| Species                       | MBD4 <sub>MBD</sub> <sup>a</sup> | MBD4 <sub>GD</sub> <sup>a</sup> |
|-------------------------------|----------------------------------|---------------------------------|
| Amphimedon queenslandica      | No                               | XP_003386267                    |
| Trichoplax adhaerans          | No                               | XP_002111391                    |
| Hydra magnipapillata          | No                               | XP_002167512, XP_002166902      |
| Nematostella vectensis        | No                               | XP_001638109                    |
| Ixodes scapularis             | XP_002410284                     | XP_002410284                    |
| Daphnia pulex                 | No                               | EFX70091                        |
| Pediculus humanus             | No                               | XP_002425074                    |
| Acyrthosiphon pisum           | No                               | XP_003244914                    |
| Strongylocentrotus purpuratus | XP_783908                        | XP_783908                       |
| Branchiostoma floridae        | XP_002585728                     | XP_002585728                    |
| Homo sapiens                  | O95243                           | O95243                          |

Table S1. Invertebrate MBD4 frequently lack a MBD.

 $^a$ Genbank accession numbers are listed for orthologs of MBD4\_{\rm MBD} and MBD4\_{GD} for nine invertebrate and two vertebrate species.

**Figure S1.** MBD4<sub>MBD</sub> appears to be well structured in isolation. 2D <sup>15</sup>N HSQC spectra of MBD4<sub>MBD</sub> (upper panel) free (blue) and bound to methylated DNA (red) show well dispersed and sharp peaks for both samples. In contrast, 2D <sup>15</sup>N HSQC spectra of cMBD2<sub>MBD</sub> (lower panel) free (blue) and bound to methylated DNA (red) show significant improvement in chemical dispersion with increased numbers of observable peaks upon binding to DNA. These differences indicate that MBD4<sub>MBD</sub> adopts a stable folded structure in isolation while cMBD2<sub>MBD</sub> undergoes a disorder to order transition upon binding DNA.

**Figure S2.** 2D <sup>15</sup>N HSQC spectra show large chemical shift changes for key reporter residues when bound to DNA with different modifications. (a) A 2D <sup>15</sup>N HSQC spectrum of MBD4<sub>MBD</sub> bound to <sup>m</sup>CpG (17bp) DNA with key reporter resonances for Arg<sup>97</sup> Hε and Gly<sup>100</sup> H<sub>N</sub> circled and labeled. Expanded regions of 2D <sup>15</sup>N HSQC spectra show large chemical shift changes for (b) Arg<sup>97</sup> Hε and (c) Gly<sup>100</sup> H<sub>N</sub> resonances when bound to <sup>m</sup>CpG (red), <sup>hm</sup>CpG (green), <sup>m</sup>CpG/TpG (blue), and CpG (pink) DNA.

**Figure S3.** 1D slices at peak maxima along the <sup>15</sup>N dimension of HSQC spectra show the difference in linewidths for (a) Arg<sup>105</sup> and (b) Phe<sup>106</sup> when bound to a mixture of wild type and inverted DNA (red) or tandem (30 bp) DNA (blue) at 100 mM NaCl. Fitting the peaks to a Gaussian line shape revealed a linewidth at half height of 16.7 Hz (Arg<sup>105</sup>) and 25.0 Hz (Phe<sup>106</sup>) for the tandem (30 bp) DNA complex and 25.5 Hz (Arg<sup>105</sup>) and 34.2 Hz (Phe<sup>106</sup>) for the mixed wild type and inverted DNA complexes.

**Figure S4.** The results of a PONDR® VLXT disorder prediction analysis are plotted for MBD4. The MBD4<sub>MBD</sub> and MBD4<sub>GD</sub> are highlighted in blue and red, respectively. With the exception of  $\sim$ 40 amino acid segment (residues 320-360), the disorder probability exceeds 0.5 for most of the  $\sim$ 280 residues in the region between the two domains (residues 170-440).



Figure S1



Figure S2



Figure S3



Figure S4