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DNA sequences (from 5 → 3) 

Master 210 bp DNA 

gtgccagcaacagatagcctatccatagactattacctacaagcccaatagcgtacgggatcatccccgccagttacgtctgccacccttcttaacg

acacgtgaagggacgaaccgcatacttacgatcaggcatagatcttacaccgtagcaggtagtgccaggcatcgtgttcgtaaccttacttcaacca

ttcgagctcgttgttg  

189 bp 

gtgccagcaacagatagcctatccatagactattacctacaagcccaatagcgtacgggatcatccccgccagttacgtctgccacccttcttaacg

acacgtgaagggacgaaccgcatacttacgatcaggcatagatcttacaccgtagcaggtagtgccaggcatcgcattcgagctcgttgttg 

168 bp 

gtgccagcaacagatagcctatccatagactattacctacaagcccaatagcgtacgggatcatccccgccagttacgtctgccacccttcttaacg

acacgtgaagggacgaaccgcatacttacgatcaggcatagatcttacaccgtcattcgagctcgttgttg 

147 bp 

gtgccagcaacagatagcctatccatagactattacctacaagcccaatagcgtacgggatcatccccgccagttacgtctgccacccttcttaacg

acacgtgaagggacgaaccgcatacttacgatcattcgagctcgttgttg 

136 bp 

gtgccagcaacagatagcctatccatagactattacctacaagcccaatagcgtacgggatcatccccgccagttacgtctgccacccttcttaacg

acacgtgaagggacgaaccgccattcgagctcgttgttg 

126 bp 

gtgccagcaacagatagcctatccatagactattacctacaagcccaatagcgtacgggatcatccccgccagttacgtctgccacccttcttaacg

acacgtgaaggcattcgagctcgttgttg 

115 bp 

gtgccagcaacagatagcctatccatagactattacctacaagcccaatagcgtacgggatcatccccgccagttacgtctgccacccttcttaacgc

attcgagctcgttgttg 



94 bp 

gtgccagcaacagatagcctatccatagactattacctacaagcccaatagcgtacgggatcatccccgccagttacattcgagctcgttgttg 

84 bp 

gtgccagcaacagatagcctatccatagactattacctacaagcccaatagcgtacgggatcatcccattcgagctcgttgttg 

74 bp 

gtgccagcaacagatagcctatccatagactattacctacaagcccaatagcgtaccattcgagctcgttgttg 

63 bp 

gtgccagcaacagatagcctatccatagactattacctacaagcccattcgagctcgttgttg 

53 bp 

gtgccagcaacagatagcctatccatagactattacattcgagctcgttgttg 

42 bp 

gtgccagcaacagatagcctatcccattcgagctcgttgttg 

37 bp 

gtgccagcaacagatagcccattcgagctcgttgttg 

 

Preparing partially hybridized DNA molecules for measuring the linker lifetime with zero force 

(italic: double-stranded region) 

Cy3-DNA: 

5 - Cy3-ggtaaattcactat caacaacgagctcgaatg - 3    (primer 1) 

                                   3 - gttgttgctcgagcttac - 5                                           (blocking oligo) 

Cy5-DNA: 

5 – BiotinTEG - gaaacatag/ iCy5 /gaatttacc gtgccagcaacagatagc -3 (primer 2) 

                                                                     3 - cacggtcgttgtctatcg - 5        (blocking oligo) 

We mixed equal amounts of the two partially hybridized DNA molecules in annealing buffer (100mM 

NaCl, 10 mM Tris.HCl pH 7.0, 1 mM EDTA) to obtain a final concentration of 5 μM. The mixture was 

heated at 95 oC for 5 min, slowly cooled down to room temperature, and loaded on a polyacrylamide gel 

(19:1 Acryl:Bis, 15% (w/v) in TBE 1X pH 8.0). Linear dimers were extracted from the gel using an 



electroelution kit (G-CAPSULE, 786-001, G-Biosciences) after running the gel at 10 V/cm for ~1 hour (see 

Supplementary Figure S3A). 

