SUPPLEMENTARY INFORMATION

Life extension factor klotho enhances cognition

Dena B. Dubal, Jennifer S. Yokoyama, Lei Zhu, Lauren Broestl, Kurtresha Worden, Dan Wang, Virginia E. Sturm, Daniel Kim, Eric Klein, Gui-Qiu Yu, Kaitlyn Ho, Kirsten E. Eilertson, Lei Yu, Makoto Kuro-o, Philip L. De Jager, Giovanni Coppola, Gary W. Small, David A. Bennett, Joel H. Kramer, Carmela R. Abraham, Bruce L. Miller, Lennart Mucke

SUPPLEMENTAL RESULTS

Supplemental Table 1, Related to Experimental Procedures. Human and mouse cohorts analyzed in different experiments.

	Fig. Panel	Humans or Mice	<u>Total</u> Number	From *Cohort	<u>Age at</u> Analysis
Humans: GENETICS and	COGNITION				<u>/ maryone</u>
Cobort 1		Non-carriers 179	220 humans	Δ	52_85 vears
Conort	S1	KL-VS carriers 41	220 1101110113	~	52-05 years
Cohort 2	1B 2B	Non-carriers 331	466 humans	В	55_85 vears
	S1	KL-VS carriers 135	400 numans	D	
Cohort 3	10.20	Non-carriers 20	32 humans	С	52–78 vears
	S1	KL-VS carriers 12		Ũ	
Humans: SERUM ENZYM	E-LINKED I	MUNOASSAY			
Cohort 1	3A	Non-carriers 118	156 humans	А	55–85 vears
	0/1	KL-VS carriers 38		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	30	NTG 29. KL 22	51 mice	р	3 wks-36 mos
Mice: COGNITION AND F			0111100	D	5 WK3-50 1105
Water maze			17 mico		10, 12 moo
Water maze	<u>3D,E, 32</u>	NTG 19, KL 0	26 mice		10-12 mos
Ecor conditioning	<u> 35,6, 32</u>		12 mice	F	4-7 11105 6 moo
	40, 33		18 mice	<u></u> Ц	2 4 mos
		NTG 14_15 KL 13_14	27 20 mico		3 mor
Water maze	40,D	NTG 7 KL 7	14 mico		3 1110S
Ecor conditioning + Ifon		NTG: Veh 19 Ifen 15	50 mico	J	5 7 mos
Tear conditioning - her	7 -	KL: Veh 17 Ifen 8	59 mice		5-7 1105
Y-maze + Ifen	7F	NTG [·] Veh 9 Ifen 11	40 mice	1	10_12 mos
	/1	KL: Veh 10. Ifen 10	40 11100		10 12 1105
Y-maze + Ro 25-6981	7G H	NTG: Veh 19, Ro25 16	67 mice	М	3–5 mos
1 11020 110 20 0001	70,11	KL: Veh 18, Ro25 14			0 0 11100
Fear conditioning	S6C	NTG: Veh 9, Ifen 9	18 mice	N	3.5–4.5 mos
Mice: BIOCHEMISTRY &	HISTOLOGY		•	•	
Western	3B	NTG 18, KL 19	37 mice	0	3–4 mos
Western	S4A–E	NTG 13, KL 14–15	27–28 mice	Ö	3–4 mos
Western	5B–E,G	NTG 15–17, KL 17–18	32–35 mice	P	3–4 mos
	S6A.B				
Immunohistochemistry	6A	NTG 7, KL 7	14 mice	J	3–4 mos
gPCR	S4F	NTG 17, KL 18	35 mice	Р	3–4 mos
Mice: ELECTROPHYSIOI	_OGY				
fEPSP (LTP)	6C	NTG 4 slices/4 mice	12 slices,	Q	3.5–4.5 mos
		KL 8 slices/6 mice	10 mice		
fEPSP (I/O curves)	6D	NTG 5 slices/3 mice	14 slices,	Q	3.5–4.5 mos
		KL 9 slices/5 mice	8 mice		
Evoked EPSC and	6F,G	NTG 7–10 slices/3 mice	12–20 slices,	R	3–4 mos
decav		KL 5–10 slices/3 mice	6 mice		
Evoked EPSC and	7B–D	NTG 6–7 slices, 3 mice	11–12 slices,	R	3–4 mos
decay		KL 5 slices,3 mice	6 mice		
sEPSC	S5	NTG 15 cells/2 mice	32 cells,	S	3–4 mos
		KL 17 cells/2 mice	4 mice		

*Cohorts are independent groups of humans or mice, some or all of which were analyzed at one or more time points/ages in one or more paradigms.

