#### **Supporting Information**

### HETEROGENEOUS REACTIONS OF PM-BOUND PAHS AND NPAHS WITH NO<sub>3</sub>/N<sub>2</sub>O<sub>5</sub>, OH RADICALS, AND O<sub>3</sub> UNDER SIMULATED LONG-RANGE ATMOSPHERIC TRANSPORT CONDITIONS: REACTIVITY AND MUTAGENICITY

NARUMOL JARIYASOPIT<sup>1</sup>, KATHRYN ZIMMERMANN<sup>2</sup>, JILL SCHRLAU<sup>3</sup>, JANET AREY<sup>2</sup>, ROGER ATKINSON<sup>2</sup>, TIAN-WEI YU<sup>3</sup>, RODERICK H. DASHWOOD<sup>4</sup>, SHU TAO<sup>5</sup>, STACI L. MASSEY SIMONICH<sup>1,3 \*</sup>

<sup>1</sup>Department of Chemistry, Oregon State University, Corvallis, Oregon USA 97331; <sup>2</sup>Air Pollution Research Center, University of California, Riverside, California 92521, USA; <sup>3</sup>Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA, 97331; <sup>4</sup>Institute of Biosciences & Technology, Texas A&M Health Science Center, Houston, Texas, USA, 77030; <sup>5</sup>College of Urban and Environmental Science, Peking University, Beijing, China, 100871.

\*Corresponding author e-mail: <u>staci.simonich@orst.edu</u>; phone: (541) 737-9194; fax: (541) 737-0497

#### Table of Contents

|                                                                                                                | Page |
|----------------------------------------------------------------------------------------------------------------|------|
| Appendixi. Chamber Exposures.                                                                                  | 5    |
| Appendix II. Sample Extraction and Analysis                                                                    | 5    |
|                                                                                                                |      |
| <b>Table SI.1</b> Sampling details for the PM filters used in the exposure experiments                         | 6    |
| Table SI.2 Means and standard errors of PAH and NPAH masses (ng) measured in                                   |      |
| PKU filters used for the chemical study of NO <sub>3</sub> /N <sub>2</sub> O <sub>5</sub> exposure             | 7    |
| Table SI.3 Means and standard errors of PAH and NPAH masses (ng) measured in                                   |      |
| PKU filters used for the chemical study of OH radical exposure                                                 | 9    |
| Table SI.4 Means and standard errors of PAH and NPAH masses (ng) measured in                                   |      |
| PKU filters used for the chemical study of O <sub>3</sub> exposure                                             | 11   |
| Table SI.5 Means and standard errors of PAH and NPAH masses (ng) measured in                                   |      |
| Riverside filters used for the chemical study of NO <sub>3</sub> /N <sub>2</sub> O <sub>5</sub> exposure       | 13   |
| Table SI.6 Means and standard errors of PAH and NPAH masses (ng) measured in                                   |      |
| Riverside filters used for the chemical study of OH radical exposure                                           | 14   |
| Table SI.7 Means and standard errors of PAH and NPAH masses (ng) measured in                                   |      |
| Riverside filters used for the chemical study of O <sub>3</sub> exposure                                       | 15   |
| Table SI.8 Means and standard errors of PAH and NPAH masses (ng) measured in                                   |      |
| PKU filters used for the mutagenicity study of NO <sub>3</sub> /N <sub>2</sub> O <sub>5</sub> radical exposure | 16   |
| Table SI.9 Means and standard errors of PAH and NPAH masses (ng) measured in                                   |      |
| PKU filters used for the mutagenicity study of OH radical exposure                                             | 18   |
| Table SI.10 Means and standard errors of PAH and NPAH masses (ng) measured in                                  |      |

PKU filters used for the mutagenicity study of O<sub>3</sub> exposure.....

20

|                                                                                                                                      | Page |
|--------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure SI.1 Cutting of the filters used in the chemical and mutagencity studies                                                      | 22   |
| Figure SI.2 Rotating apparatus placed inside the Teflon chamber for exposing cut                                                     |      |
| PM filters                                                                                                                           | 23   |
| Figure SI.3 A. PAH <sub>exposed</sub> /PAH <sub>unexposed</sub> and B. NPAH <sub>exposed</sub> /NPAH <sub>unexposed</sub> of         |      |
| Riverside PM filters (n=3) used for the chemical study                                                                               | 24   |
| Figure SI.4 Correlation between the percent reactivity of the Beijing and Riverside                                                  |      |
| PM samples exposed to NO <sub>3</sub> /N <sub>2</sub> O <sub>5</sub> to the 2-NF <sub>unexposed</sub> concentrations normalized to   |      |
| the BeP <sub>unexposed</sub> concentrations                                                                                          | 25   |
| Figure SI.5 A. PAH <sub>exposed</sub> /PAH <sub>unexposed</sub> and B. NPAH <sub>exposed</sub> /NPAH <sub>unexposed</sub> of Beijing |      |
| PM filters (n=3) used for the mutagenicity study                                                                                     | 26   |
|                                                                                                                                      |      |

#### **Appendix I. Chamber Exposures.**

 $NO_3/N_2O_5$  Exposure. NO<sub>3</sub> radicals were generated in the dark by the thermal decomposition of gaseous N<sub>2</sub>O<sub>5</sub> in the presence of added NO<sub>2</sub>.<sup>1, 2</sup> Because this reaction is reversible, NO<sub>2</sub> was added in order to achieve the desired NO<sub>3</sub>/N<sub>2</sub>O<sub>5</sub> concentration ratio and the chamber was continuously flushed to avoid the build-up of NO<sub>2</sub>. One addition of  $\sim 0.40 - 0.46$ ppm  $N_2O_5$  and ~1 ppm  $NO_2$  were made every hour over the 8 hour experimental time period. The calculated mean NO<sub>3</sub> concentration was ~420 ppt after adjusting for wall losses and dilution due to chamber turn over (flushing of the chamber with clean air). The total exposure period was equivalent to exposing the PM to an average ambient NO<sub>3</sub> concentration of 45 ppt for seven 12hour night-time periods. Trans-Pacific atmospheric transport from Asia to the West Coast has been shown to occur in as little as 6 days during the Spring of the year,<sup>3</sup> making this an appropriate exposure for modeling trans-Pacific atmospheric transport. However, in order to maintain NO<sub>3</sub> radical concentrations in the environmental chamber that might be used to mimic ambient conditions, N<sub>2</sub>O<sub>5</sub>/NO<sub>3</sub> were much greater than those typically observed in ambient atmospheres, possibly promoting heterogeneous  $N_2O_5$  reactions in the chamber system. It should also be noted that the concentrations of NO<sub>2</sub> (~1 ppm) and N<sub>2</sub>O<sub>5</sub> (~0.5 ppm), exceed, by at least two orders of magnitude, expected ambient concentrations of both of these species.

*OH Radical Exposure.* The photolysis of methylnitrite (CH<sub>3</sub>ONO), at wavelength > 300 nm in the presence of NO, was used to generate OH radicals.<sup>4, 5</sup> Irradiations were carried out at 20% of the maximum light intensity, with initial CH<sub>3</sub>ONO and NO concentrations of 1 ppm were flushed with a stream of N<sub>2</sub> into the chamber. The chamber was operated continuously in the flush mode to avoid the build-up of NO<sub>2</sub> and HNO<sub>3</sub>. However, HNO<sub>3</sub> was expected to form as described in the manuscript and was determined to have played a minor role in PAH nitration during these exposures (e.g. nitration of PYR and CHR to form 1-NP and 6-NCH during the OH

exposure). One addition of CH<sub>3</sub>ONO and NO was made every hour, leading to an hourly OH radical concentration of  $2 \times 10^7$  molecule cm<sup>-3</sup> (~0.8 ppt) for a total 8 h exposure time. The total OH radical concentration was equivalent to exposing the PM to an average tropospheric OH radical concentration ( $1.0 \times 10^6$  molecule cm<sup>-3</sup>) for ~6-7 days (24-hour day) in order to simulate trans-Pacific atmospheric transport of PM-bound PAHs during the springtime.<sup>6, 7</sup>

 $O_3$  *Exposure.* Ozone was generated by a Welsbach T-408 O<sub>3</sub> generator and introduced into the chamber with a stream of N<sub>2</sub>. The exposure was conducted in the dark and the chamber was not flushed. The average O<sub>3</sub> concentration was ~800 ppb over the 9.5 h exposure period, which was equivalent to exposing the PM to an average ambient O<sub>3</sub> concentration of 40 ppb for 8 days (24-hour day). Ozone concentrations exceeding 100 ppb have been measured during trans-Pacific atmospheric transport events.<sup>8</sup>

#### Appendix II. Sample Extraction and Analysis.

In brief, prior to extraction, the ambient PM filters used in the chemical study were spiked with perdeuterated PAH and NPAH surrogates. No perdeuterated surrogates were spiked onto the PM filters that were used for the mutagenicity testing to avoid isotope effects during the mutagenicity study. All PM filters were extracted twice at 100°C and 1500 psi with dichloromethane using pressurized liquid extraction with subsequent combination of the two fractions. The extracts used for the Salmonella assay were evaporated to dryness under a gentle N<sub>2</sub> stream. The residue was dissolved in 500 µl dimethyl sulfoxide (DMSO). The extracts used for the chemical analysis were purified using 20-g silica columns prior to chemical analysis (Mega BE-SI, Agilent Technologies, New Castle, DE). PAHs and NPAHs were eluted in the dichloromethane fraction and spiked with perdeuterated PAH and NPAH internal standards. PAHs were analyzed by gas chromatographic mass spectrometry (Agilent 6890 GC coupled with an Agilent 5973N MSD) in selected ion monitoring using electron impact ionization, while NPAHs were analyzed using negative chemical ionization (NCI) with a programmed temperature vaporization (PTV) inlet (Gerstel, Germany)<sup>9</sup>. Both PAHs and NPAHs were separated on a 5% phenyl substituted methylpolysiloxane GC column (DB-5MS, 30m×0.25mm I.D., 0.25 µm film thickness, J&W Scientific, USA). The separation of 2-NF and 3-NF was achieved on a 50% phenyl substituted methylpolysiloxane GC column (DB-17MS, 30m×0.25mm I.D., 0.25 µm film thickness, J&W Scientific, USA).

