Supplementary Materials for

"Syntheses and Characterizations of the *in-vivo* Replicative Bypass and Mutagenic Properties of the Minor-groove O²-Alkylthymidine Lesions" by Qianqian Zhai, Pengcheng Wang, Qian Cai and Yinsheng Wang *Nucleic Acids Res.*, 2014

Supplementary Materials and Methods:

Mass spectrometry (MS) and NMR

Electrospray ionization-MS (ESI-MS) and tandem MS (MS/MS) experiments were carried out on an LCQ Deca XP ion-trap mass spectrometer (Thermo Fisher Scientific, San Jose, CA). A mixture of acetonitrile and water (50:50, v/v) was used as solvent for electrospray. The spray voltage was 3.0 kV, and the temperature for the ion transport tube was maintained at 275°C. High-resolution mass spectra (HRMS) were acquired on an Agilent 6210 ESI-TOF instrument (Agilent Technologies, Palo Alto, CA). ¹H and ³¹P NMR spectra were recorded at 300 MHz and 80 MHz, respectively, on a Varian Inova 300 instrument (Varian Inc., Palo Alto, CA).

2D NMR spectra were recorded at 25°C in CD₃OD or DMSO- d_6 using a Bruker Unity spectrometer operated at 600 MHz (Bruker, Co., Fremont, CA). Resonance assignments for O^2 -*i*PrdT, O^2 -*s*BudT and O^2 -*i*BudT were made based on ¹H-¹³C heteronuclear multi-bond correlation (HMBC) experiments, where the HMBC spectra were acquired using sweep widths of 6613.8 Hz and 30183.6 Hz for ¹H and ¹³C, respectively. The first and second delays were set to match a 145-Hz coupling constant and a long-range coupling constant of 10 Hz, respectively. **Reaction yields and NMR and mass spectrometric characterizations of the synthetic products:**

 O^2 -*n*-propylthymidine (O^2 -*n*PrdT, 2c). Obtained as a white solid (41% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.80 (s, 1H), 6.19 (t, J = 5.9 Hz, 1H), 4.57 (s, 1H), 4.38 (t, J = 6.6 Hz, 2H), 4.08 – 3.93 (m, 3H), 3.04 (d, J = 4.1 Hz, 1H), 2.92 (t, J = 4.9 Hz, 1H), 2.47 – 2.37 (m, 1H), 2.28 – 2.20 (m, 1H), 1.96 (s, 3H), 1.78 (dq, J = 14.5, 7.1 Hz, 2H), 0.99 (t, J = 7.4 Hz, 3H). HRMS (ESI) calcd for C₁₃H₂₁N₂O₅ [M+H]⁺ *m/z* 285.1455, found *m/z* 285.1471.

 O^2 -*iso*-propylthymidine (O^2 -*i*PrdT, 2d). Obtained as a white solid (47% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.81 (s, 1H), 6.16 (t, J = 5.8 Hz, 1H), 5.46 (dt, J = 11.6, 5.8 Hz, 1H), 4.57 (s, 1H), 3.98 (s, 2H), 3.51 (s, 1H), 3.21 (s, 1H), 3.09 (s, 1H), 2.47 – 2.16 (m, 2H), 1.95 (s, 3H), 1.36 (s, 3H), 1.34 (s, 3H). HRMS (ESI) calcd for C₁₃H₂₁N₂O₅ [M+H]⁺ *m*/*z* 285.1455, found *m*/*z* 285.1469.

 O^2 -*n*-butylthymidine (O^2 -*n*BudT, 2e). Obtained as a colorless film (36% yield). ¹H NMR (300

MHz, CDCl₃): δ 8.01 (s, 1H), 6.14 (dd, J = 6.3, 4.8 Hz, 1H), 4.58 (dd, J = 11.1, 6.1 Hz, 1H), 4.40 (t, J = 6.6 Hz, 2H), 3.98 (s, 3H), 2.90 (br, 2H), 2.50 – 2.37 (m, 1H), 2.28 – 2.16 (m, 1H), 1.94 (s, 3H), 1.72 (dd, J = 14.1, 7.2 Hz, 2H), 1.42 (dd, J = 15.2, 7.4 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H). HRMS (ESI) calcd for C₁₄H₂₃N₂O₅ [M+H]⁺ m/z 299.1601, found m/z 299.1622.