Supplemental Table 2, Related to Figure 1. Selection criteria for each population of aging individuals without dementia that was studied. For analyses, individuals between 52–85 years with MMSE scores of 28 or greater were drawn from Cohorts 2 and 3 (replication cohorts) to parallel cognitive profiles and demographics of Cohort 1 (the discovery cohort).

Inclusion Criteria	Exclusion Criteria
Cohort 1 (Discovery cohort)	
Stable medical condition for three mont	hs Memory complaints
Fluent in English	Diagnosed memory condition
Age 40 years or above	Neoplastic disease
Able to complete assessment	Parkinson's disease
Medical history, physical exa	am, Multiple sclerosis, untreated
neurologic exam, and clinical te	sts Sleep apnea
completed without meeting any excluse	ion Stroke
criteria.	Current or past psychiatric disorder by DSM-IV
	criteria
	Abnormal brain MRI
	Abnormal neurologic exam
Cohort 2 (Replication cohort)	
Older individuals without known demen	tia None (medical co-morbidities allowed)
Annual detailed clinical evaluation a	and
blood donation	
Agree to organ donation at death	
Cohort 3 (Replication cohort)	
Willingness to participate in studies	on Baseline dementia or mild cognitive impairment
memory and aging	
	Medical or psychiatric illnesses
	Use of medications that might affect cognition (ie, sedatives)
	Use of non-steroidal anti-inflammatory drugs
	Inability to undergo MRI because of pacemakers or hip replacement implants

Supplemental Table 3, Related to Figure 1. Demographics for each population of aging individuals without dementia studied. All individuals, except for three in Cohort 3, were Caucasian.

Study	Demographics	Non-carrier (n=530)	KL-VS carrier (n=188)
		Mean (SD)	Mean(SD)
Cohort 1			
	Genotype	179	41
	Age (yrs)	67.53(7.38)	68.56(7.76)
	Education (yrs)	17.25(2.02)	17.40(2.42)
	Male/Female	71/112	23/20
	ApoE4 Carriers	41	8
	CDR total	0	0
	MMSE	29.54(0.66)	29.44(0.71)
Cohort 2			
	Genotype	331	135
	Age (yrs)	77.84(5.34)	78.12 (5.52)
	Education (yrs)	15.04 (2.96)	17.89(2.15)
	Male/Female	82/249	39/96
	[#] ApoE4 Carriers	79	30
	MMSE	29.02(0.78)	29.07(0.76)
Cohort 3			
	Genotype	20	12
	Age (yrs)	62.85(7.51)	64.50(7.83)
	Education (yrs)	16.40 (2.68)	18.00 (3.41)
	Male/Female	17/5	4/8
	[#] ApoE4 Carriers	7	2
	MMSE	29.35(0.75)	29.83(0.39)

SD=standard deviation; MMSE=Mini Mental State Exam; CDR=Clinical Dementia Rating; *Some APOE ε4 genotypes were unknown: Cohort 2 (12 KL-VS non-carriers and 9 KL-VS carriers); Cohort 3 (1 KL-VS non-carrier).

Supplemental Table 4, Related to Figure 1. Cognitive functions and domains represented in neuropsychological tests analyzed in Cohorts 1–3.

*Broad	*Specific	Cohort 1 Tests	Cohort 2 Tests	Cohort 3 Tests
Cognitive	Cognitive	Refs (Kramer et al.,	Refs (Bennett et al.,	Refs (Small et al.,
Domains	Functions	2003; Pa et al.,	2012; Wilson et al.,	2006; Small et al.,
		2010)	2002)	2012)
Language	Semantic/Phonemic	Category &	Category Fluency	Category &
	Generation	Phonemic Fluency		Phonemic Fluency
Executive	Working Memory,	Digit Span	Digit Span	Digit Span Total,
	Attention/Inhibition,	Backwards,	Backwards,	Trails A+B,
	Processing Speed,	Modified Trails,	Digit Ordering,	Stroop Interference
	Set Shifting	Stroop Color	Stroop Color	
	_	Naming	Naming	
Visuospatial	Spatial Memory,	Benson Figure	Line orientation	Benson Figure
	Spatial Processing	Delay		Delay
Learning &	Auditory/Verbal	CVLT II Short Recall	Delayed Word List	Slope Logical
Memory	Episodic Learning &		Recognition,	Memory
	Memory		Delayed Story	
	-		Recall	

*Though distinctly categorized, tests often reflect multiple cognitive functions and domains. For example, semantic and phonemic generation are influenced by verbal, language, and executive abilities.