| Filter Code | PM                | Location  | Sampling Date  | Date Duration Expos |               | Experiment   |
|-------------|-------------------|-----------|----------------|---------------------|---------------|--------------|
|             | Size              |           |                |                     |               |              |
|             |                   |           |                |                     |               |              |
| PKU-1       | PM <sub>2.5</sub> | Beijing   | 4/20/11        | 24 h                | $NO_3/N_2O_5$ | Chemistry    |
| PKU-2       | PM <sub>2.5</sub> | Beijing   | 4/21/11        | 24 h                | $NO_3/N_2O_5$ | Chemistry    |
| PKU A       | PM <sub>10</sub>  | Beijing   | May 09- Feb 10 | 24 h                | $NO_3/N_2O_5$ | Chemistry    |
| PKU-3       | PM <sub>2.5</sub> | Beijing   | 4/22/11        | 24 h                | $NO_3/N_2O_5$ | Mutagenicity |
| PKU-4       | PM <sub>2.5</sub> | Beijing   | 4/23/11        | 24 h                | $NO_3/N_2O_5$ | Mutagenicity |
| PKU-5       | PM <sub>2.5</sub> | Beijing   | 4/25/11        | 24 h                | $NO_3/N_2O_5$ | Mutagenicity |
| PKU-6       | PM <sub>2.5</sub> | Beijing   | 4/26/11        | 24 h                | OH Radical    | Chemistry    |
| PKU B       | PM <sub>10</sub>  | Beijing   | May 09- Feb 10 | 24 h                | OH Radical    | Chemistry    |
| PKU C       | PM <sub>10</sub>  | Beijing   | May 09- Feb 10 | 24 h                | OH Radical    | Chemistry    |
| PKU-7       | PM <sub>2.5</sub> | Beijing   | 4/27/11        | 24 h                | OH Radical    | Mutagenicity |
| PKU-8       | PM <sub>2.5</sub> | Beijing   | 4/28/11        | 24 h                | OH Radical    | Mutagenicity |
| PKU-9       | PM <sub>2.5</sub> | Beijing   | 4/29/11        | 24 h                | OH Radical    | Mutagenicity |
| PKU-10      | PM <sub>2.5</sub> | Beijing   | 4/14/11        | 24 h                | $O_3$         | Chemistry    |
| PKU-11      | PM <sub>2.5</sub> | Beijing   | 4/16/11        | 24 h                | $O_3$         | Chemistry    |
| PKU D       | PM <sub>10</sub>  | Beijing   | May 09- Feb 10 | 24 h                | $O_3$         | Chemistry    |
| PKU-12      | PM <sub>2.5</sub> | Beijing   | 4/18/11        | 24 h                | $O_3$         | Mutagenicity |
| PKU-13      | PM <sub>2.5</sub> | Beijing   | 4/19/11        | 24 h                | $O_3$         | Mutagenicity |
| PKU-14      | PM <sub>2.5</sub> | Beijing   | 4/13/11        | 24 h                | $O_3$         | Mutagenicity |
| MT97-67 Q3  | PM <sub>2.5</sub> | Riverside | 10/4/97        | 12 h (daytime)      | $NO_3/N_2O_5$ | Chemistry    |
| MT97-66 Q2  | PM <sub>2.5</sub> | Riverside | 10/4/97        | 12 h (daytime)      | OH Radical    | Chemistry    |
| MT97-65 Q1  | PM <sub>2.5</sub> | Riverside | 10/4/97        | 12 h (daytime)      | $O_3$         | Chemistry    |
|             |                   |           |                |                     |               |              |

**Table SI.1:** Sampling details for the PM filters used in the exposure experiments.

### **Calculation Method for Table SI.2 to SI.10**

Each sample tested in the chemical studies (except for PKU-D) consisted of three paired PM filter portions (n=3). Means and standard errors of the PAH and NPAH masses were calculated for the unexposed and exposed filter portions. For each pair of PM filter portions, the percent change was calculated as:

% change =  $\frac{[PAH \text{ or NPAH}]exposed - [PAH \text{ or NPAH}]unexposed}{[PAH \text{ or NPAH}]unexposed} \times 100$ 

Where "Average percent change" is the average of percent changes of all paired PM samples.

**Table SI.2:** Means and standard errors of PAH and NPAH masses (ng) measured in PKU filters used for the chemical study of  $NO_3/N_2O_5$  exposure. In the case that a compound was not detected in all samples, superscript denotes number of samples detected. Numbers in bold are estimated detection limits. An asterisk indicates the statistically significant difference in mass (*p*-value < 0.05).

| Compound  | PKU A            | (n=3)            | PKU-1            | l (n=3)          | PKU-2           | 2 (n=3)          | Avg. %change      |
|-----------|------------------|------------------|------------------|------------------|-----------------|------------------|-------------------|
|           | Unexposed        | Exposed          | Unexposed        | Exposed          | Unexposed       | Exposed          |                   |
|           |                  |                  |                  |                  |                 |                  |                   |
| PAHs      |                  |                  |                  |                  |                 |                  |                   |
| FLU       | $6.8\pm0.5$      | $5.7 \pm 0.6$    | $97.1 \pm 41.6$  | $10.8 \pm 0.1$   | $5.0 \pm 0.4$   | $5.9 \pm 1.3$    | $-23\% \pm 15\%$  |
| DBT       | $6.3 \pm 0.8$    | $5.0 \pm 0.3$    | $24.5 \pm 6.0$   | $11.1 \pm 1.4$   | $2.3 \pm 0.5$   | $2.5 \pm 0.8$    | $-11\% \pm 22\%$  |
| PHE       | $81.5 \pm 4.4$   | $59.6 \pm 7.2$   | $243.7 \pm 38.9$ | $111.8 \pm 2.9$  | $31.3 \pm 0.2$  | $22.8 \pm 1.5$   | $-35\% \pm 5\%$ * |
| ANT       | $8.2 \pm 0.2$    | $4.1 \pm 0.3$    | $16.4 \pm 3.7$   | 4.9              |                 |                  | -57% ± 6%*        |
| 2-MPHE    | $28.3 \pm 1.6$   | $20.7 \pm 2.3$   | $66.4 \pm 2.8$   | $55.0 \pm 3.9$   |                 |                  | $-22\% \pm 5\%$ * |
| 2-MANT    | $3.9 \pm 0.1$    | 3.1              |                  |                  |                 |                  | -22% ± 1%*        |
| 1-MPHE    | $17.4 \pm 1.0$   | $12.0 \pm 1.2$   | $40.9 \pm 0.4$   | $33.5 \pm 0.9$   | $13.1 \pm 0.5$  | $10.9 \pm 0.9$   | $-22\% \pm 3\%*$  |
| 3,6-DPHE  | $3.0 \pm 0.1^2$  | 2.7              | $5.7^{1}$        | $4.9^{1}$        |                 |                  | $-11\% \pm 3\%$   |
| RET       | $47.6 \pm 3.7$   | $36.0 \pm 4.8$   | $50.6 \pm 0.8$   | $41.1 \pm 1.3$   | $23.8 \pm 0.9$  | $13.0 \pm 0.6$   | $-29\% \pm 5\%$ * |
| FLA       | $318.7 \pm 17.7$ | $202.0 \pm 22.3$ | $550.4 \pm 22.6$ | $540.1 \pm 22.6$ | $124.4 \pm 3.4$ | $105.5 \pm 12.6$ | $-18\% \pm 6\%*$  |
| PYR       | $220.6 \pm 13.6$ | $122.1 \pm 14.6$ | $369.2 \pm 7.5$  | $278.3 \pm 11.0$ | $94.1 \pm 3.1$  | $33.7 \pm 1.0$   | $-45\% \pm 6\%$ * |
| BcFLU     |                  |                  | $80.3 \pm 0.8$   | $45.9 \pm 13.3$  | $24.2 \pm 0.7$  | $10.5 \pm 0.8$   | $-50\% \pm 8\%$ * |
| 1-MPYR    | $21.1 \pm 1.2$   | $10.4 \pm 1.1$   | $30.0 \pm 0.2$   | $35.2 \pm 17.0$  | $10.6 \pm 0.3$  | $3.9\pm0.04$     | $-32\% \pm 21\%$  |
| BaA       | $132.3\pm6.9$    | $67.1 \pm 6.9$   | $177.8 \pm 5.4$  | $146.3 \pm 12.1$ | $52.5 \pm 3.6$  | $27.7 \pm 2.8$   | $-38\% \pm 6\%$ * |
| CHR + TRI | $184.3 \pm 13.4$ | $143.4 \pm 21.2$ | $223.9 \pm 4.6$  | $207.8 \pm 10.0$ | $64.2 \pm 1.4$  | $52.8 \pm 0.7$   | -16% ± 4%*        |

