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1 SI Materials and Methods

1.1 Re-write and Suppression Rules for the Biomedical Termi-
nologies

Consistent with previous observations [1, 2, 3], we noticed that many of the terms con-
tained within the UMLS Metathesaurus were inappropriate for natural language-oriented
analyses (ex: database-specific encodings, machine permutations, non-English language
entries, etc.). Therefore, prior to generating the terminologies utilized in this study, we
subjected the Metathesaurus to a thorough, rule-based filtering, which was an extension
of the method outlined in [3]. Consistent with the previous study [3], our set of imple-
mented rules can be broken into two categories: re-write and suppression rules. Below,
we list each of them explicitly, providing examples when necessary.

Re-write Rule 1: Syntactic inversion. Given that a term contained a comma followed
by a space, we split the phrase on the comma and placed the latter fragment at the
beginning of the term (ex: carcinoma, kidney → kidney carcinoma).

Re-write Rule 2: Removal of Possessives. All apostrophes were removed from posses-
sive nouns (ex: Addison’s diseases → Addisons disease).

Re-write Rule 3: Removal of Angular Brackets. All tokens bracketed by “<” and “>”
were stripped from the terms.

Re-write Rule 4: Removal of Starting/Ending Parenthesis/Brackets. If a term began
or ended with a token/tokens in parentheses/brackets, the tokens surrounded by
the punctuation were stripped from the term (ex: nausea (symptom) → nausea).

Re-write Rule 5: Removal of “NOS.” The token “NOS,” a non-specific designator, was
removed from all terms.
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Re-write Rule 6: Removal of Punctuation. All internal punctuation was removed from
the terms, replaced by either whitespace or the null character, depending on context.

Re-write Rule 7: Term Collapse. If two (or more) terms were simple token permuta-
tions of one another (after masking stop tokens1 and stemming [4, 5]), they were
collapsed into a single term (ex: disease of the mouth ≡ mouth disease).

Suppression Rule 1: Removal of Non-English Terms. All biomedical terms annotated
with a language other than English were removed from the dataset.

Suppression Rule 2: Removal of Terms Containing “@.” All terms containing the “@”
symbol were removed from the dataset.

Suppression Rule 3: Removal of Single Character Terms. If a term contained a single
character after masking stop tokens, it was removed from the dataset.

Suppression Rule 4: Removal of Classification Terms. Terms containing the tokens
“NEC,” “not elsewhere classified, unclassified, or “without mention” were removed
from the dataset, following [3].

Suppression Rule 5: Removal of EC Numbers. Terms consisting of Enzyme Classifica-
tion (EC) numbers were removed from the dataset.

Suppression Rule 6: Removal of Dosage Terms. All terms corresponding to a dosage
specification were removed from the dataset. Identification of dosage terms is de-
scribed in [3].

Suppression Rule 7: Disallowed Term Types. We removed all terms annotated with
the following types: FN, PM, CA2, CA3, CCN, CCS, CSY, UCUMAB, UCUMPT,
UCUMSY and AD.

These rules were applied using the CASPER software [3] and in-house python scripts.

1.2 Description of Normalization Algorithms Used in this Study

Below, we briefly describe the normalization algorithms used in this study. Except for
MetaMap, all algorithms were written in Python and relied on the Whoosh search and
indexing library2.

Boolean Search: This algorithm normalized mentions by performing a simple AND-
query, returning any concept annotated with a term that contained all of tokens
constituting the mention of interest. Tokens were stemmed and stop words were

1http://www.nlm.nih.gov/bsd/disted/pubmedtutorial/020_170.html
2https://pypi.python.org/pypi/Whoosh/
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masked. If multiple matching concepts were returned, the one(s) with the highest
TF-IDF score was (were) returned.

MetaMap: This algorithm was used according to guidelines provided here3. Note, our
analyses required the repeated construction of the databases used by MetaMap’s
normalization algorithm. The construction of these databases was automated using
the DataFileBuilder scripts4.