*O*²-*sec*-butylthymidine (*O*²-*s*BudT, 2f). Obtained as a colorless film (53% yield). ¹H NMR (300 MHz, CDCl₃): δ 8.00 (s, 1H), 6.14 (dd, *J* = 11.1, 5.6 Hz, 1H), 5.36 – 5.21 (m, 1H), 4.58 (dd, *J* = 11.0, 6.4 Hz, 1H), 4.39 – 4.22 (m, 1H), 3.98 (s, 2H), 2.96 (br, 2H), 2.49 – 2.38 (m, 1H), 2.28 – 2.17 (m, 1H), 1.96 (s, 3H), 1.77 – 1.60 (m, 2H), 1.31 (dd, *J* = 6.2, 2.3 Hz, 3H), 0.93 (td, *J* = 7.4, 2.4 Hz, 3H). HRMS (ESI) calcd for C₁₄H₂₃N₂O₅ [M+H]⁺ *m*/*z* 299.1601, found *m*/*z* 299.1624. *O*²-*isobutylthymidine* (*O*²-*iBudT*, 2g). Obtained as a colorless film (58% yield). ¹H NMR (300 MHz, CDCl₃): δ 8.01 (s, 1H), 6.15 (dd, *J* = 6.2, 4.7 Hz, 1H), 4.57 (s, 1H), 4.17 (d, *J* = 6.6 Hz, 2H), 4.01 – 3.96 (m, 3H), 3.50 (s, 1H), 3.48 (s, 1H), 2.48 – 2.40 (m, 1H), 2.29 – 2.17 (m, 1H), 2.13 – 1.99 (m, 1H), 1.93 (s, 3H), 0.99 (s, 3H), 0.97 (s, 3H). HRMS (ESI) calcd for C₁₄H₂₃N₂O₅ [M+H]⁺ *m*/*z* 299.1601, found *m*/*z* 299.1601, found *m*/*z* 299.1615.

5'-O-(4,4'-dimethoxytrityl)- O^2 -*n*-propylthymidine (DMTr- O^2 -*n*PrdT, 3c). Obtained as a white foam (59% yield). ¹H NMR (300 MHz, CDCl₃): δ 7.64 (s, 1H), 7.45 – 7.22 (m, 9H), 6.83 (d, J = 8.8 Hz, 4H), 6.27 (t, J = 6.6 Hz, 1H), 4.58 (dt, J = 6.2, 3.3 Hz, 1H), 4.39 (t, J = 6.7 Hz, 2H), 4.13 – 4.07 (m, 1H), 3.79 (s, 6H), 3.44 (ddd, J = 29.2, 10.6, 3.3 Hz, 2H), 2.46 – 2.32 (m, 2H), 1.78 (dt, J = 14.2, 7.1 Hz, 2H), 1.60 (s, 3H), 0.98 (t, J = 7.4 Hz, 3H). HRMS (ESI) calcd for C₃₄H₃₉N₂O₇ [M+H]⁺ *m/z* 587.2752, found *m/z* 587.2776.

5'-O-(4,4'-dimethoxytrityl)- O^2 -*iso*-propylthymidine (DMTr- O^2 -*i*PrdT, 3d). Obtained as a white foam (41% yield). ¹H NMR (300 MHz, acetone- d_6): δ 7.69 (s, 1H), 7.54 – 7.24 (m, 9H), 6.91 (d, J = 8.9 Hz, 4H), 6.26 (t, J = 6.6 Hz, 1H), 5.33 (dt, J = 12.5, 6.2 Hz, 1H), 4.59 (s, 1H), 4.09 (d, J = 3.4 Hz, 1H), 3.80 (s, 6H), 3.39 (d, J = 3.6 Hz, 2H), 2.44 – 2.36 (m, 2H), 1.52 (s, 3H), 1.36 (dd, J = 6.2, 3.8 Hz, 6H). HRMS (ESI) calcd for C₃₄H₃₉N₂O₇ [M+H]⁺ *m*/*z* 587.2752, found *m*/*z* 587.2758.