## Table SI.2 (continued)

| Compound  | Uncoded          | A (n=3)          | PKU-1           | PKU-1 (n=3)      |                  | 2 (n=3)          | Avg. %change         |
|-----------|------------------|------------------|-----------------|------------------|------------------|------------------|----------------------|
| -         | Unexposed        | Exposed          | Unexposed       | Exposed          | Unexposed        | Exposed          |                      |
|           | -                | -                |                 |                  |                  |                  |                      |
| BbF       | $743.3\pm48.8$   | $595.2 \pm 81.4$ | $630.6 \pm 8.3$ | $596.5 \pm 9.8$  | $276.6 \pm 4.5$  | $225.6 \pm 1.2$  | -15% ± 3%*           |
| BkF       | $187.3 \pm 10.4$ | $136.3 \pm 20.0$ | $206.7 \pm 3.5$ | $184.3 \pm 1.6$  | $83.3 \pm 2.0$   | $58.0 \pm 1.9$   | -23% ± 4%*           |
| BeP       | $369.7 \pm 21.6$ | $275.9 \pm 36.4$ | $357.6 \pm 5.7$ | $335.5 \pm 2.4$  | $139.4 \pm 4.1$  | $106.2 \pm 1.4$  | -19% ± 4%*           |
| BaP       | $152.1 \pm 11.4$ | $65.0 \pm 16.6$  | $267.8\pm6.6$   | $201.9 \pm 14.1$ | $121.2 \pm 27.7$ | $52.9\pm9.2$     | $-46\% \pm 6\%$ *    |
| DahA+DacA | $60.9 \pm 3.4$   | $48.3 \pm 5.9$   | $27.8 \pm 0.1$  | $28.2 \pm 2.7$   | $9.9 \pm 0.3$    | $7.9 \pm 0.2$    | $-14\% \pm 5\%$      |
| IcdP      | $366.3 \pm 21.8$ | $284.2 \pm 36.7$ | $368.1 \pm 3.0$ | $367.7 \pm 5.9$  | $152.8 \pm 4.3$  | $118.6 \pm 1.7$  | $-16\% \pm 4\%$      |
| BghiP     | $370.4\pm22.8$   | $249.0 \pm 32.6$ | $382.7\pm3.0$   | $352.8\pm9.2$    | $157.2 \pm 4.2$  | $112.1 \pm 1.5$  | $-23\% \pm 4\%$      |
|           |                  |                  |                 |                  |                  |                  |                      |
|           |                  |                  |                 |                  |                  |                  |                      |
| NPAHs     |                  |                  |                 |                  |                  |                  |                      |
| 9-NAN     | $110.0 \pm 7.0$  | $64.4 \pm 1.0$   | $123.1 \pm 2.4$ | $100.0 \pm 1.2$  | $31.7 \pm 1.7$   | $23.5 \pm 0.9$   | -29% ± 3%*           |
| 9-NPH     |                  |                  | 0.5             | $4.8 \pm 1.7$    | 0.5              | $2.7 \pm 0.1$    | 633% ± 177%*         |
| 3-NPH     | $4.1 \pm 0.6$    | $3.8 \pm 0.1$    | $2.7 \pm 0.1$   | $4.0 \pm 0.7$    | $1.2 \pm 0.04$   | $2.0 \pm 0.1$    | $38\% \pm 14\%$      |
| 2-NF      | $257.9 \pm 15.5$ | $231.1 \pm 3.4$  | $139.8 \pm 2.1$ | $141.3 \pm 11.6$ | $32.4 \pm 2.1$   | $32.0 \pm 2.7$   | $-3\% \pm 4\%$       |
| 3-NF      | 0.9              | $14.7 \pm 0.8$   | 1.1             | $6.7 \pm 1.4$    | 1.1              | $6.7 \pm 0.5$    | 862% ± 173%*         |
| 1-NP      | $3.1 \pm 0.5$    | $64.1 \pm 2.7$   | $4.3 \pm 0.1$   | $67.2 \pm 9.3$   | $2.2 \pm 0.03$   | $64.2 \pm 0.9$   | $2104\% \pm 224\%$ * |
| 2-NP      |                  |                  | $12.0 \pm 0.4$  | $12.1 \pm 0.4$   | $10.1 \pm 0.2$   | $10.0 \pm 0.5$   | $0.2\% \pm 3\%$      |
| 7-NBaA    | $29.4 \pm 2.4$   | $48.5\pm0.8$     | $24.5 \pm 0.9$  | $34.8 \pm 2.2$   | $12.4 \pm 0.3$   | $32.7 \pm 0.4$   | 91% ± 19%*           |
| 1-NTR     | 0.6              | $3.7 \pm 0.2$    | 0.6             | $1.1 \pm 0.2$    | 0.6              | $1.8 \pm 0.4$    | $278\% \pm 78\%$ *   |
| 6-NCH     | 0.8              | $25.0\pm0.8$     | 0.2             | $6.9 \pm 1.5$    | 0.2              | $11.3 \pm 1.0$   | $4878\% \pm 644\%$ * |
| 2-NTR     | 0.7              | $5.9 \pm 0.3$    | $0.5 \pm 0.03$  | $1.5 \pm 0.3$    | 0.4              | $1.6 \pm 0.1$    | $420\% \pm 80\%$ *   |
| 1,3-DNP   |                  |                  | $0.7^{1}$       | 1.1 <sup>1</sup> |                  |                  | 42%                  |
| 1,6-DNP   |                  |                  | 0.61            | 2.5 <sup>1</sup> |                  |                  | 296%                 |
| 1,8-DNP   |                  |                  | $2.6 \pm 0.04$  | $5.3 \pm 0.8$    | 1.6 <sup>1</sup> | $2.5^{1}$        | 91% ± 23%*           |
| 6-NBaP    | 5.3              | $91.4 \pm 1.8$   | 6.1             | $191.3 \pm 6.6$  | 6.1              | $171.2 \pm 15.6$ | $2445\% \pm 226\%$ * |
|           |                  |                  |                 |                  |                  |                  |                      |

| Compound  | PKU B            | (n=3)             | PKU C            | C (n=3)          | PKU-6           | 6 (n=3)          | Avg. %change      |
|-----------|------------------|-------------------|------------------|------------------|-----------------|------------------|-------------------|
|           | Unexposed        | Exposed           | Unexposed        | Exposed          | Unexposed       | Exposed          |                   |
|           |                  |                   |                  |                  |                 |                  |                   |
| PAHs      |                  |                   |                  |                  |                 |                  |                   |
| FLU       | $8.5 \pm 0.3$    | $8.2 \pm 0.3$     | $8.7 \pm 0.5$    | $7.6 \pm 0.4$    | $6.8 \pm 0.3$   | $5.5 \pm 0.4$    | -12% ± 4%*        |
| DBT       | $7.6 \pm 0.7$    | $6.4 \pm 0.3$     | $6.7 \pm 0.5$    | $6.1 \pm 0.5$    | $3.5 \pm 0.1$   | $2.1 \pm 1.1$    | $-21\% \pm 11\%$  |
| PHE       | $96.4 \pm 4.2$   | $86.0 \pm 3.8$    | $102.4 \pm 7.8$  | $82.2 \pm 5.0$   | $60.4 \pm 1.7$  | $33.1 \pm 1.4$   | $-25\% \pm 6\%$ * |
| ANT       | $8.1 \pm 0.6$    | $4.7 \pm 0.03$    | $8.9 \pm 0.8$    | $5.7 \pm 0.2$    | $9.2 \pm 0.2$   | $5.3 \pm 0.3$    | $-40\% \pm 3\%$ * |
| 2-MPHE    | $31.5 \pm 1.4$   | $27.8 \pm 1.0$    | $33.9 \pm 2.8$   | $26.1 \pm 1.3$   | $29.7 \pm 0.6$  | $25.3 \pm 3.0$   | $-16\% \pm 4\%$ * |
| 2-MANT    | $3.7 \pm 0.2$    | 3.1               | $3.9 \pm 0.4$    | 3.1              |                 |                  | -17% ± 4%*        |
| 1-MPHE    | $19.9 \pm 1.1$   | $16.7 \pm 0.7$    | $21.0 \pm 1.8$   | $15.9 \pm 0.4$   | $19.8 \pm 0.6$  | $14.3 \pm 1.5$   | -22% ± 3%*        |
| 3,6-DPHE  | $2.8 \pm 0.1^2$  | $2.5 \pm 0.2^{2}$ | $3.2 \pm 0.1^2$  | 2.7              | $6.5 \pm 0.8^2$ | $6.0 \pm 0.3^2$  | $-11\% \pm 5\%$   |
| RET       | $31.0 \pm 1.2$   | $29.1 \pm 1.5$    | $32.5 \pm 2.2$   | $26.5 \pm 1.8$   | $44.3 \pm 2.2$  | $40.6 \pm 3.7$   | -11% ± 3%*        |
| FLA       | $379.6 \pm 22.8$ | $336.9 \pm 13.0$  | $432.9 \pm 37.4$ | $319.3 \pm 20.9$ | $195.2 \pm 2.9$ | $156.1 \pm 14.4$ | $-19\% \pm 3\%*$  |
| PYR       | $250.0\pm10.9$   | $216.0 \pm 9.2$   | $265.7 \pm 19.3$ | $210.6 \pm 12.1$ | $142.3 \pm 3.5$ | $86.0 \pm 8.0$   | $-24\% \pm 5\%$ * |
| BcFLU     |                  |                   |                  |                  | $39.5 \pm 1.0$  | $21.1 \pm 1.9$   | $-47\% \pm 4\%$ * |
| 1-MPYR    | $21.5 \pm 1.4$   | $17.0 \pm 0.3$    | $23.1 \pm 1.4$   | $15.9 \pm 1.0$   | $18.9\pm0.4$    | $8.2 \pm 0.8$    | $-36\% \pm 6\%$ * |
| BaA       | $130.2 \pm 5.4$  | $99.3 \pm 2.5$    | $135.8 \pm 9.4$  | $102.3 \pm 4.6$  | $133.2 \pm 4.6$ | $83.8 \pm 4.9$   | $-28\% \pm 3\%*$  |
| CHR + TRI | $138.6 \pm 5.8$  | $139.4 \pm 6.6$   | $149.2 \pm 11.1$ | $132.8\pm7.9$    | $98.0\pm18.4$   | $106.9 \pm 3.6$  | $3\% \pm 10\%$    |
| BbF       | $650.0 \pm 33.8$ | $641.8 \pm 27.3$  | $668.5 \pm 44.4$ | $590.7 \pm 29.5$ | $440.8\pm6.0$   | $440.0\pm9.9$    | -7% ± 3%*         |
| BkF       | $179.0 \pm 10.7$ | $172.4 \pm 7.9$   | $182.5 \pm 14.5$ | $154.7 \pm 9.5$  | $146.8 \pm 2.1$ | $132.1 \pm 2.9$  | $-9\% \pm 3\%$ *  |
| BeP       | $342.7 \pm 16.6$ | $327.4 \pm 12.3$  | $353.0 \pm 24.7$ | $309.4 \pm 16.1$ | $236.5 \pm 2.7$ | $210.9 \pm 5.8$  | $-9\% \pm 3\%*$   |
| BaP       | $230.6 \pm 11.2$ | $231.9\pm9.4$     | $245.8\pm18.2$   | $197.5 \pm 10.4$ | $178.8\pm3.6$   | $93.0 \pm 4.6$   | -22% ± 8%*        |
| DahA+DacA | $71.6 \pm 3.7$   | $70.3 \pm 2.5$    | $75.0 \pm 5.4$   | $67.4 \pm 3.9$   | $17.8 \pm 0.3$  | $15.4 \pm 0.6$   | $-8\% \pm 3\%$    |
| IcdP      | $481.8 \pm 22.1$ | $486.6 \pm 21.4$  | $497.5 \pm 34.5$ | $462.1 \pm 30.3$ | $242.9 \pm 1.6$ | $222.2 \pm 5.4$  | $-5\% \pm 3\%$    |
| BghiP     | $494.8 \pm 26.9$ | $468.8 \pm 19.4$  | $508.9\pm37.7$   | $445.8\pm29.2$   | $255.1\pm0.9$   | $216.2 \pm 7.7$  | -11% ± 3%*        |

**Table SI.3:** Means and standard errors of PAH and NPAH masses (ng) measured in PKU filters used for the chemical study of OH radical exposure. In the case that a compound was not detected in all samples, superscript denotes number of samples detected. Numbers in bold are estimated detection limits. An asterisk indicates the statistically significant difference in mass (p-value < 0.05).