Supplemental Table 5, Related to Figures 1 and 2. KL-VS is associated with better cognition in a meta-analysis of cohorts and in each of the three independent human cohorts included in the meta-analysis. The linear statistical model provides an estimate of change in global composite Z-score and includes age, sex, education, and KL-VS genotype, with or without *APOE* ε 4 carrier status, as predictors for cognitive performance. Inclusion of *APOE* ε 4 in the model did not contribute significant variance (p=0.64, meta-analysis) or change results associating KL-VS with enhanced cognition.

	Estimate	Std Error	t value	p value	Significance				
Meta-analysis of Cohorts 1–3									
Age	-0.02	0.00	-5.57	3.54x10⁻ [∞]	***				
Sex (F)	0.24	0.08	3.10	2.07x10 ⁻³	**				
Education	0.07	0.01	5.38	1.00x10 ⁻⁷	***				
Genotype, KL-VS	0.33	0.08	4.10	4.41x10 ⁻⁵	***				
Meta-analysis of C	Meta-analysis of Cohorts 1–3 (APOE ε4 added to model)								
Age	-0.02	0.00	-5.42	8.16 x10 ⁻⁸	***				
Sex (F)	0.24	0.08	3.01	2.73x10 ⁻³	***				
Education	0.07	0.01	5.34	1.29 x10 ⁻⁷	***				
<i>APOE</i> ε4	-0.03	0.08	-0.46	0.64	-				
Genotype, KL-VS	0.32	0.08	3.95	8.61 x10⁻⁵	***				
Cohort 1									
Age	-0.05	0.01	-5.62	5.87x10 ^{-∗}	***				
Sex (F)	0.05	0.13	0.41	0.68	-				
Education	0.11	0.03	3.59	4.17x10 ⁻⁴	***				
Genotype, KL-VS	0.39	0.16	2.45	0.01	*				
Cohort 1 (APOE ε4	added to model)								
Age	-0.05	0.01	-5.59	6.76x10 ⁻⁸	***				
Sex (F)	0.07	0.13	0.53	0.60	_				
Education	0.11	0.03	3.62	3.62x10 ⁻⁴	***				
APOE ε4	0.14	0.14	1.03	0.30	-				
Genotype, KL-VS	0.40	0.16	2.51	0.01	*				
Cohort 2	-	-							
Age	-0.05	0.01	-6.38	4.44x10 ⁻¹⁰	***				
Sex (F)	0.25	0.10	2.52	0.01	*				
Education	0.09	0.01	6.20	1.25x10 ⁻⁹	***				
Genotype, KL-VS	0.25	0.09	2.64	8.61x10 ⁻³	**				
Cohort 2 (APOE ε4	added to model)								
Age	-0.05	0.01	-6.07	2.77x10 ⁻⁹	***				
Sex (F)	0.25	0.10	2.55	0.01	*				
Education	0.09	0.02	6.20	1.34x10 ⁻⁹	***				
<i>APOE</i> ε4	-0.10	0.09	-1.11	0.27	-				
Genotype, KL-VS	0.23	0.09	2.47	0.01	*				
Cohort 3	-	-							
Age	-0.07	0.03	-2.89	0.01	*				
Sex(F)	0.04	0.40	0.11	0.91	-				
Education	0.04	0.06	0.77	0.45	-				
Genotype, KL-VS	0.63	0.32	1.95	0.06	#				
Cohort 3 (APOE ε4 added to model)									
Age	-0.07	0.03	-2.80	0.01	*				
Sex (F)	-0.04	0.43	-0.08	0.94	-				
Education	0.04	0.06	0.70	0.49	-				
APOE ε4	-0.20	0.32	-0.64	0.53	_				
Genotype, KL-VS	0.59	0.35	1.69	0.10	#				

= near significance

Supplemental Table 6, Related to Figures 1 and 2. Probing for a sex by KL-VS interaction and an age by KL-VS interaction on cognition. A linear statistical model was used to probe for a Sex:KL-VS interaction and an Age:KL-VS interaction on cognition in the meta-analysis of three cohorts. The model provides an estimate of change in global composite Z-score and includes age, sex, education, and KL-VS genotype as predictors for each interaction. For the Sex:KL-VS analysis, no significant interaction effect was identified. A power analysis with the current sample size and observed variation revealed that the effect would need to result in a change (or estimate) of -0.48 in the cognitive score (compared to the current estimate of -0.25) to be detected with 80% power at the α = 0.05 significance level. Inclusion of APOE ϵ 4 in the linear statistical model did not contribute significant variance (p=0.61) or change results for a Sex:KL-VS interaction on cognition. For the Age:KL-VS analysis, the interaction reached near significance for demonstrating that KL-VS-associated cognitive enhancement decreases with increasing age. A power analysis with the current sample size and observed variation revealed that the effect would need to result in a change (or estimate) of -0.028 in the cognitive score (compared to the current estimate of -0.02) to be detected with 80% power at the $\alpha = 0.05$ significance level. Inclusion of APOE E4 in the linear statistical model did not contribute significant variance (p=0.72) or significantly change results of the effects of Age:KL-VS interaction on cognition.