Shear force vs. loop length 

Here, we derive an approximate relationship between the total bending energy of a circular loop and loop 

length ( L ). From this relationship, we can obtain the shear force. We assume that the loop takes the 

shape of a circular arc with the two ends separated by distance r . If the bending rigidity of the chain is k , 

the total bending energy of the loop is calculated as 
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where s  is the distance coordinate along the contour, and R  is the radius curvature, which is constant 

for a circular arc. n  is 1 for the linear subelastic chain model, and 2 for the worm-like chain model. We 

made the assumption that r  is much smaller than L . Bending rigidity k  is equal to 
p BL k T in the worm-

like chain model. Differentiating the bending energy with r , we can obtain the shear force acting along r , 
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Thus, at short end-to-end distance, we expect the shear force to scale as 
2L

 for a worm-like chain, and 

1L
 for a subelastic chain. As shown in Supplementary Figure S1A, this approximate expression can 

explain the scaling of force vs. length computed from the Monte Carlo (MC) simulation to some degree. 

However, it overestimates the absolute force values because the dominant loop conformation of a worm-

like chain is closer to a teardrop, which is overall less stressed than a circular arc. 

A more accurate description of the shear force requires the full probability distribution of end-to-end 

distances. An exact analytical expression does not exist in a closed form, and therefore, we use an 

approximation that best describes the probability distribution at short end-to-end distances in the stiff 

limit(1). Douarche and Cocco proposed such approximation (DC approximation) that considers both the 

Boltzmann weight due to the elastic energy of the loop and fluctuation around the minimum energy 

conformation(2, 3). The cyclization factor is given by(3) 
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Multiplying this by 
24 r  and differentiating, we have 
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Using 50nmpL  and 5nmr  (14.7 bp), we obtain the relationship between the shear force and DNA 

length in units of base pair number (Nbp) 
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This expression with no further adjustment can well describe the scaling of the relationship, but 

overestimates the force almost by a constant scaling factor. If we multiply the force by 0.6, we find an 

excellent agreement across the length range of interest. It is not surprising that DC approximation 

overestimates the absolute force value. When compared with the exact density, DC probability density is 

shown to have a steeper slope at short extension(1), which results in slightly higher force values. 

For loops with the contour length shorter than the persistence length, the loop free energy is expected to 

be dominated by bending energy. We thus used the elastic rod approximation to calculate the shear 

force, ignoring the entropic contribution.  The total bending energy (
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energy conformation was calculated as a function of end-to-end distance through either elliptic 

integrals(2, 4) or the constrained nonlinear optimization in MATLAB. To obtain the shear force, the total 

bending energy was numerically differentiated near 0r . As shown in Supplementary Figure S1A, the 

shear forces due to the bending energy alone agree well with the numerical values from MC simulation 

for DNA less than 100 bp, which further confirms the validity of our MC simulation. 

Parameter choice for polymer models 

The length of the monomer and the value of the rigidity constant are chosen so that the known statistical 

mechanical properties of the polymer can be reproduced by simulation. In the case of dsDNA, these 

parameters can be determined based on the persistence length ( PL ) of the polymer, which is 

approximately 50 nm. A linear dsDNA molecule longer than the persistence length can be well described 

as a worm-like chain, and the mean-square end-to-end distance 
2R  is related to its contour length L as 
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To calculate the mean-square end-to-end distance 
2R , one can generate a large set of chains using 

the Gaussian sampling method. For the WLC model, we chose the bending rigidity constant k  to be 

73.53 Bk T  for each 1-bp long monomer. For the LSEC model(5, 6), we chose  7.84 BB k T  for each 

7-bp long monomer (2.37 nm). The chosen parameters all predict a persistence length of ~50 nm at large 

length scales.  

