y., A. Dobi, et al. (2010). "Role of multi-hnRNP nuclear complex in regulation of tumor suppressor ANXA7 in prostate cancer cells." <u>Oncogene</u> **29**(17): 2457-2466.
- 96. Trinh, B. Q., S. Y. Ko, et al. (2013). "Dual functions of the homeoprotein DLX4 in modulating responsiveness of tumor cells to topoisomerase II-targeting drugs." <u>Cancer Res</u> 73(2): 1000-1010.
- 97. Tsuchihara, K., T. Ogura, et al. (2008). "Susceptibility of Snark-deficient mice to azoxymethane-induced colorectal tumorigenesis and the formation of aberrant crypt foci." <u>Cancer Sci</u> **99**(4): 677-682.
- 98. Tsuda, M. and S. Tanaka (2012). "Roles for crk in cancer metastasis and invasion." Genes Cancer **3**(5-6): 334-340.
- 99. Umemura, S., M. Shirane, et al. (2009). "Overexpression of E2F-5 correlates with a pathological basal phenotype and a worse clinical outcome." <u>Br J Cancer</u> **100**(5): 764-771.
- 100. van Agthoven, T., A. M. Sieuwerts, et al. (2009). "CITED2 and NCOR2 in anti-oestrogen resistance and progression of breast cancer." <u>Br J Cancer</u> **101**(11): 1824-1832.
- Varlakhanova, N., J. B. Hahm, et al. (2011). "Regulation of SMRT corepressor dimerization and composition by MAP kinase phosphorylation." <u>Mol Cell Endocrinol</u> 332(1-2): 180-188.
- 102. Wajapeyee, N., S. K. Malonia, et al. (2013). "Oncogenic RAS directs silencing of tumor suppressor genes through ordered recruitment of transcriptional repressors." <u>Genes Dev</u> 27(20): 2221-2226.
- 103. Wei, M., Q. He, et al. (2014). "Integrity of the LXXLL motif in Stat6 is required for the inhibition of breast cancer cell growth and enhancement of differentiation in the context of progesterone." <u>BMC Cancer</u> **14**(1): 10.
- 104. Wen, H., Y. Li, et al. (2014). "ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression." <u>Nature</u>.
- 105. Xi, C., Y. Hu, et al. (2012). "Heat shock factor Hsf1 cooperates with ErbB2 (Her2/Neu) protein to promote mammary tumorigenesis and metastasis." J Biol Chem **287**(42): 35646-35657.
- 106. Xiong, F., C. Wu, et al. (2011). "Genetic variation in an miRNA-1827 binding site in MYCL1 alters susceptibility to small-cell lung cancer." <u>Cancer Res</u> **71**(15): 5175-5181.
- 107. Yan, T. D., H. Wu, et al. (2010). "Oncogenic potential of retinoic acid receptor-gamma in hepatocellular carcinoma." <u>Cancer Res</u> **70**(6): 2285-2295.
- 108. Yang, E. S., Y. J. Huh, et al. (2013). "RNA interference targeting sensitive-toapoptosis gene potentiates doxorubicin- and staurosporine-induced apoptosis of PC3 cells." <u>Anticancer Res</u> **33**(3): 847-855.
- 109. Yang, Y., V. MacLeod, et al. (2007). "The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy." <u>Blood</u> **110**(6): 2041-2048.
- Yin, Q., X. Wang, et al. (2010). "MicroRNA miR-155 inhibits bone morphogenetic protein (BMP) signaling and BMP-mediated Epstein-Barr virus reactivation." <u>J Virol</u> 84(13): 6318-6327.
- 111. Yu, H. and R. Jove (2004). "The STATs of cancer--new molecular targets come of age." <u>Nature Reviews Cancer</u> **4**(2): 97-105.
- 112. Zhang, L., M. Yang, et al. (2012). "DLX4 upregulates TWIST and enhances tumor migration, invasion and metastasis." Int J Biol Sci **8**(8): 1178-1187.