## Table SI.3 (continued)

| Compound | PKU B (n=3)    |                 | PKU C            | PKU C (n=3)      |                | PKU-6 (n=3)    |                    |
|----------|----------------|-----------------|------------------|------------------|----------------|----------------|--------------------|
|          | Unexposed      | Exposed         | Unexposed        | Exposed          | Unexposed      | Exposed        |                    |
|          |                |                 |                  |                  |                |                |                    |
|          |                |                 |                  |                  |                |                |                    |
| NPAHs    |                |                 |                  |                  |                |                |                    |
| 9-NAN    | $54.6 \pm 3.4$ | $10.7 \pm 1.7$  | $72.2 \pm 7.3$   | $8.8 \pm 0.7$    | $49.5 \pm 1.7$ | $6.9 \pm 0.9$  | $-85\% \pm 1\%*$   |
| 3-NPH    | $5.0 \pm 0.4$  | $3.9 \pm 0.1$   | $6.0 \pm 0.6$    | $3.8 \pm 0.5$    | $1.4 \pm 0.04$ | $0.9 \pm 0.1$  | $-32\% \pm 3\%*$   |
| 2-+3-NF  | $90.2 \pm 7.0$ | $85.7 \pm 1.4$  | $114.5 \pm 10.5$ | $82.5 \pm 7.3$   | $49.5 \pm 0.8$ | $39.2 \pm 2.1$ | -18% ± 4%*         |
| 1-NP     | $0.9 \pm 0.2$  | $3.8 \pm 0.2$   | $0.7 \pm 0.03$   | $4.0 \pm 0.3$    | $3.3 \pm 0.04$ | $12.1 \pm 1.9$ | $376\% \pm 54\%$ * |
| 2-NP     | $17.4 \pm 1.2$ | $17.0 \pm 0.8$  | $17.1 \pm 2.0$   | $15.4 \pm 1.3$   | $11.2 \pm 0.2$ | $8.6 \pm 1.1$  | $-11\% \pm 5\%$    |
| 7-NBaA   | $18.5 \pm 1.2$ | $6.6 \pm 1.0$   | $18.0 \pm 1.5$   | $5.3 \pm 0.4$    | $21.6 \pm 0.4$ | $6.3 \pm 0.4$  | $-68\% \pm 3\%*$   |
| 1,8-DNP  |                |                 |                  |                  | $2.2 \pm 0.02$ | $1.9 \pm 0.1$  | $-15\% \pm 3\%$    |
| 6-NBaP   | 5.3            | $52.8 \pm 11.2$ | 5.3              | $21.4 \pm 5.8^2$ | 6.1            | $29.1 \pm 7.6$ | 552% ± 131%*       |
|          |                |                 |                  |                  |                |                |                    |

**Table SI.4:** Means and standard errors of PAH and NPAH masses (ng) measured in PKU filters used for the chemical study of  $O_3$  exposure. In the case that a compound was not detected in all samples, superscript denotes number of samples detected. Numbers in bold are estimated detection limits. An asterisk indicates the statistically significant difference in mass (*p*-value < 0.05).

| Compound  | PKU D (n=2)       |                  | PKU-10 (n=3)     |                  | PKU-11 (n=3)     |                  | Avg. %change      |
|-----------|-------------------|------------------|------------------|------------------|------------------|------------------|-------------------|
| -         | Unexposed         | Exposed          | Unexposed        | Exposed          | Unexposed        | Exposed          |                   |
| PAHs      |                   |                  |                  |                  |                  |                  |                   |
| FLU       | $13.5 \pm 2.4$    | $9.9 \pm 0.5$    | $11.1 \pm 1.0$   | $9.2 \pm 1.3$    | $14.1 \pm 0.9$   | $10.8 \pm 1.4$   | -21% ± 5%*        |
| DBT       | $11.0 \pm 1.5$    | $10.1 \pm 1.4$   | $11.9 \pm 0.1$   | $9.0 \pm 1.0$    | $15.4 \pm 0.7$   | $9.0 \pm 1.1$    | -26% ± 8%*        |
| PHE       | $147.6 \pm 21.4$  | $98.0 \pm 4.8$   | $104.9 \pm 6.8$  | $85.5 \pm 7.4$   | $161.2 \pm 11.7$ | $119.1 \pm 7.2$  | $-25\% \pm 4\%*$  |
| ANT       | $10.7 \pm 0.7$    | $8.6 \pm 0.1$    | $9.0 \pm 1.0$    | $8.0 \pm 1.2$    | $13.3 \pm 1.0$   | $10.4 \pm 0.8$   | -16% ± 8%*        |
| 2-MPHE    | $48.0 \pm 10.3$   | $34.7 \pm 1.3$   | $51.0 \pm 3.1$   | $42.3 \pm 3.0$   | $67.2 \pm 3.3$   | $48.8\pm4.0$     | $-22\% \pm 5\%*$  |
| 2-MANT    | $5.1 \pm 0.3$     | $4.4 \pm 0.6$    |                  |                  |                  |                  | $-13\% \pm 17\%$  |
| 1-MPHE    | $27.7 \pm 5.6$    | $19.0 \pm 1.5$   | $36.4 \pm 2.2$   | $30.8 \pm 1.1$   | $45.8 \pm 0.8$   | $30.7 \pm 3.2$   | $-25\% \pm 5\%*$  |
| 3,6-DPHE  | $3.7 \pm 0.6$     | 2.7              |                  |                  | $10.3 \pm 4.0^2$ | 5.7              | $-30\% \pm 12\%$  |
| RET       | $43.2 \pm 9.9$    | $24.5 \pm 1.8$   | $100.5 \pm 8.5$  | $74.9 \pm 8.3$   | $72.2 \pm 7.5$   | $56.6 \pm 8.3$   | $-28\% \pm 4\%*$  |
| FLA       | $527.1 \pm 156.7$ | $389.2 \pm 47.5$ | $250.4 \pm 14.2$ | $204.5 \pm 12.4$ | $498.7 \pm 14.4$ | $341.1 \pm 26.6$ | -23% ± 7%*        |
| PYR       | $313.5 \pm 45.2$  | $186.6 \pm 8.0$  | $147.5 \pm 6.3$  | $83.1 \pm 6.3$   | $252.0 \pm 9.1$  | $143.4 \pm 7.4$  | $-42\% \pm 2\%*$  |
| BcFLU     |                   |                  | $34.9 \pm 1.7$   | $21.8 \pm 1.5$   | $48.4 \pm 1.8$   | $28.5 \pm 1.9$   | $-39\% \pm 2\%*$  |
| 1-MPYR    | $24.2 \pm 3.6$    | $13.4 \pm 0.1$   | $15.9 \pm 1.2$   | $9.0 \pm 0.7$    | $20.8 \pm 1.2$   | $11.5 \pm 0.9$   | $-44\% \pm 2\%*$  |
| BaA       | $154.0 \pm 17.1$  | $89.4 \pm 2.4$   | $75.5 \pm 2.4$   | $46.0 \pm 3.4$   | $103.3 \pm 3.7$  | $63.8 \pm 3.7$   | $-39\% \pm 1\%*$  |
| CHR + TRI | $219.8 \pm 36.2$  | $140.2 \pm 8.9$  | $89.8 \pm 3.7$   | $67.8 \pm 4.0$   | $133.5 \pm 6.3$  | $105.1 \pm 5.6$  | $-26\% \pm 3\%$ * |
| BbF       | $848.2 \pm 162.5$ | $631.6 \pm 16.0$ | $261.5 \pm 8.1$  | $209.5 \pm 9.2$  | $336.5 \pm 8.7$  | $287.7 \pm 10.7$ | -19% ± 3%*        |
| BkF       | $223.1 \pm 47.5$  | $144.8 \pm 4.7$  | $69.7 \pm 2.7$   | $44.1 \pm 2.5$   | $96.2 \pm 1.6$   | $67.8 \pm 5.7$   | -33% ± 3%*        |
| BeP       | $438.5 \pm 66.3$  | $304.0 \pm 7.6$  | $138.9 \pm 4.6$  | $91.9 \pm 4.9$   | $184.0 \pm 5.2$  | $136.9 \pm 6.8$  | $-30\% \pm 2\%$ * |
| BaP       | $250.3 \pm 34.7$  | $133.4 \pm 4.9$  | $85.1 \pm 4.2$   | $45.8 \pm 2.8$   | $124.0 \pm 3.0$  | $72.4 \pm 3.3$   | $-44\% \pm 2\%*$  |
| DahA+DacA | $83.4 \pm 11.1$   | $51.1 \pm 3.5$   | $9.5 \pm 0.3$    | $5.7 \pm 0.3$    | $12.4 \pm 0.4$   | $8.2 \pm 0.5$    | -37% ± 2%*        |
| IcdP      | $465.7 \pm 62.0$  | $303.3 \pm 16.7$ | $129.0 \pm 3.8$  | $87.2 \pm 4.1$   | $171.6 \pm 4.6$  | $124.8 \pm 4.6$  | -31% ± 2%*        |
| BghiP     | $444.4 \pm 77.8$  | $279.5 \pm 15.7$ | $129.1 \pm 4.1$  | $82.1 \pm 3.6$   | $167.3 \pm 5.2$  | $118.3 \pm 4.5$  | $-34\% \pm 2\%*$  |