5'-O-(4,4'-dimethoxytrityl)- O^2 -*n*-butylthymidine (DMTr- O^2 -*n*BudT, 3e). Obtained as a white foam (52% yield). ¹H NMR (300 MHz, acetone- d_6): δ 7.71 (s, 1H), 7.55 – 7.24 (m, 9H), 6.90 (d, J = 8.7 Hz, 4H), 6.28 (t, J = 6.6 Hz, 1H), 4.60 (dd, J = 8.6, 4.7 Hz, 1H), 4.36 (t, J = 6.6 Hz, 2H),

4.10 (q, J = 3.4 Hz, 1H), 3.79 (s, 6H), 3.40 (d, J = 3.5 Hz, 2H), 2.43 (t, J = 6.0 Hz, 2H), 1.82 – 1.69 (m, 2H), 1.52 (s, 3H), 1.50 – 1.41 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H). HRMS (ESI) calcd for $C_{35}H_{41}N_2O_7 [M+H]^+ m/z$ 601.2908, found m/z 601.2897.

5'-O-(4,4'-dimethoxytrityl)-*O*²-*sec*-butylthymidine (DMTr-*O*²-*s*BudT, 3f). Obtained as a white foam (46% yield). ¹H NMR (300 MHz, acetone-*d*₆): δ 7.71 (s, 1H), 7.53 – 7.19 (m, 9H), 6.90 (d, J = 8.8 Hz, 4H), 6.32 – 6.24 (m, 1H), 5.25 – 5.15 (m, 1H), 4.60 (s, 1H), 4.09 (s, 1H), 3.80 (s, 6H), 3.40 (s, 2H), 2.45 – 2.38 (m, 2H), 1.72 (td, J = 14.0, 7.2 Hz, 2H), 1.51 (s, 3H), 1.33 (dd, J = 6.2, 4.2 Hz, 3H), 0.96 (t, J = 7.4 Hz, 3H). HRMS (ESI) calcd for C₃₅H₄₁N₂O₇ [M+H]⁺ *m/z* 601.2908, found *m/z* 601.2913.

5'-O-(4,4'-dimethoxytrityl)- O^2 -*iso*-butylthymidine (DMTr- O^2 -*i*BudT, 3g). Obtained as a white foam (55% yield). ¹H NMR (300 MHz, acetone- d_6): δ 7.72 (s, 1H), 7.54 – 7.27 (m, 9H), 6.90 (d, J = 8.9 Hz, 4H), 6.31 (t, J = 6.5 Hz, 1H), 4.62 (dd, J = 8.5, 4.9 Hz, 1H), 4.17 – 4.07 (m, 3H), 3.80 (s, 6H), 3.41 (d, J = 3.5 Hz, 2H), 2.44 (dd, J = 6.5, 5.1 Hz, 2H), 2.11 (dd, J = 13.5, 6.7 Hz, 1H), 1.52 (d, J = 1.1 Hz, 3H), 1.03 (s, 3H), 1.00 (d, J = 4.0 Hz, 3H). HRMS (ESI) calcd for

 $C_{35}H_{41}N_2O_7 [M+H]^+ m/z$ 601.2908, found m/z 601.2917.

4c: ³¹P NMR (CDCl₃): δ 150.31, 149.78.

4d: ³¹P NMR (CDCl₃): δ 150.30, 149.75.

4e: ³¹P NMR (CDCl₃): δ 150.42, 149.81.

4f: ³¹P NMR (CDCl₃): δ 150.44, 150.36, 149.75.

4g: ³¹P NMR (CDCl₃): δ 150.46, 149.73.

Figure S1. ¹H NMR spectrum of O^2 -*n*PrdT (300 MHz, CDCl₃, 25°C).

Figure S2. ¹H NMR spectrum of O^2 -*i*PrdT (300 MHz, CDCl₃, 25°C).

Figure S3. ¹H NMR spectrum of O^2 -*n*BudT (300 MHz, CDCl₃, 25°C).