- 113. Zhao, J., X. Y. Wu, et al. (2013). "Analysis of genetic aberrations on chromosomal region 8q21-24 identifies E2F5 as an oncogene with copy number gain in prostate cancer." <u>Med Oncol</u> **30**(1): 465.
- 114. Zhao, X., C. Graves, et al. (2009). "Mechanism of regulation and suppression of melanoma invasiveness by novel retinoic acid receptor-gamma target gene carbohydrate sulfotransferase 10." Cancer Res **69**(12): 5218-5225.
- 115. Zhou, J., Y. Zhu, et al. (2011). "A distinct role of RhoB in gastric cancer suppression." Int J Cancer **128**(5): 1057-1068.
- 116. Zhu, R., Y. Yang, et al. (2012). "Ascl2 knockdown results in tumor growth arrest by miRNA-302b-related inhibition of colon cancer progenitor cells." <u>Plos One</u> **7**(2): e32170.

3'LIFE/High-throughput Nucleofection and Dual Luciferase Protocols V1 Developed by Justin Wolter, Mangone Lab, 5-21-2013

This portion of the protocol describes a method to transfect plasmid-DNA in 96-well format using the Lonza Nucleofector 96-well shuttle plates. This protocol is optimized for HEK293T cells. Each cell line will have optimal transfection efficiency/survival with individualized buffer conditions, pulse code, and number of cells. These conditions must be optimized for each cell line used.

General Comments:

- For consistent transfections, cells should be plated at a sufficient density that they are rapidly dividing, and not be more than 90% confluent at time of transfection. This is typically achieved by calculating the doubling time of the cell line, and seeding cells 24-48 hours prior to transfection at a density that will result in 70-90% confluency at the time of transfection. Cells should not be allowed to become 100% (and thus growth inhibited) at any time prior to transfection, as this will reduce transfection efficiency, growth rate, and thus expression of the miRNA and luciferase reporter.
- The Lonza Nucleofector and HEK293T cells are extremely sensitive to the buffer conditions used to transfect cells. Extreme accuracy when preparing buffers will ensure consistent performance of the equipment. Additionally, extra care must be taken when performing the assay to minimize evaporation of buffers. We have observed that this is the most significant source of errors when using the Nucleofector and in-house buffers. Specifically, special care must be taken to minimize evaporation following loading the buffer/DNA/cell mixture into the 96-well shuttle device. In our hands, loading the shuttle device immediately before transfection reduces errors in transfection.
- Owing to the sensitivity of the nucleofection buffer conditions, the total volume of transfected materials (including cells and plasmids) should not exceed 10% of the total liquid pipetted into each well of the 96-well shuttle device. To achieve this the pLIFE-miRNA plasmid should be at a concentration of least 500ng/uL.
- Transfection buffer is composed of PBS supplemented with 1.5% HEPES, pH to 7.00. This should typically be prepared fresh, although can be stored for up to 1 month at 4°.
- In formulating buffer and plasmid DNA volumes, we have found that assuming 120 reactions for each 96-well plate sufficiently accounts for errors in pipetting and volume lost using liquid reservoirs and multichannel pipettes.

The following protocol assumes transfecting 3 96-well plates in one experiment. Each plate will correspond to the same 96-well mini-prepped sample of pLIFE-3'UTR plasmids, and be treated with either pLIFE-miRNA-blank, pLIFE-miRNA-#1, pLIFE-miRNA-#2.

1. (24-48 hrs prior to transfection): Seed sufficient quantity of HEK293T cells based on the number of 96-well plates being transfected. Each well in a 96-well plate will require

75,000 cells, and each plate requires 9×10^6 cells (equivalent of 120 wells to account for use of reservoir and multichannel pipette). In our lab, the doubling time of HEK293T cells is ~20 hrs, which can be used to calculate the seeding density based on the number of hours prior to transfection the seeding is occurring. We use 145mm circular culture plates, which, when grown to ~90% confluency, is sufficient for 3 96-well transfections, with ~10% of cells to spare to reseed a new plate.