# Table SI.4 (continued)

| Compound  | PKU D             | (n=2)            | PKU-1           | 0 (n=3)          | PKU-11 (n=3)    |                         | Avg. %change     |
|-----------|-------------------|------------------|-----------------|------------------|-----------------|-------------------------|------------------|
|           | Unexposed         | Exposed          | Unexposed       | Exposed          | Unexposed       | Exposed                 |                  |
|           |                   |                  |                 |                  |                 |                         |                  |
|           |                   |                  |                 |                  |                 |                         |                  |
| NPAHs     |                   |                  |                 |                  |                 |                         |                  |
| 9-NAN     | $79.7 \pm 13.4$   | $70.7 \pm 22.3$  | $32.5 \pm 5.0$  | $18.0 \pm 1.6$   | $16.1 \pm 0.9$  | $7.9 \pm 0.4$           | $-36\% \pm 11\%$ |
| 3-NPH     | $3.1 \pm 1.1$     | $4.4 \pm 1.6$    | $1.5 \pm 0.3$   | $1.3 \pm 0.1$    | $1.2 \pm 0.1$   | $1.0 \pm 0.1$           | $9\% \pm 27\%$   |
| 2-+3-NF   | $151.3 \pm 25.0$  | $203.3 \pm 69.0$ | $31.4 \pm 2.9$  | $24.8 \pm 0.9$   | $34.6 \pm 1.8$  | $29.2 \pm 1.5$          | $4\% \pm 17\%$   |
| 1-NP      | $1.9 \pm 0.5$     | $1.4 \pm 0.4$    | $6.6 \pm 0.8$   | $6.2 \pm 0.6$    | $5.9 \pm 0.6$   | $6.3 \pm 0.3$           | $1\% \pm 5\%$    |
| 2-NP      |                   |                  | $4.0 \pm 0.5$   | $3.1 \pm 0.2$    | $2.9^{1}$       | $2.8^{1}$               | $-18\% \pm 6\%$  |
| 2,8-DNDBT |                   |                  | $1.7 \pm 0.4^2$ | $1.4 \pm 0.04^2$ |                 |                         | $-14\% \pm 20\%$ |
| 7-NBaA    | $16.1 \pm 0.8$    | $12.0 \pm 0.9$   | $11.0 \pm 1.6$  | $7.4 \pm 0.8$    | $3.4 \pm 0.1$   | $2.1 \pm 0.01$          | -33% ± 4%*       |
| 1-NTR     |                   |                  | $1.7 \pm 0.4$   | $1.5 \pm 0.5$    |                 |                         | $-15\% \pm 15\%$ |
| 6-NCH     |                   |                  | $1.3 \pm 0.2$   | $1.2 \pm 0.3$    |                 |                         | $-13\% \pm 23\%$ |
| 3-NBENZ   |                   |                  | $1.2 \pm 0.2^2$ | $1.3 \pm 0.03^2$ |                 |                         | $6\% \pm 16\%$   |
| 2-NTR     |                   |                  | $1.1 \pm 0.2$   | $1.0 \pm 0.3$    |                 |                         | $-14\% \pm 21\%$ |
| 1,8-DNP   |                   |                  |                 |                  | $1.7 \pm 0.1^2$ | <b>1.6</b> <sup>2</sup> | $-5\% \pm 3\%$   |
| 6-NBaP    | 17.3 <sup>1</sup> | 5.3 <sup>1</sup> |                 |                  | $4.8^{1}$       | 3.8 <sup>1</sup>        | $-45\% \pm 24\%$ |
|           |                   |                  |                 |                  |                 |                         |                  |

**Table SI.5:** Means and standard errors of PAH and NPAH masses (ng) measured in Riverside filters used for the chemical study of  $NO_3/N_2O_5$  exposure. In the case that a compound was not detected in all samples, superscript denotes number of samples detected. Numbers in bold are estimated detection limits. An asterisk indicates the statistically significant difference in mass (*p*-value < 0.05).

| Compound  | R-671 (n=3)             |                 | R-672             | (n=3)           | R-673 (n=3)      |                | Avg. %change       |
|-----------|-------------------------|-----------------|-------------------|-----------------|------------------|----------------|--------------------|
|           | Unexposed               | Exposed         | Unexposed         | Exposed         | Unexposed        | Exposed        |                    |
| PAHs      |                         |                 |                   |                 |                  |                |                    |
| FLU       | $4.8^{1}$               | $3.5^{1}$       | $3.7 \pm 0.2^{2}$ | $2.1 \pm 2.1^2$ | $4.2 \pm 0.1^2$  | 3.5            | $-28\% \pm 20\%$   |
| DBT       | <b>0.6</b> <sup>2</sup> | $1.8 \pm 0.3^2$ | $0.6 \pm 0.02^2$  | $2.3 \pm 0.3^2$ | $1.3 \pm 0.3$    | $6.8 \pm 4.5$  | $515\% \pm 345\%$  |
| PHE       | $1.6 \pm 0.5$           | $3.0 \pm 0.6$   | $1.5 \pm 0.3$     | $4.8 \pm 2.2$   | $4.4 \pm 0.5$    | $10.0 \pm 3.5$ | $195\% \pm 74\%$ * |
| 2-MPHE    |                         |                 | 5.0               | $5.3^{1}$       | $6.0 \pm 0.6$    | $13.0 \pm 5.0$ | $97\% \pm 77\%$    |
| 1-MPHE    |                         |                 | 4.0               | $5.9^{1}$       | $4.1 \pm 0.1$    | $7.1 \pm 2.7$  | $70\%\pm49\%$      |
| FLA       | $5.3 \pm 0.2$           | $6.1 \pm 0.4$   | $4.9 \pm 0.2$     | $6.0 \pm 0.5$   | $8.0 \pm 1.6$    | $6.3 \pm 1.0$  | $8\% \pm 10\%$     |
| PYR       | $4.4 \pm 0.1$           | $5.0 \pm 0.1$   | $4.5 \pm 0.2$     | $4.6 \pm 0.4$   | $6.0 \pm 1.0$    | $4.7 \pm 0.03$ | $-0.3\% \pm 6\%$   |
| BaA       | $1.7 \pm 0.5^2$         | $1.6 \pm 0.5^2$ |                   |                 | $2.4 \pm 0.1$    | 1.2            | $-24\% \pm 27\%$   |
| CHR + TRI | $1.9 \pm 0.1$           | $2.1 \pm 0.1$   | $1.8 \pm 0.1$     | $1.9 \pm 0.1$   | $2.5 \pm 0.5$    | $2.1 \pm 0.1$  | $2\% \pm 6\%$      |
| BbF       | $5.2 \pm 0.5$           | $5.7 \pm 0.1$   | $4.8 \pm 0.1$     | $5.2 \pm 0.2$   | $7.0 \pm 1.7$    | $5.2 \pm 0.2$  | $-0.02\% \pm 7\%$  |
| BkF       |                         |                 |                   |                 | $2.7^{1}$        | $2.2^{1}$      | -17%               |
| BeP       | $4.2 \pm 0.2$           | $4.6 \pm 0.1$   | $4.0 \pm 0.2$     | $4.2 \pm 0.2$   | $5.1 \pm 0.7$    | $4.2 \pm 0.1$  | $-0.4\% \pm 5\%$   |
| BaP       |                         |                 |                   |                 | 9.3 <sup>1</sup> | $8.8^{1}$      | -6%                |
| IcdP      | $3.6 \pm 0.3$           | $3.9 \pm 0.2$   | $3.4 \pm 0.1$     | $3.5 \pm 0.1$   | $4.4 \pm 0.7$    | $3.4 \pm 0.1$  | $-1\% \pm 6\%$     |
| BghiP     | $5.6 \pm 0.4$           | $6.5 \pm 0.01$  | $5.7 \pm 0.1$     | $5.9 \pm 0.3$   | $6.7 \pm 0.6$    | $6.0 \pm 0.2$  | $3\% \pm 5\%$      |
|           |                         |                 |                   |                 |                  |                |                    |
| NPAHs     |                         |                 |                   |                 |                  |                |                    |
| 9-NAN     | 0.31                    | 0.2             |                   |                 | $0.4 \pm 0.1^2$  | 0.2            | $-34\% \pm 12\%$   |
| 3-NPH     | $0.3 \pm 0.1$           | $0.3 \pm 0.01$  | $0.2 \pm 0.1$     | $0.3 \pm 0.1$   | 0.1 <sup>1</sup> | $0.2^{1}$      | $52\% \pm 37\%$    |
| 2-+3-NF   | $4.6 \pm 0.2$           | $4.2 \pm 0.3$   | $5.3 \pm 0.3$     | $4.9 \pm 0.2$   | $5.3 \pm 0.3$    | $5.2 \pm 0.3$  | $-5\% \pm 3\%$     |
| 1-NP      | $0.2 \pm 0.1$           | $0.2 \pm 0.02$  | $0.3 \pm 0.1$     | $0.3\pm0.03$    | $0.3 \pm 0.04$   | $0.3 \pm 0.03$ | $3\% \pm 8\%$      |
| 1-NTR     | 0.3 <sup>1</sup>        | 0.2             |                   |                 |                  |                | -7%                |
|           |                         |                 |                   |                 |                  |                |                    |

**Table SI.6:** Means and standard errors of PAH and NPAH masses (ng) measured in Riverside filters used for the chemical study of OH radical exposure. In the case that a compound was not detected in all samples, superscript denotes number of samples detected. Numbers in bold are estimated detection limits. An asterisk indicates the statistically significant difference in mass (*p*-value < 0.05).