		Estimate	Std Error	t value	p value	Significance
Sex:KL-VS	Meta-analysis of t					
Analyses	Age	-0.02	0.00	-5.52	4.64x10 ^{-∞}	***
	Sex (F)	0.31	0.09	3.39	7.32x10 ⁻⁴	***
	Education	0.07	0.13	5.43	7.52 x10 ⁻⁸	***
	Genotype, KL-VS	0.74	0.30	2.50	0.01	*
	Sex (F):KL-VS	-0.25	0.17	-1.44	0.15	-
				•		
	Meta-analysis of t	hree cohort	s (APOE ε4 ac	dded to mo	del)	
	Age	-0.02	0.00	-5.38	1.05 x10 ⁻⁷	***
	Sex (F)	0.31	0.09	3.35	8.45x10 ⁻⁴	***
	Education	0.07	0.13	5.40	9.17 x10 ^{-∗}	***
	<i>APOE</i> ε4	-0.04	0.08	-0.51	0.61	-
	Genotype, KL-VS	0.75	0.30	2.52	0.01	*
	Sex (F):KL-VS	-0.26	0.17	-1.50	0.13	-
Age:KL-VS	Meta-analysis of t	hree cohort	S			
Analyses	Age	-0.02	0.01	-4.11	4.47x10⁻⁵	***
	Sex (F)	0.24	0.08	3.13	1.85x10⁻³	***
	Education	0.07	0.01	5.32	1.36x10⁻′	***
	Genotype, KL-VS	1.56	0.76	2.06	0.04	*
	Age:KL-VS	-0.02	0.01	-1.63	0.10	#
	Meta-analysis of t	hree cohort	s (APOE ε4 ac	dded to mo	del)	
	Age	-0.02	0.01	-3.87	1.18x10 ^{-₄}	***
	Sex (F)	0.24	0.08	3.05	2.42x10 ⁻³	***
	Education	0.07	0.01	5.26	1.95x10 ⁻⁷	***
	ΑΡΟΕ ε4	-0.03	0.08	-0.36	0.72	-
	Genotype, KL-VS	1.75	0.76	2.30	0.02	*
	Age:KL-VS	-0.02	0.01	-1.88	0.06	#

F=Female; [#]near significance

Supplemental Table 7, Related to Figure 3. Klotho serum levels were significantly increased in individuals with one KL-VS allele. The linear statistical model provides an estimate of change in klotho levels. The model includes age, sex, education, and KL-VS genotype as predictors for klotho levels (pg/mL). There is an age effect that reaches near significance for showing that klotho levels decrease with increasing age, an effect previously reported (Semba et al., 2011; Yamazaki et al., 2010). A power analysis with the current sample size and observed variation revealed that the age effect would need to result in a change (or estimate) of –9.50 in pg/mL of klotho levels (compared to the current estimate of –5.88) to be detected with 80% power at the $\alpha = 0.05$ significance level. Inclusion of *APOE* ε 4 in the linear statistical model revealed that it did not contribute significant variance (p=0.79) or change results of the effects of KL-VS genotype on klotho levels.

	Estimate	Std Error	t value	p value	Significance
Cohort 1					
Age	-5.88	3.41	-1.70	0.08	#
Sex (F)	33.95	41.97	0.81	0.42	-
Education	2.50	10.35	0.24	0.81	-
Genotype, KL-VS	104.27	48.40	2.15	0.03	*
Cohort 1 (<i>APOE</i> ε4	added to model)				
Age	-5.78	3.41	-1.70	0.09	#
Sex (F)	35.69	42.58	0.84	0.40	-
Education	2.50	10.39	0.24	0.81	-
<i>APOE</i> ε4	11.42	42.06	0.27	0.79	-
Genotype, KL-VS	105.72	48.84	2.17	0.03	*

F=Female; [#]near significance

Supplemental Table 8, Related to Figure 3. Probing for a sex effect and a sex:klotho interaction on cognition in water maze testing of young and middle-aged mice. A mixed model ANOVA (factors: genotype and day) including effects of repeated measures was used as described (Young et al., 2009). No significant main effects of sex or sex:klotho interaction were identified.