2. Items to be prepared prior to transfection

- a. Transfection Buffer: 18 uL per well, 120 wells/96-well plate = 2.16 mL per plate. Set this aside into an epindorf tube and set aside (being careful not to leave buffer exposed to prevent evaporation).
- b. Plasmids:
 - pLIFE-3'UTR: In 96-well format, resuspended to ~100 ng/uL per well. We typically observe insufficient luciferase signal if plasmid concentration falls below 40 ng/uL. 4 wells must be reserved for the following controls: 1) no pLIFE-3'UTR (to measure background of luciferase assay), 2) pLIFE-SV40 3'UTR (negative target control), 3) positive control for miRNA #1, 4) positive control for miRNA #2. We typically reserve wells A1-A4 for these controls.
 - ii. pLIFE-miRNA: At a concentration of 500 ng/uL for each miRNA and Blank control plasmids.
- c. 96-well cell culture plates: Each well should possess 200 uL of DMEM supplemented with 10% FBS, 1% Pen/Strep, and placed in a 37° incubator for use following transfection.
- d. Warm media, trypsin (0.25%) to 37°.
- e. Turn on all Nucleofector hardware followed by Nucleofector Shuttle software. Pulse code used for HEK293T cells and PBS/HEPES buffer should be set to FF120.

3. Preparation of Plasmid DNA and cells:

- Prepare 3 stocks of pLIFE-miRNA + transfection buffer for each miRNA. This stock should account for 50% (10uL) of total volume of each well, multiplied by 120 wells. Thus, each stock should contain 1.08 mL buffer + 120 uL plasmid DNA (pLIFE-miRNA).
- b. Remove cells from plate by eluting media, washing *gently* with PBS, and treating with ~5mLs 0.25% trypsin for 5 minutes. Neutralize trypsin with an equal volume of media, and pellet cells at 300g for 5 minutes.
- c. Remove trypsin/media, and resuspend pellet in ~5-10 mLs media (depending on cell density).
- d. Count cells. Mangone lab uses the Countess from Invitrogen. Cells should be >95% viable and within accurate range of machine. Inaccurate count can result from having extremely high cell concentrations (>6.0x10⁶/mL). Transfecting too many cells can drastically reduce efficiency of miRNA targeting by reducing plasmid:cell ratio and/or decreasing transfection efficiency.
- e. Aliquot three tubes of cells, each containing 9x10⁶ cells, corresponding to the cells required for transfection of one 96-well plate. Spin cells at 300g for 3 minutes.

- f. Remove media. Be sure to remove as much as possible with minimal disturbance of the pellet. Excess media can impact transfection efficiency.
- g. Resuspend cells in 1.2 mLs buffer/plasmid mixture, and set aside.
- h. The following steps detail resuspension of pLIFE-3'UTR plasmid in transfection buffer. As this occurs in 96 well plates, care should be taken to avoid evaporation of buffer by covering plates at all times.
 - i. Using a multichannel pipette, move 32.4 uL transfection buffer into each well of a 96 well PCR plate (9 uL [per transfection] * 3 [plates] * 1.2 [to account for pipette error]).
 - ii. Add 3.6 uL of mini-prepped pLIFE-3'UTR plasmid.
 - iii. Mix thoroughly.
 - iv. Pipette 10 uL of this mixture into each well of the 96-well shuttle device. Cover 96-well shuttle device.