| Compound  | R-661 (n=3)      |                 | R-662 (n=3)       |                   | R-673 (n=3)       |                 | Avg. %change      |
|-----------|------------------|-----------------|-------------------|-------------------|-------------------|-----------------|-------------------|
|           | Unexposed        | Exposed         | Unexposed         | Exposed           | Unexposed         | Exposed         |                   |
| PAHs      |                  |                 |                   |                   |                   |                 |                   |
| FLU       | 3.5              | $4.9 \pm 0.9$   | $3.7^{1}$         | 3.5               | $3.9 \pm 0.2^{2}$ | $3.6 \pm 0.1^2$ | $16\% \pm 15\%$   |
| DBT       | 0.61             | $1.1^{1}$       | $0.8 \pm 0.2^{2}$ | 0.6               | $0.6 \pm 0.2$     | $0.8 \pm 0.3$   | $48\% \pm 37\%$   |
| PHE       | $2.7 \pm 0.7$    | $11.0 \pm 2.6$  | $3.8 \pm 1.1$     | $5.3 \pm 0.3$     | $3.2 \pm 1.1$     | $6.1 \pm 1.1$   | 232% ± 90%*       |
| ANT       |                  |                 |                   |                   | 1.3 <sup>1</sup>  | $1.4^{1}$       | -15%              |
| 2-MPHE    | $6.0 \pm 0.3$    | $8.0 \pm 0.3$   | $5.9 \pm 0.2$     | $7.0 \pm 0.7$     | $5.4 \pm 0.2$     | $6.8 \pm 0.3$   | $26\% \pm 6\%$ *  |
| 1-MPHE    | 4.0              | $4.4 \pm 0.3$   | 4.0               | $4.2 \pm 0.2^{2}$ | 4.0               | $4.0^{1}$       | $8\% \pm 4\%$ *   |
| FLA       | $6.2 \pm 0.2$    | $7.6 \pm 0.4$   | $6.5 \pm 0.1$     | $6.6 \pm 0.4$     | $5.9 \pm 0.3$     | $6.6 \pm 0.2$   | $12\% \pm 4\%$ *  |
| PYR       | $5.1 \pm 0.1$    | $5.9 \pm 0.2$   | $5.6 \pm 0.4$     | $5.9 \pm 0.4$     | $5.1 \pm 0.2$     | $5.9 \pm 0.2$   | $14\% \pm 2\%*$   |
| BaA       | 1.2              | 2.1             |                   |                   |                   |                 | 84%               |
| CHR + TRI | $2.0 \pm 0.2$    | $2.1 \pm 0.1$   | $2.1 \pm 0.1$     | $2.8 \pm 0.2$     | $1.8 \pm 0.1$     | $2.4 \pm 0.2$   | $25\% \pm 8\%$ *  |
| BbF       | $5.4 \pm 0.2$    | $5.5 \pm 0.2$   | $5.7 \pm 0.2$     | $6.2 \pm 0.5$     | $5.1 \pm 0.3$     | $5.3 \pm 0.2$   | $5\% \pm 3\%$     |
| BeP       | $4.8 \pm 0.1$    | $5.3 \pm 0.3$   | $4.9 \pm 0.2$     | $5.3 \pm 0.4$     | $4.5 \pm 0.3$     | $5.1 \pm 1.0$   | $11\% \pm 7\%$    |
| IcdP      | $4.1 \pm 0.1$    | $4.1 \pm 0.2$   | $4.1\pm0.03$      | $4.4 \pm 0.3$     | $4.0 \pm 0.3$     | $4.0 \pm 0.2$   | $2\% \pm 3\%$     |
| BghiP     | $6.6 \pm 0.1$    | $6.5 \pm 0.4$   | $7.1 \pm 0.4$     | $7.4 \pm 0.5$     | $6.4 \pm 0.3$     | $6.8 \pm 0.3$   | $3\% \pm 3\%$     |
|           |                  |                 |                   |                   |                   |                 |                   |
| NPAHs     |                  |                 |                   |                   |                   |                 |                   |
| 9-NAN     | $0.3 \pm 0.03^2$ | 0.2             |                   |                   |                   |                 | $-31\% \pm 7\%$   |
| 3-NPH     | $0.6 \pm 0.1^2$  | $0.2 \pm 0.1^2$ | $0.3 \pm 0.1$     | $0.4 \pm 0.0$     | $0.4 \pm 0.1^2$   | $0.2 \pm 0.1^2$ | $-0.2\% \pm 37\%$ |
| 2-+3-NF   | $4.9\pm0.02$     | $4.6 \pm 0.1$   | $5.4 \pm 0.1$     | $4.7 \pm 0.1$     | $4.5 \pm 0.1$     | $4.0 \pm 0.1$   | -10% ± 2%*        |
| 1-NP      | $0.3\pm0.04$     | $0.3 \pm 0.1$   | $0.3\pm0.03$      | $0.3\pm0.03$      | $0.2 \pm 0.02$    | $0.3\pm0.02$    | $8\% \pm 5\%$     |
|           |                  |                 |                   |                   |                   |                 |                   |

**Table SI.7:** Means and standard errors of PAH and NPAH masses (ng) measured in Riverside filters used for the chemical study of  $O_3$  exposure. In the case that a compound was not detected in all samples, superscript denotes number of samples detected. Numbers in bold are estimated detection limits. An asterisk indicates the statistically significant difference in mass (*p*-value < 0.05).

| Compound  | R-651 (n=3)      |                   | R-652           | (n=3)             | R-653             | (n=3)            | Avg. %change     |
|-----------|------------------|-------------------|-----------------|-------------------|-------------------|------------------|------------------|
| -         | Unexposed        | Exposed           | Unexposed       | Exposed           | Unexposed         | Exposed          |                  |
| PAHs      |                  |                   |                 |                   |                   |                  |                  |
| FLU       | 5.2 <sup>1</sup> | 3.5               |                 |                   |                   |                  | -32%             |
| DBT       | $3.9 \pm 0.3^2$  | $2.0 \pm 1.5^2$   | $1.9 \pm 1.3^2$ | $1.9 \pm 1.3^2$   | $3.7 \pm 0.2^{2}$ | $3.1 \pm 0.01^2$ | $38\% \pm 82\%$  |
| PHE       | $5.7 \pm 2.9^2$  | $2.0 \pm 0.6^{2}$ | $2.7 \pm 1.0$   | $4.1 \pm 1.8$     | $3.0 \pm 0.9$     | $1.7 \pm 0.7$    | $22\% \pm 57\%$  |
| ANT       |                  |                   |                 |                   |                   |                  |                  |
| 2-MPHE    | $6.7 \pm 0.7^2$  | 5.0               | $6.8 \pm 1.8^2$ | $8.3 \pm 2.1^2$   | 9.2 <sup>1</sup>  | 5.0              | $-3\% \pm 28\%$  |
| 1-MPHE    |                  |                   | 4.0             | $4.9 \pm 0.5^{2}$ |                   |                  | $25\% \pm 12\%$  |
| FLA       | $8.6 \pm 2.7$    | $6.0 \pm 0.3$     | $6.4 \pm 0.8$   | $6.5 \pm 1.0$     | $5.9 \pm 0.2$     | $5.7 \pm 0.3$    | $-5\% \pm 10\%$  |
| PYR       | $6.4 \pm 1.6$    | $4.9 \pm 0.2$     | $5.4 \pm 0.3$   | $5.4 \pm 0.7$     | $5.2 \pm 0.2$     | $4.8 \pm 0.1$    | $-8\% \pm 6\%$   |
| BaA       | $3.0 \pm 0.6$    | $2.0 \pm 0.4$     | $2.3 \pm 0.1$   | $1.8 \pm 0.9$     | $2.4 \pm 0.04$    | $2.3\pm0.04$     | $-19\% \pm 13\%$ |
| CHR + TRI | $2.5 \pm 0.2$    | $2.2 \pm 0.1$     | $2.3 \pm 0.2$   | $2.5 \pm 0.3$     | $2.1 \pm 0.1$     | $2.4 \pm 0.1$    | $4\% \pm 5\%$    |
| BbF       | $6.9 \pm 1.1$    | $6.0 \pm 0.2$     | $6.0 \pm 0.2$   | $6.5 \pm 0.8$     | $5.8 \pm 0.1$     | $6.1 \pm 0.1$    | $2\% \pm 6\%$    |
| BkF       | $2.6^{1}$        | $2.2^{1}$         |                 |                   |                   |                  | -14%             |
| BeP       | $5.4 \pm 0.6$    | $4.8 \pm 0.1$     | $5.0 \pm 0.1$   | $5.2 \pm 0.5$     | $4.8 \pm 0.1$     | $4.8 \pm 0.1$    | $-2\% \pm 4\%$   |
| DahA+DacA |                  |                   |                 |                   |                   |                  |                  |
| IcdP      | $4.8 \pm 0.6$    | $4.0 \pm 0.1$     | $4.3 \pm 0.2$   | $4.6 \pm 0.4$     | $4.4 \pm 0.2$     | $4.1 \pm 0.4$    | $-5\% \pm 5\%$   |
| BghiP     | $7.5 \pm 0.6$    | $6.8 \pm 0.3$     | $7.2 \pm 0.4$   | $7.6 \pm 0.9$     | $7.2 \pm 0.1$     | $7.0 \pm 0.4$    | $-2\% \pm 4\%$   |
|           |                  |                   |                 |                   |                   |                  |                  |
| NPAHs     |                  |                   |                 |                   |                   |                  |                  |
| 3-NPH     | $0.4 \pm 0.01$   | $0.3 \pm 0.01$    | $0.4 \pm 0.01$  | $0.3 \pm 0.01$    | $0.4 \pm 0.01$    | $0.3 \pm 0.0$    | -12% ± 2%*       |
| 2-+3-NF   | $4.5 \pm 0.1$    | $4.6 \pm 0.2$     | $5.4 \pm 0.5$   | $4.1 \pm 0.03$    | $4.6 \pm 0.1$     | $3.9 \pm 0.2$    | -13% ± 4%*       |
| 1-NP      | $0.3 \pm 0.01$   | $0.2 \pm 0.01$    | $0.2 \pm 0.01$  | $0.2 \pm 0.01$    | $0.2 \pm 0.00$    | $0.2 \pm 0.01$   | -13% ± 3%*       |
| 1-NTR     | $0.5 \pm 0.1^2$  | $0.4 \pm 0.1^2$   |                 |                   |                   |                  | $-37\% \pm 6\%$  |
| 6-NCH     | $0.3 \pm 0.1^2$  | 0.1               |                 |                   |                   |                  | $-65\% \pm 7\%$  |
| 3-NBENZ   | $0.8^{1}$        | $0.5^{1}$         |                 |                   |                   |                  | -43%             |
| 2-NTR     | $0.7 \pm 0.03^2$ | $0.4 \pm 0.1^2$   |                 |                   |                   |                  | $-45\% \pm 17\%$ |
|           |                  |                   |                 |                   |                   |                  |                  |

**Table SI.8:** Means and standard errors of PAH and NPAH masses (ng) measured in PKU filters used for the mutagenicity study of  $NO_3/N_2O_5$  radical exposure. In the case that a compound was not detected in all samples, superscript denotes number of samples detected. Numbers in bold are estimated detection limits. An asterisk indicates the statistically significant difference in mass (*p*-value < 0.05).