Figure S5. ¹H NMR spectrum of O^2 -*i*BudT (300 MHz, CDCl₃, 25°C).

Figure S6. ¹H NMR spectrum of 5'-DMTr- O^2 -*n*PrdT (300 MHz, CDCl₃, 25°C).

Figure S7. ¹H NMR spectrum of 5'-DMTr- O^2 -*i*PrdT (300 MHz, acetone- d_6 , 25°C).

Figure S9. ¹H NMR spectrum of 5'-DMTr- O^2 -sBudT (300 MHz, acetone- d_6 , 25°C).

Figure S11. ³¹P NMR spectrum of phosphoramidite building block of O^2 -*n*PrdT (80 MHz, CDCl₃, 25°C).

Figure S12. ³¹P NMR spectrum of phosphoramidite building block of *O*²-*i*PrdT (80 MHz, CDCl₃, 25°C).

Figure S13. ³¹P NMR spectrum of phosphoramidite building block of O^2 -*n*BudT (80 MHz, CDCl₃, 25°C).

Figure S14. ³¹P NMR spectrum of phosphoramidite building block of O^2 -*s*BudT (80 MHz, CDCl₃, 25°C).

Figure S15. ³¹P NMR spectrum of phosphoramidite building block of *O*²-*i*BudT (80 MHz, CDCl₃, 25°C).

Figure S16. The 2-D HMBC spectrum of O^2 -*i*PrdT (600 MHz, CD₃OD, 25°C) showing the correlation between the methine protons of the isopropyl functionality and the C2, but not the C4 carbon of the thymine ring.

Figure S17. The 2-D HMBC spectrum of O^2 -*s*BudT (600 MHz, CD₃OD, 25°C) showing the correlation between the methine proton of the *sec*-butyl functionality and the C2, but not the C4 carbon of the thymine ring.

Figure S18. The 2-D HMBC spectrum of O^2 -*i*BudT (600 MHz, DMSO-*d*₆, 25°C) showing the correlation between the methylene protons of the isobutyl functionality and the C2, but not the C4 carbon of the thymine ring.

Figure S19. HPLC traces for the separation of the synthesized 12mer ODNs: (a) $X_1 = O^2$ -EtdT; (b) $X_2 = O^2 - n PrdT$; (c) $X_3 = O^2 - i PrdT$; (d) $X_4 = O^2 - n BudT$; (e) $X_5 = O^2 - s BudT$; (f) $X_6 = O^2 - i BudT$.

Figure S20. ESI-MS & MS/MS characterizations of d(ATGGCGXGCTAT), $X=O^2$ -MedT (a) Negative-ion ESI-MS; (b) the product-ion spectrum of the [M-3H]³⁻ ion (*m*/*z* 1229.1).

Figure S21. ESI-MS & MS/MS characterizations of d(ATGGCGXGCTAT), $X=O^2-nPrdT$ (a) Negative-ion ESI-MS; (b) the product-ion spectrum of the $[M-3H]^{3-}$ ion (m/z 1238.5).

Figure S22. ESI-MS & MS/MS characterizations of d(ATGGCGXGCTAT), $X=O^2-iPrdT$ (a) Negative-ion ESI-MS; (b) the product-ion spectrum of the $[M-3H]^{3-}$ ion $(m/z \ 1238.4)$.

Figure S23. ESI-MS & MS/MS characterizations of d(ATGGCGXGCTAT), $X=O^2-nBudT$ (a) Negative-ion ESI-MS; (b) the product-ion spectrum of the [M-3H]³⁻ ion (m/z 1242.7).

Figure S24. ESI-MS & MS/MS characterizations of d(ATGGCGXGCTAT), $X=O^2$ -sBudT (a) Negative-ion ESI-MS; (b) the product-ion spectrum of the [M-3H]³⁻ ion (m/z 1242.7).