4. Transfection:

- a. Move 1.2 mLs of first cell/buffer/pLIFE-miRNA plasmid mixture into reservoir. Mix well. Add 10 uL of this mixture into the first 96-well shuttle already containing 10 uL buffer/pLIFE-3'UTR. <u>Mix well by pipetting up and down several times.</u> Equal suspension of cells in the buffer will entail even and thorough passage of the electrical current through the cuvette and maximize transfection efficiency. Place 96-well shuttle on the Nucleofector device and initiate transfection.
- b. Once transfection is complete, add 100 uL of prewarmed media from 96-well culture plate to each well of the 96-well shuttle and mix well. Move 100 uL from each well into the 96-well culture plate. Mix well, with pipette positioned vertically, as cells will tend to move to the sides of the well unless mixed properly.
- c. Repeat 3a-3b for the remaining two plates.
- d. Culture cells for 48-72 hours at 37°, followed by the dual luciferase assay (see below).
- 5. Cleaning 96-well shuttle plates: These plates can be reused following transfection and proper washing to ensure no carry over between nucleic acids between experiments. We perform two 70% EtOH washes using a spray bottle to completely fill each well, followed by wiping down excess EtOH on the electrode strips (bottom side) and allowing cuvettes to completely dry in the culture hood. We have tested for carry-over contamination by transfecting 12 wells with 2 ug pmaxGFP plasmid each into HEK293T cells, followed by a single wash with 70% EtOH, and a second transfection with no plasmid DNA. With this extremely high plasmid concentration, extremely bright reporter, and only one wash we observed no fluorescence in the second transfection for all 12 wells. We have reused each cuvette >30 times each with no detectable decrease in transfection efficiency.

Buffer preparation for dual-luciferase assay: The following buffer components can be prepared ahead of time and stored at room temperature (unless otherwise noted).

Firefly Luciferase Assay Buffer Components:

Stock solutions prepared separately and stored at 10x concentration: Reagent: Final Concentration (1x)

Glycylglycine	25mM	
K _x PO ₄ (pH 7.8)	15 mM	
MgSO ₄	15 mM	
DTT (store at 4°)	1 mM	
EGTA	4 mM	
Note: EGTA will not go into solution a completely.	at neutral pH.	Slowly add NaOH to EGTA until it dissolves

Reagents added just before luciferase	assay:
ATP	2 mM
Beetle luciferin	200 uM

Renilla luciferase assay buffer:

Renilla luciferase buffer can be prepared ahead of time to 1x concentration and stored at room temperature:

Reagent:	Final Concentration (1x)
NaCl	1.1 M
Na ₂ EDTA	2.2 mM
KH ₂ PO ₄	.22 M
NaN ₃	1.3 mM
pH to 5.0	

Reagents added just before luciferase	assay:
BSA	.44 mg/mL
Coelenterazine	2.5 uM

Beetle Luciferin (firefly luciferase substrate) Reconstitution:

- 50 mg luciferin in 7.134 mLs H_20 (25 mM). Aliquot into 105 uL tubes.
- Store @ -80°. Per Promega technical support, this should be stable for >6 months, but may be light sensitive.

Coelenterazine (Renilla luciferase substrate) Reconstitution:

- Acidify methanol by adding HCI to final concentration of 5 mM (<3 pH).
- Reconstitute 250 ug coelenterazine with 2.36 mL acidified methanol (250 uM)
- Aliquot 100 uL into 1.5 mL tubes for use on 1 96-well plate.
- Store @ -80°C (stable for at least 6 months at -80°, but may be light sensitive).

Protocol for buffer preparation and 96-well dual-luciferase assay using Promega Glomax 96-well dual injection luminometer

1. Lysis buffer: 4 parts water, 1 part 5x passive lysis buffer (Promega) in a reservoir. You need 26 uL/well, so calculate accordingly with ~20 wells extra to account for loss in the reservoir. Buffer is stored at -20° and can be extremely viscous, thus prior to allowing the

5x buffer to approach room temperature will improve accuracy. Mix 1x lysis buffer well prior to use.

- 2. Analyze each well for transfection efficiency using fluorescence microscopy. Note any inconsistent wells that did not transfect efficiently, or are expressing low levels of RFP. These can cause inconsistencies in data and should be removed from the analysis.
- 3. <u>Completely</u> remove the media from the cells, being careful not to elute too quickly and lose cells. Remaining media will dilute the lysate and cause fluctuations in values across experiments. Add 26 uL of lysis buffer to each well, and place on a plate shaker/rocker at low/moderate speed.
- 4. **Start the timer.** For consistency I allow 30 minutes from addition of lysis buffer to the start of measurement. This time is used to prepare buffers, wash and prime the luminometer(s), and transfer lysate to opaque measurement plates. Any of these steps can be completed beforehand (with the exception of the final steps of buffer preparation and lysate transfer) to ensure that you do not go exceed 30 minutes of lysis.