| Compound  | PKU       | IJ <b>-3</b> | PKU-4     |         | PKU-5     |         | Avg. %change      |
|-----------|-----------|--------------|-----------|---------|-----------|---------|-------------------|
|           | Unexposed | Exposed      | Unexposed | Exposed | Unexposed | Exposed |                   |
| PAHs      |           |              |           |         |           |         |                   |
| FLU       | 9.1       | 6.5          | 9.0       | 8.2     | 26.7      | 12.4    | $-30\% \pm 13\%$  |
| DBT       | 7.9       | 7.2          | 7.3       | 7.0     | 23.7      | 14.7    | $-17\% \pm 11\%$  |
| PHE       | 62.9      | 50.1         | 69.1      | 60.0    | 241.8     | 156.8   | $-23\% \pm 6\%$   |
| ANT       | 7.4       | 5.4          | 6.9       | 4.9     | 20.5      | 11.6    | $-33\% \pm 5\%$   |
| 2-MPHE    | 34.4      | 33.6         | 35.0      | 36.8    | 95.7      | 81.5    | $-4\% \pm 6\%$    |
| 1-MPHE    | 24.3      | 19.1         | 26.8      | 18.6    |           |         | $-26\% \pm 5\%$ * |
| 3,6-DPHE  |           |              |           |         | 7.9       | 6.3     | -20%              |
| RET       | 73.9      | 62.7         | 92.9      | 85.8    | 70.5      | 63.4    | -11% ± 2%*        |
| FLA       | 167.4     | 116.0        | 212.6     | 144.9   | 619.5     | 536.7   | $-25\% \pm 6\%*$  |
| PYR       | 110.0     | 52.3         | 153.0     | 87.4    | 382.5     | 246.1   | $-44\% \pm 5\%$   |
| BcFLU     | 31.0      | 18.2         | 35.4      | 24.3    | 93.6      | 63.5    | $-35\% \pm 3\%$   |
| 1-MPYR    | 14.7      | 7.8          | 16.2      | 10.5    | 32.3      | 18.2    | $-42\% \pm 3\%$   |
| BaA       | 86.4      | 53.5         | 83.6      | 50.1    | 109.9     | 147.5   | $-34\% \pm 5\%$ * |
| CHR + TRI | 85.6      | 75.8         | 82.8      | 64.0    | 246.6     | 228.7   | $-14\% \pm 5\%$ * |
| BbF       | 380.9     | 328.1        | 280.1     | 218.6   | 786.4     | 729.5   | $-14\% \pm 4\%$ * |
| BkF       | 107.6     | 86.9         | 78.7      | 56.2    | 257.3     | 231.0   | -19% ± 5%*        |
| BeP       | 200.6     | 163.0        | 149.3     | 105.9   | 440.1     | 402.3   | $-19\% \pm 6\%*$  |
| BaP       | 123.5     | 70.1         | 102.6     | 65.6    | 320.3     | 216.3   | $-37\% \pm 3\%$   |
| DahA+DacA | 14.3      | 12.5         | 10.3      | 7.9     | 33.5      | 32.7    | $-13\% \pm 6\%$   |
| IcdP      | 194.8     | 169.1        | 129.0     | 98.0    | 412.3     | 390.8   | $-14\% \pm 5\%$ * |
| BghiP     | 202.7     | 164.4        | 125.1     | 89.9    | 415.5     | 383.6   | -18% ± 6%*        |

| Compound | PKU-3     |         | PK        | PKU-4   |           | PKU-5   |                       |
|----------|-----------|---------|-----------|---------|-----------|---------|-----------------------|
|          | Unexposed | Exposed | Unexposed | Exposed | Unexposed | Exposed |                       |
|          |           |         |           |         |           |         |                       |
| NPAH     |           |         |           |         |           |         |                       |
| 2-NFL    |           |         | 0.2       | 0.6     |           |         | 155%                  |
| 9-NAN    | 47.9      | 34.3    | 21.0      | 15.7    | 75.1      | 57.8    | $26\% \pm 2\%$        |
| 9-NPH    | 0.5       | 4.2     | 0.5       | 8.7     | 0.5       | 5.3     | $1090\% \pm 268\%$    |
| 3-NPH    | 1.4       | 2.6     | 1.2       | 3.7     | 3.4       | 4.5     | $114\% \pm 58\%$      |
| 2-NF     | 29.1      | 25.7    | 40.5      | 21.9    | 199.9     | 167.0   | $-25\% \pm 11\%$      |
| 3-NF     | 1.1       | 10.3    | 1.1       | 17.5    | 1.1       | 12.5    | 1156% ± 199%*         |
| 1-NP     | 3.5       | 61.6    | 3.2       | 75.8    | 6.5       | 121.9   | $1896\% \pm 195\%$ *  |
| 2-NP     | 10.4      | 7.5     |           |         | 31.0      | 32.0    | $-12.4\% \pm 16\%$    |
| 7-NBaA   | 19.1      | 39.4    | 8.0       | 28.2    | 26.8      | 51.2    | 150% 52%*             |
| 1-NTR    | 0.6       | 3.9     | 0.6       | 4.6     | 0.6       | 2.3     | $493\% \pm 114\%$ *   |
| 6-NCH    | 0.6       | 19.8    | 0.3       | 25.5    | 0.2       | 16.3    | $6955\% \pm 2034\%$ * |
| 3-NBENZ  | 0.6       | 3.0     | 1.0       | 3.3     | 1.0       | 5.4     | $351\% \pm 63\%$ *    |
| 2-NTR    | 0.4       | 3.1     | 0.4       | 5.0     | 0.4       | 2.9     | 840% ± 173%*          |
| 1,3-DNP  |           |         | 0.7       | 1.6     |           |         | 119%                  |
| 1,6-DNP  | 0.6       | 2.1     | 0.6       | 6.7     | 0.6       | 2.2     | $483\% \pm 242\%$     |
| 1,8-DNP  |           |         | 1.6       | 11.8    | 1.6       | 4.2     | $389\% \pm 329\%$     |
| 6-NBaP   | 6.1       | 159.2   | 6.1       | 127.4   | 6.1       | 273.5   | $2946\% \pm 723\%$    |
|          |           |         |           |         |           |         |                       |

## Table SI.8 (continued)

| Compound  | PKU-7     |         | PKU-8     |         | PKU-9     |         | Avg. %change      |
|-----------|-----------|---------|-----------|---------|-----------|---------|-------------------|
| -         | Unexposed | Exposed | Unexposed | Exposed | Unexposed | Exposed |                   |
| PAHs      |           |         |           |         |           |         |                   |
| FLU       | 8.3       | 7.3     | 123.4     | 8.4     | 311.3     | 12.6    | $-67\% \pm 28\%$  |
| DBT       | 5.5       | 5.7     | 22.8      | 6.8     | 53.7      | 9.3     | $-50\% \pm 27\%$  |
| PHE       | 99.7      | 61.2    | 248.2     | 68.2    | 390.4     | 75.6    | $-64\% \pm 13\%$  |
| ANT       | 9.0       | 5.8     | 19.5      | 4.9     | 27.3      | 6.7     | $-62\% \pm 13\%$  |
| 2-MPHE    | 48.1      | 37.7    | 68.5      | 40.4    | 84.5      | 50.3    | $-34\% \pm 6\%$   |
| 1-MPHE    | 33.3      | 23.5    | 38.2      | 22.1    | 49.4      | 29.2    | $-37\% \pm 4\%$ * |
| 3,6-DPHE  | 5.7       | 6.7     | 6.9       | 8.8     | 8.1       | 5.7     | $5\% \pm 18\%$    |
| RET       | 46.4      | 42.8    | 40.3      | 31.5    | 58.5      | 50.2    | -15%              |
| FLA       | 379.2     | 301.0   | 468.8     | 353.8   | 361.6     | 276.6   | -23% ± 1%*        |
| PYR       | 258.5     | 153.0   | 315.1     | 198.5   | 225.3     | 123.2   | -41% ± 2%*        |
| BcFLU     | 51.0      | 28.5    | 69.3      | 38.8    | 53.7      | 30.0    | $-44\% \pm 0.1*$  |
| 1-MPYR    | 24.4      | 11.4    | 27.5      | 13.7    | 22.6      | 10.1    | $-53\% \pm 2*$    |
| BaA       | 124.7     | 75.8    | 159.0     | 99.6    | 110.7     | 72.0    | -37% ± 1%*        |
| CHR + TRI | 136.9     | 118.9   | 219.0     | 200.3   | 165.0     | 144.5   | -11% ± 1%*        |
| BbF       | 403.8     | 363.1   | 753.0     | 676.5   | 630.9     | 533.9   | -12% ± 2%*        |
| BkF       | 126.8     | 116.9   | 252.8     | 220.9   | 208.8     | 167.8   | $-13\% \pm 3\%$   |
| BeP       | 209.1     | 188.6   | 435.6     | 382.5   | 361.0     | 295.0   | $-13\% \pm 3\%$   |
| BaP       | 163.5     | 59.0    | 300.0     | 187.7   | 217.8     | 122.4   | $-48\% \pm 8\%*$  |
| DahA+DacA | 15.6      | 12.6    | 34.7      | 29.8    | 25.1      | 20.4    | -17% ± 2%*        |
| IcdP      | 227.0     | 196.6   | 422.6     | 393.9   | 337.4     | 287.3   | -12% ± 3%*        |
| BghiP     | 230.8     | 187.5   | 459.7     | 402.2   | 365.7     | 288.2   | -17% ± 3%*        |

**Table SI.9:** Means and standard errors of PAH and NPAH masses (ng) measured in PKU filters used for the mutagenicity study of OH radical exposure. In the case that a compound was not detected in all samples, superscript denotes number of samples detected. Numbers in bold are estimated detection limits. An asterisk indicates the statistically significant difference in mass (*p*-value < 0.05).

## Table SI.9 (continued)

| Compound | PKU-7     |         | PKU-8     |         | PKU-9     |         | Avg. %change     |
|----------|-----------|---------|-----------|---------|-----------|---------|------------------|
|          | Unexposed | Exposed | Unexposed | Exposed | Unexposed | Exposed |                  |
|          |           |         |           |         |           |         |                  |
|          |           |         |           |         |           |         |                  |
| NPAHs    |           |         |           |         |           |         |                  |
| 9-NAN    | 60.9      | 10.3    | 91.2      | 13.8    | 47.8      | 11.0    | $-82\% \pm 7\%*$ |
| 2-NDBT   |           |         | 0.5       | 0.3     |           |         | -37%             |
| 3-NPH    | 1.5       | 1.2     | 3.5       | 2.3     | 3.0       | 2.1     | $-28\% \pm 12\%$ |
| 2-+3-NF  | 113.8     | 104.6   | 276.5     | 214.5   | 116.0     | 90.4    | $-18\% \pm 14\%$ |
| 1-NP     | 3.6       | 14.3    | 38.6      | 10.5    | 54.0      | 19.0    | $53\% \pm 366\%$ |
| 2-NP     | 8.0       | 6.4     | 154.5     | 21.3    | 210.7     | 24.4    | $-65\% \pm 68\%$ |
| 7-NBaA   | 9.0       | 3.7     | 193.4     | 10.5    | 208.7     | 10.3    | $-83\% \pm 35\%$ |
| 2-NTR    |           |         | 0.6       | 0.4     | 0.5       | 0.4     | $-29\% \pm 14\%$ |
| 1,8-DNP  |           |         | 3.2       | 2.8     | 2.8       | 2.1     | $-20\% \pm 11\%$ |
| 6-NBaP   | 6.1       | 28.8    | 6.1       | 58.1    | 8.6       | 56.7    | 591% ± 418%*     |
|          |           |         |           |         |           |         |                  |