J factor 

The looping probability ( 1P ) is the colocalization probability of two reactive ends of the same polymer 

within a small reaction volume V . We do not know a priori what V  is, but it should be small enough 

to allow for the two ends of the polymer to react. Therefore, for cyclization of dsDNA with complementary 

single-stranded overhangs, its dimension should be on the order of the length of the single-stranded 

overhang (~5 nm). The J factor is the effective concentration of one freely diffusing reactive end around 

the other that would give rise to the same colocalization probability, and can be determined without 

knowledge of V .  

Without losing generality, we can fix one reactive end inside V  and let other reactive ends freely diffuse 

at a molar concentration of  X . The rate of a reactant diffusing into V  is proportional to  X  (  ink X  

) whereas the rate of the reactant diffusing out of the volume is concentration-independent ( outk ). In 

typical aqueous reactions, the diffusive encounter between the two ends is much slower than the diffusive 

separation ( [ ]out ink k X ) (7). The equilibrium probability of intermolecular colocalization ( 2P ) is a 

function of  X : 
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Therefore, the J factor is defined by  
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The J factor can be determined by measuring both intramolecular and intermolecular reaction kinetics. 

Both reactions follow a three-state reaction kinetics scheme:  



 a b c  (S9) 

Here, b  is the state of end-to-end colocalization without interaction, and c  is the high-FRET state 

stabilized by end-to-end annealing. If b c b ak k  , the apparent rate of c  formation ( ck ) is proportional 

to the equilibrium probability of state b :  
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We denote the rate of annealing ( b ck  ) as 1f  for looping and 2f  for dimerization. The apparent looping 

rate ( 1k ) is  

 1 1 1,k P f  (S11) 

and the apparent dimerization rate ( 2k ) is 

 2 2 2 2[ ] ,in

out

k
k P f X f

k
   (S12) 

where we used Equation S7. The second-order rate constant  2 /k X  is usually referred to as the 

annealing rate constant in most other studies(8–10). According to Equation S8, the J factor is related to 

the apparent rates by  
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Therefore, only if 1 2 f f  can we determine the J factor from the apparent rates in an unbiased manner. 

For looping of long dsDNA, 1 2 f f  is generally accepted(7). For looping of short dsDNA, however, 

1 2 f f  may be violated. In dimerization, the two ends approach each other from all 4π steradians. In 

many of these colocalization events, the sticky ends are not optimally aligned for annealing. In looping, 

the reactive ends approach each other at a much narrower range of angles. As a result, the dangling 

overhangs with intrastrand stacking(11) may find each other in an anti-parallel orientation more often than 

in free diffusion. Hence, the entropic barrier for 1f  would be lower than for 2f . This effect is conceptually 

similar to rate enhancement in intramolecular reactions that far exceeds local concentration effect due to 

entropy(12) or orientation-dependent reactivity(13, 14).  

Calculating the free energy of kink formation 



We adopted the computational method in(15), which is also conceptually similar to a more theoretical 

approach(16). We considered the dinucleotide bending energy  E   with both the elastic bending term 

and kinking term using the functional form in Equation 6. The critical kink angle ( ) was defined as the 

intercept of the two terms. The equilibrium probability density (  p  ) or the partition function of the 

bending angle   is proportional to the multiplicity of  sin   and the Boltzmann factor 

  ( ) sin( )exp ( ) / .Bp E k T     (S14) 

The kinking probability ( kP ) is the probability for   to exceed the critical kink angle  , which is 
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The free energy of kink formation kG  can be directly calculated from kP  as  logk B kG k T P   . For 

example, if we consider an energy function  
6

h b   with  15 Bh k T  and  0.3b   for kink 

formation, 10.6k BG k T  . If we assume no additional energy cost of kinking(17), we have a little lower 

kG  of 9.4 Bk T , as expected.