	Estimate	Std Error	t value	p value	Significance	
Young mice: Hidden Training, watermaze						
Sex (F)	-2.43	60.71	-0.04	0.97	-	
Sex (F):klotho	-64.33	87.85	-0.73	0.95	-	
Middle-age mice: H	Hidden Training,	watermaze				
Sex (F)	61.53	77.79	0.79	0.44	-	
Sex (F):klotho	-25.66	110.02	-0.23	0.82	—	
Young mice: Probe Trial						
Sex (F)	-4.21	6.16	5.13	0.61	_	
Sex (F):klotho	0.72	11.80	0.06	0.95	_	
Middle-age mice: Probe Trial						
Sex (F)	16.48	9.59	1.72	0.11	_	
Sex (F):klotho	-17.76	13.57	-1.31	0.21	_	

F=Female

Supplemental Figure 1. Estimated changes associated with the KL-VS genotype in composite and individual neuropsychological test scores, Related to Figure 1. Each plot represents a maximum likelihood estimate of the KL-VS genotype effect on the composite score or specific test score with 95% confidence bounds after adjusting for (A) age, sex, and education or (B) age, sex, education and APOE ε 4 carrier status. Mean results in non-carriers were used as a reference point (dotted line). Positive changes in test scores represent better cognitive performance.

Supplemental Figure 2. NTG and KL mice showed no differences in swim speeds or distances traveled to find a cued (visible) platform in the Morris water maze, Related to Figure 3. (A, B) Swim speeds during hidden platform training in middle aged (10–12 months; n=8–9 per genotype) (A) and young (4–7 months; n=18–19 per genotype) (B) NTG and KL mice. (C, D) Distance traveled to find a cued (visible) platform in the water maze by middle-aged (C) and young (D) NTG and KL mice. Data are means ± SEM.

В

Α

Supplemental Figure 3. NTG and KL mice showed no difference in hippocampusindependent cued recall to tone presentation in a different context, Related to Figure 4. Freezing was measured 24 h after training (n=6–7 mice per genotype, age 5–7 months). (A, B) Percent freezing following a 20-s tone and 60-s silence (A) and following 4 consecutive tone presentations averaged over the full testing period (B). Data are means ± SEM.

Supplemental Figure 4. Klotho elevation increases total hippocampal protein, but not mRNA, levels of NMDA receptor subunit GluN2B and does not alter total protein levels of GluN1 and GluN2A or AMPA receptor subunits GluR1 and GluR2, Related to Figure 5. Quantification of western blot signals from whole hippocampal homogenates relative to levels found in NTG mice (n=13–15 mice per genotype, age 3 months) for NMDA receptor subunits (A) GluN1, (B) GluN2A, (C) GluN2B, and AMPA receptor subunits (D) GluR1 and (E) GluR2. *p<0.05 vs NTG (t-test). Actin served as a loading control and did not differ between groups (not shown). Dashed grey line is level of GluN2B protein in NTG mice. (F) Quantification of *GluN2B* mRNA levels by quantitative PCR (n=17–18 mice per genotype, age 3 months). Data are means ± SEM.

Supplemental Figure 5. Spontaneous EPSCs (sEPSCs) of dentate granule cells in acute hippocampal slices are not significantly different between NTG and KL mice, Related to Figure 6. (A) Cumulative plot and (B) means of sEPSC amplitudes (p=0.86, unpaired t-test). (C) Cumulative plot of sEPSC inter-event intervals. (D) Means of sEPSC frequency (p=0.34, unpaired t-test). Number of cells/mice: NTG 15/2, KL 17/2 (age 3.5–4.5 months). Data are means ± SEM.

Supplemental Figure 6. GluN1 levels correlate with GluN2B levels in PSD fractions from NTG and KL mice; and higher dose of ifenprodil suppresses percent time freezing during context testing in NTG mice trained with lower number of shocks, Related to Figure 7. (A, B) Levels of GluN1 and GluN2B were quantified in PSD-95 enriched membrane fractions from the hippocampus of NTG (A) and KL (B) mice (age 3–4 months; 14–18 mice per group). (C) Mice (n=9 per group, age 3.5–4.5 months) received a single i.p. injection of vehicle or ifenprodil (Ifen., 7.5 mg/kg) 30 min before training in a fear conditioning paradigm consisting of 2 shocks (compared to 4 shocks used in the testing paradigm of Figure 7E). The percent of time mice spent freezing during the context testing session 24 h later was monitored. °p=0.08 (t-test). Data are means ± SEM.