Wrap tubes (typically Falcon 15/50mL tubes) containing of the firefly and *Renilla* buffers with tinfoil as substrates may be light sensitive.

The following instructions are for 1 96-well plate. If multiple plates are being measured simultaneously (with multiple luminometers) then multiply all volumes by then number of luminometers/plates. If multiple plates are being measured sequentially on one luminometer, create buffer master mixes with everything except ATP and substrates, and add these reagents followed by pHing immediately before the beginning of the luciferase assay. ATP and substrates may degrade over time; consistency in the amount of time these reagents are in the buffer will improve consistency across multiple plates.

- **5. Firefly luciferase buffer:** Have the five reagents for the firefly buffer prepared to 10x concentration. Prepare a master mix with the following:
- For each 96-well plate, add 1mL of each reagent to 5mLs water, adding EGTA last.
- Add .025 g ATP (powder) per plate just before you add the firefly substrate. Keep ATP on ice at all times. ATP will degrade over time, so if you are measuring more than one plate consecutively buffer must be made fresh beginning at this step for each additional plate.
- Add 100 uL beetle luciferin (substrate) (previously aliquoted and stored at 100x conc.) Buffer should change to yellowish color based on pH.

6. To Renilla buffer:

- Per 96-well plate, aliquot 10 mLs of "Renilla buffer".
- Add 100 uL of BSA (44 mg/mL stock) per plate
- If screening more than one plate, separate master mix into 10mL aliquots.
- Add 100 uL coelenterazine to buffer (previously aliquoted and stored at 100x conc.)
- **7. pH Buffers:** pH the firefly to 8.0, followed by the Renilla to 5.0 using NaOH and HCI. The activity of each buffer, and the ability of the *Renilla* buffer to quench the Firefly luciferase activity is highly dependent on pH. For consistent results be extremely accurate in this step. Bring volume of each buffer (corresponding to 1 96-well plate) to 10.5 mLs to accommodate for luminometer priming.

- 8. Transfer lysate to opaque white plates: At this point the cells should be close to done lysing (~20 min has passed?), and are ready to be transferred to white opaque plates. Take 25 uL from each well using a multichannel pipette, be sure to pipet up and down vigorously to break up the clumps of cells and homogenizing the lysate. Once transferred to white plates, lysate may appear pinkish. This may be due to poor removal of culture media, but is also commonly observed with high-quality transfections (RFP).
- **9.** Setting up the luminometer: Turn on the luminometer and select the program. The program is a promega protocol, is listed in the 'DLR' folder, and is called DLR with two injections, <u>not</u> column format. Select the wells you wish to test (all is the default), and make sure to extend the "Delay before measurement" setting to 5 seconds, with a 10 second measurement time (see Dyer, et al. 2000, *Analytical Biochem*, for explanation).
- **10. Capillary wash steps**: water 3x, EtOH 3x, water 3x, dry 3x. Prime buffers once into the waste, and then prime a second time back into the buffer tubes to ensure mixing. Firefly buffer is injected first and should be primed in the left capillary, followed by *Renilla* in the right capillary.
- **11.Luciferase assay**: Each plate takes ~48 minutes to read. After you are done save the file first, and then repeat the wash steps and shut off the luminometer.
- **12. Reading multiple plates:** Multiple plates can be read and data stored on the same excel file, however we have encountered issues with multiple plate reads where the luminometer program will crash. Be sure to save all data between measurements and take screenshots if program crashes before save is possible! Replace old buffers with new, being sure to prime at least twice with new buffers before starting the new plate
- **13.Considerations**: White opaque plates can be reused following a wash with DI water, 70% EtOH, DI water, and spun upside down in a centrifuge to remove any liquid before it can evaporate.