Supplementary figure S1. Shear force calculation. (A) The shear force vs. loop size. The symbols are 

obtained from the MC simulation. Solid and hollow squares are for WLC and LSEC, respectively. The 

relationship is plotted on log-log axes to highlight the scaling. Douarche and Cocco (DC) approximation 

with no adjustment (purple dotted curve) and with scaling by a factor of 0.6 (red dashed-dotted curve) are 

also shown. The elastic rod approximation was also used to calculate the shear force by using either 

elliptic integrals (black solid curve)(2, 3) or the constrained nonlinear optimization in MATLAB (thick blue 

curve). All forces were evaluated at 5-nm end-to-end distance. (B) Shear force vs. end-to-end distance. 

The mean shear force was calculated from the WLC model for different loop sizes and different end-to-

end distances ( 0r ). The shear forces at different loop sizes (square: 40 bp, circle: 70 bp, diamond: 100 

bp, triangle: 130 bp) decrease only slightly as a function of the end-to-end distance. Since the linker 

duplex is extended by ~1 nm before dissociation, our estimated force can be variable by ~5% for all loop 

sizes tested. 

 

 



Supplementary figure S2. Deviation of the measured loop lifetime from model predictions. (A) RMSE 

analysis. The linear regression was performed with the ‘robustfit’ function (MATLAB) on the logarithm of 

loop lifetime vs. shear force. To identify outliers, we compared the RMSE (root mean squared error) 

values resulting from different ranges of fitting.  For example, the last point is obtained when the entire 

range of 13 loop sizes from 189 bp down to the smallest 37 bp were included in the fitting. Including the 

last few points significantly increases the regression error, which indicates that the linear relationship 

predicted by Equation 4 no longer holds for loop sizes smaller than 60 bp. Thus, we did not include three 

points corresponding to 37, 42, and 53 bp in the regression when extracting the fitting parameters, (0)  

and 0r . (B) Dependence of the critical loop size on persistence length. The logarithm of the loop lifetime 

is plotted against shear forces (fWLC) calculated with 45-nm (black) and 55-nm (red) persistence lengths. 

The dashed lines are the linear regressions from the RMSE analysis. Different persistence lengths yield a 

similar critical loop size where the measured loop lifetime deviates significantly from the WLC model 

prediction.  

 

 

 

 



Supplementary figure S3. (0)  measurement. (A) Polyacrylamide gel image of the hybridized oligos. 

From left to right, primer 1 only, 1:1 mixture of primer 1 and its blocking oligo, primer 2 only, Lane 4: 1:1 

mixture of primer 2 and its blocking oligo. (B) Typical time traces of reversible linker formation and 

separation in 50, 100 and 200 mM [Na+] (from top to bottom). Linker formation results in a burst in Cy5 

intensity due to FRET. The survival probability of the dimer since t = 0 is fitted with a single exponential 

function to extract the linker lifetime at zero force (0) . The concentration of the free monomer was 

adjusted to obtain similar binding rates at different [Na+].  

 

 

 

 

 

 



Supplementary figure S4. Kinking probability in DNA minicircles. The kinking probabilities of DNA 

minicircles were calculated as a function of loop size using the KWLC model with different free energies 

of kink formation (squares: ΔGk = 18kBT (h = 22kBT, b = 0.3), circles: ΔGk = 12kBT (h = 17kBT, b = 0.7). 

The SEM error bar for each loop size was calculated from 5 simulations.  

 

 

 

 

 

 



Supplementary figure S5. J factor calculation by the weighted histogram analysis method. (A) Umbrella 

sampling was performed at every 10-bp step. The spring constant was chosen so that neighboring 

histograms overlap significantly. Each histogram was obtained from 106 MC conformations after 100,000 

thermalization steps. (B) The radial probability distribution was obtained by iterating through Equation 4. 

The J factor in nanomolar units can be obtained by dividing the amplitude of the radial probability 

distribution by 4πr2Δr and multiplying by 4.24 × 1010. 
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