Figure S25. ESI-MS & MS/MS characterizations of d(ATGGCGXGCTAT), $X=O^2-iBudT$ (a) Negative-ion ESI-MS; (b) the product-ion spectrum of the $[M-3H]^{3-}$ ion (m/z 1242.6).

a. Construction of Lesion-containing genome:

5 ' - CAGGAAAGCTATGACCATGATTCAGTGAGTGGAAGACATGGCGXGCTATAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAA-3 ' 3' - CTTTCGATACTGGTACTAAGTCACTCACCTTC-5' 3 ' - CGATATTAAGTGACCGGCAGCAAAA-5'

b. Construction of competitor genome:

5'-CAGGAAAGCTATGACCATGATTCAGTGAGTGGAAGACATGGCGATAAGCTATAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAA-3' 3'-CTTTCGATACTGGTACTAAGTCACTCACCTTC-5' 3'-CGATATTAAGTGACCGGCAGCAAAA-5'

Figure S26. Schematic diagrams showing the construction of the lesion-containing (a) and competitor genomes. Displayed are the partial sequence of the linearized M13, the 22-mer lesion-containing or the 25-mer lesion-free insert (shown in red), and the two scaffolds employed for the ligation reactions. The lesion site is underlined (\underline{X}).

Figure S27. Native PAGE (30%) for monitoring the bypass efficiencies and mutation frequencies of O^2 -alkyldT lesions in SOS-induced AB1157 *E. coli* cells that are depleted in Pol II, Pol IV, and Pol V. (a) Gel image showing the 13-mer and 10-mer products released from the top-strand (lesion-containing strand) of the PCR products of the progeny of the competitor genome and the control or lesion-carrying genome, where 10mer-A, 10mer-C, 10mer-G, and 10mer-T represent the $[5'-^{32}P]$ -labeled standard ODNs 5'-GGCGMGCTAT-3', with 'M' being A, C, G, and T, respectively, and 10mer-CA designates TG→CA tandem double mutation (See text). (b) Gel image showing the 13-mer and 10-mer products released from the bottom-strand (opposite to lesion-containing strand) of the PCR products of the progeny of the competitor genome and the control or lesion-carrying genome, where 10mer A, 10mer C, 10mer G, and 10mer T represent the $[5'-^{32}P]$ -labeled standard ODNs 5'-AATTATAGCN-3', with 'N' being A, C, G, and T, respectively. The lesion-containing genomes were mixed individually with the competitor genome at molar ratios of 10:1 or 20:1 for the transfection experiments (See Materials and Methods).

Figure S28. Higher-resolution "ultra zoom" scan ESI-MS for the restriction fragments for the PCR products from the replication of O^2 -MedT (a, e), O^2 -*n*PrdT (b, f), O^2 -*i*PrdT (c, g) and O^2 -*i*BudT (d, h)-bearing single-stranded M13 genomes in SOS-induced wild-type AB1157 cells. Displayed in (a)-(d) are the $[M - 3H]^{3-}$ ions for the lesion-containing strand products, and in (e)-(h) are the $[M - 3H]^{3-}$ ions for the complementary strand products. All the mutagenic products were further confirmed by MS/MS analyses, and representative MS/MS results for O^2 -iPrdT are shown in Figures S29-S30.

Figure S29. LC-MS/MS for the identification of restriction fragments of PCR products. MS/MS for the $[M - 3H]^{3-}$ ions of 10 mer C (top) and 10 mer CA (bottom) products from for the progeny of O^2 -*i*PrdT-containing genome in SOS-induced wild-type AB1157 cells. Because of overlap in signal of the $[M - 3H]^{3-}$ ion of 10 mer A and the $[M - 4H + Na^+]^{3-}$ ion of 10 mer C as well as between the $[M - 3H]^{3-}$ ion of 10 mer G and the $[M - 4H + Na^+]^{3-}$ ion of 10 mer T, the T \rightarrow A and T \rightarrow G mutation products were monitored using the complementary strand (Figure S30).

Figure S30. LC-MS/MS for the identification of restriction fragments of PCR products in SOS-induced wild-type AB1157 cells. MS/MS for the $[M - 3H]^{3-}$ ions of 10 mer C (corresponding to T \rightarrow G mutation at the lesion site, top), 10 mer T (corresponding to T \rightarrow A mutation at the lesion site, bottom).