**Table SI.10:** Means and standard errors of PAH and NPAH masses (ng) measured in PKU filters used for the mutagenicity study of  $O_3$  exposure. In the case that a compound was not detected in all samples, superscript denotes number of samples detected. Numbers in bold are estimated detection limits. An asterisk indicates the statistically significant difference in mass (*p*-value < 0.05).

| Compound  | PKU-12    |         | PKU-13    |         | PKU-14    |         | Avg. %change      |
|-----------|-----------|---------|-----------|---------|-----------|---------|-------------------|
| -         | Unexposed | Exposed | Unexposed | Exposed | Unexposed | Exposed |                   |
| PAHs      |           |         |           |         |           |         |                   |
| FLU       | 9.1       | 6.9     | 18.9      | 14.7    | 11.7      | 7.8     | $-27\% \pm 3\%$   |
| DBT       | 8.6       | 7.0     | 23.7      | 13.4    | 12.1      | 9.4     | $-28\% \pm 8\%$   |
| PHE       | 133.9     | 78.7    | 344.6     | 240.7   | 173.5     | 91.1    | $-40\% \pm 5\%$ * |
| ANT       | 7.3       | 8.3     | 25.3      | 18.3    | 10.4      | 6.4     | $-18\% \pm 16\%$  |
| 2-MPHE    | 58.0      | 37.5    | 106.8     | 79.4    | 69.0      | 40.5    | $-34\% \pm 5\%$ * |
| 2-MANT    |           |         | 10.1      | 7.6     |           |         | -25%              |
| 1-MPHE    | 42.6      | 26.5    | 80.3      | 54.0    | 45.2      | 24.4    | $-39\% \pm 4\%*$  |
| 3,6-DPHE  |           |         | 8.7       | 5.7     |           |         | -34%              |
| RET       | 89.3      | 39.8    | 100.7     | 75.7    | 71.4      | 33.6    | -44% ± 10%*       |
| FLA       | 463.3     | 367.9   | 1101.1    | 910.2   | 563.3     | 439.2   | $-20\% \pm 1\%*$  |
| PYR       | 347.4     | 136.5   | 759.1     | 432.4   | 387.4     | 159.4   | $-54\% \pm 6\%$ * |
| BcFLU     | 86.3      | 35.4    | 144.9     | 85.9    | 78.9      | 34.5    | $-52\% \pm 6\%$ * |
| 1-MPYR    | 38.8      | 14.4    | 61.8      | 35.2    | 32.9      | 13.1    | $-55\% \pm 6\%$ * |
| BaA       | 221.5     | 101.6   | 372.6     | 207.3   | 190.6     | 91.3    | $-50\% \pm 3\%*$  |
| CHR + TRI | 221.1     | 139.7   | 446.5     | 330.6   | 235.6     | 146.7   | $-34\% \pm 4\%*$  |
| BbF       | 598.9     | 451.6   | 1050.1    | 870.2   | 680.0     | 519.5   | -22% ± 2%*        |
| BkF       | 204.2     | 118.0   | 349.8     | 270.6   | 229.6     | 142.2   | $-34\% \pm 6\%$ * |
| BeP       | 327.4     | 202.5   | 597.0     | 457.3   | 368.9     | 239.9   | $-32\% \pm 4\%$ * |
| BaP       | 301.9     | 138.5   | 486.4     | 324.2   | 302.3     | 161.2   | $-45\% \pm 6\%$ * |
| DahA+DacA | 27.0      | 14.9    | 49.1      | 35.0    | 27.9      | 16.4    | $-38\% \pm 5\%$ * |
| IcdP      | 363.3     | 234.9   | 593.8     | 476.1   | 413.2     | 276.2   | -29% ± 5%*        |
| BghiP     | 390.1     | 244.1   | 635.8     | 494.7   | 426.0     | 280.8   | -31% ± 5%*        |

## Table SI.10 (continued)

| Compound | PKU-12    |         | PKU-13    |         | PKU-14    |         | Avg. %change      |
|----------|-----------|---------|-----------|---------|-----------|---------|-------------------|
|          | Unexposed | Exposed | Unexposed | Exposed | Unexposed | Exposed |                   |
|          |           |         |           |         |           |         |                   |
| NPAHs    |           |         |           |         |           |         |                   |
| 9-NAN    | 121.4     | 42.2    | 120.0     | 54.5    | 83.9      | 29.7    | $-62\% \pm 3\%*$  |
| 3-NPH    | 3.6       | 2.0     | 2.8       | 1.9     | 3.1       | 2.0     | $-38\% \pm 3\%*$  |
| 2-+3-NF  | 112.9     | 77.7    | 188.5     | 141.5   | 172.5     | 121.4   | -29% ± 2%*        |
| 1-NP     | 6.9       | 4.7     | 8.4       | 5.0     | 5.8       | 4.0     | $-34\% \pm 3\%*$  |
| 2-NP     | 16.3      | 10.0    | 18.4      | 12.8    | 17.4      | 10.8    | $-36\% \pm 3\%$ * |
| 7-NBaA   | 39.9      | 21.0    | 16.7      | 9.4     | 19.5      | 10.0    | $-47\% \pm 2\%$   |
| 6-NCH    |           |         | 0.2       | 0.2     |           |         | -22%              |
| 2-NTR    |           |         |           |         | 0.5       | 0.4     | -28%              |
| 1,8-DNP  | 3.4       | 1.6     | 4.9       | 3.0     | 3.1       | 1.8     | $-45\% \pm 4\%$   |
|          |           |         |           |         |           |         |                   |



Figure SI.1: Cutting of the filters used in the chemical and mutagencity studies.

Chemical Study

Mutagenicity Study

Figure SI.2: Method of exposing cut PM filters inside the Teflon chamber.



**Figure SI.3** A.  $PAH_{exposed}/PAH_{unexposed}$  and B.  $NPAH_{exposed}/NPAH_{unexposed}$  of Riverside PM filters (n=9) used for the chemical study. An asterisk denotes the statistically significant difference between the unexposed and exposed masses. (N.D. = Not detected)



**Figure SI.4** Correlation between the percent reactivity of the Beijing (9 points from the chemical study and 3 points from the mutagenicity study) and Riverside PM samples (9 points from the chemical study) exposed to  $NO_3/N_2O_5$  to the 2-NF<sub>unexposed</sub> concentrations normalized to the BeP<sub>unexposed</sub> concentrations. The mean correlations of the Beijing samples (PKU-A, PKU-1, PKU-2) and the Riverside PM samples (R-671, R672, and R-673) have been previously presented in Zimmermann et al.<sup>10</sup> The line shown is for illustrative purposes only.





**Figure SI.5:** A. PAH<sub>exposed</sub>/PAH<sub>unexposed</sub> and B. NPAH<sub>exposed</sub>/NPAH<sub>unexposed</sub> of Beijing PM filters (n=3) used for the mutagenicity study. An asterisk denotes the statistically significant difference between the unexposed and exposed masses. (N.D. = Not detected)

#### References

1. Arey, J.; Zielinska, B.; Atkinson, R.; Aschmann, S. M., Nitroarene Products from the Gas-Phase Reactions of Volatile Polycyclic Aromatic Hydrocarbons with the OH Radical and N<sub>2</sub>O<sub>5</sub>. *Int. J. Chem. Kinet.* **1989**, *21*, 775-799.

2. Sasaki, J.; Aschmann, S. M.; Kwok, E. S. C.; Atkinson, R.; Arey, J., Products of the Gas-Phase OH and NO<sub>3</sub> Radical-Initiated Reactions of Naphthalene. *Environ. Sci. Technol.* **1997**, *31*, 3173-3179.

3. Jaffe, D.; Anderson, T.; Cover, D.; Kotchenruther, R.; Trost, B.; Danielson, J.; Simpson, W.; Bernsten, T.; Karlsdottir, S.; Blake, D.; Harris, J.; Carmichael, G.; Uno, I., Transport of Asian Air Pollution to North America. *Geophys. Res. Lett.* **1999**, *26*, 711-714.

4. Sasaki, J.; Arey, J.; Harger, W. P., Formation of Mutagens from the Photooxidations of 2-4-Ring PAH. *Environ. Sci. Technol.* **1995**, *29*, 1324-1335.

5. Nishino, N.; Atkinson, R.; Arey, J., Formation of Nitro Products from the Gas-Phase OH Radical-Initiated Reactions of Toluene, Naphthalene, and Biphenyl: Effect of NO2 Concentration. *Environ. Sci. Technol.* **2008**, *42*, 9203-9209.

6. Primbs, T.; Piekarz, A.; Wilson, G.; Schmedding, D.; Higginbotham, C.; Field, J.; Simonich, S. M., Influence of Asian and Western United States Urban Areas and Fires on the Atmospheric Transport of Polycyclic Aromatic Hydrocarbons, Polychlorinated Biphenyls, and Fluorotelomer Alcohols in the Western United States. *Environ. Sci. Technol.* **2008**, *42*, 6385-6391.

7. Genualdi, S. A.; Killin, R. K.; Woods, J.; Wilson, G.; Schmedding, D.; Simonich, S. L. M., Trans-Pacific and Regional Atmospheric Transport of Polycyclic Aromatic Hydrocarbons and Pesticides in Biomass Burning Emissions to Western North America. *Environ. Sci. Technol.* **2009**, *43*, 1061-1066.

8. Bertschi, I. T.; Jaffe, D. A., Long-range transport of ozone, carbon monoxide, and aerosols to the NE Pacific troposphere during the summer of 2003: Observations of smoke plumes from Asian boreal fires. *J. Geophys. Res.* **2005**, *110*, D05303.

9. Wang, W.; Jariyasopit, N.; Schrlau, J.; Jia, Y.; Tao, S.; Yu, T.-W.; Dashwood, R. H.; Zhang, W.; Wang, X.; Simonich, S. L. M., Concentration and Photochemistry of PAHs, NPAHs, and OPAHs and Toxicity of PM<sub>2.5</sub> during the Beijing Olympic Games. *Environ. Sci. Technol.* **2011**, *45*, 6887-6895.

10. Zimmermann, K.; Jariyasopit, N.; Massey Simonich, S. L.; Tao, S.; Atkinson, R.; Arey, J., Formation of Nitro-PAHs from the Heterogeneous Reaction of Ambient Particle-Bound PAHs with N<sub>2</sub>O<sub>5</sub>/NO<sub>3</sub>/NO<sub>2</sub>. *Environ. Sci. Technol.* **2013**, *47*, 8434-8442.