Cosine Similarity: This algorithm normalized mentions by computing the cosine sim-
ilarities between a mention and all of the terms contained within the terminology,
where

Cos. Sim. =
~M · ~T

‖ ~M‖ × ‖~T‖
,

and ~M/~T denote the TF-IDF vectors for the mention and term respectively. The
concept(s) with the highest cosine similarity was (were) returned.

pairwise Learning-to-Rank (pLTR): This algorithm extends simple cosine similarity
by adding a “token synonymy” matrix W to the procedure, which is learned during
training through stochastic gradient descent [6]. This matrix allows tokens that
are not exact matches to contribute to the similarity score, both in a positive and
negative fashion. More specifically, the similarity score used to find the best concept
using this method is:

Sim. Score =
~M ′W~T

‖ ~M‖ × ‖~T‖
,

where ~M ′ denotes the transpose of the TF-IDF vector for the mention. Our imple-
mentation of the pLTR algorithm closely followed the description in [6]. Consistent
with previous results [6], it was the top performer in our analyses.

1.3 Estimating the Fraction of Redundant Concept-to-Term Re-
lationships

It was relatively straightforward to measure the overall effects of synonymy on the named-
entity normalization tasks considered in this study. We simply compared the performance
of the algorithms listed in previous section before and after removing all of the synonyms
from some terminology of interest (see Table 1 and Figure S1). Although this analysis pro-
vided an estimate for the total contribution of synonymy to the normalization tasks, it did
not guarantee that every relationship annotated within the terminology was useful. Ob-
viously, it was not possible to determine the utility of synonyms that were not mentioned

3http://metamap.nlm.nih.gov/Docs/Metamap13_Usage.shtml
4http://metamap.nlm.nih.gov/DataFileBuilder.shtml
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in the corpora, as it is always possible that a larger, more thorough sample of natural
language would in fact contain such mentions. However, we were able to ask a different
but still important question: “What fraction of the synonyms used by the algorithms in
the current analysis are redundant with one another?” This analysis is important because
it gives us an indication of the efficiency of current synonym terminologies, and it also
has ramifications for the utility of the undocumented synonyms inferred to exist in the
latter sections of this study.

To outline our approach for estimating redundancy, consider the scenario in which
the synonyms used during some normalization task were non-redundant. In other words,
there was a one-to-one mapping between the concepts returned for some subset of men-
tions and the synonyms used by the algorithm for normalization. Let C denote the set
of returned concepts for the subset of mentions whose normalization required synonymy,
where |C| = N denotes the total number of such mentions. Note, these concepts can
be readily identified for any normalization algorithm and corpus following the procedure
outlined in the previous paragraph. Now, given the non-redundancy assumption, the
successful return of each concept Ci ∈ C required only a single annotated synonym. As-
suming that we randomly removed (without replacement) some fraction of the synonyms
in our terminology (denoted 1−ρ), the marginal probability that any individual concept-
to-synonym mapping remained after sub-sampling is simply ρ. Therefore, the probability
that the ith concept (denoted Ci) remained in C (denoted Ci ∈ Cρ) is:

P (Ci ∈ Cρ) = ρ.

By the linearity of expectation, the expected total number of concepts remaining in C
after removing some fraction of synonyms 1− ρ assuming non-redundancy is:

E
[
|Cρ|
]

=
N∑
i=1

P (Ci ∈ Cρ)

=Nρ. (1)

In practice, we generally did not observe a perfectly linear decrease in concept recall as
more and more synonyms were removed from a terminology, suggesting some amount of
redundancy (see Figure S1 for examples). To illustrate, let Ki indicate the number of re-
dundant synonyms used by some algorithm during the normalization of ith mention, such
that a total of Ki + 1 synonyms could in theory be used by the algorithm to return con-
cept Ci. Upon randomly removing some fraction of concept-to-synonym annotations, the
marginal probability that at least one of required synonyms remained in the terminology
enabling successful normalization is:

P (Ci ∈ Cρ|Ki) = 1− (1− ρ)×
Ki∏
i=1

(1− ρ)S

S − i
,
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where S is the total number of synonymous relationships in the thesaurus. Given that S is
very large (generally on the order of tens of thousands of synonyms for the terminologies
considered in this study), the previously probability is well approximated by:

P (Ci ∈ Cρ|Ki) ≈ 1− (1− ρ)Ki+1.

Now, assume that the numbers of redundant synonyms per mention were generated
from some discrete probability distribution (denoted P (Ki|~θ) for the ith mention) with
support [0,∞). The probability that Ci ∈ Cρ after marginalizing over all possible Ki is:

P (Ci ∈ Cρ|~θ) ≈ 1− (1− ρ)×
∞∑

Ki=0

(1− ρ)Ki × P (Ki).

In the present study, we assumed that each Ki was sampled i.i.d from a Geometric distri-
bution, but we also repeated our analyses using Poisson and Negative Binomial models and
obtained similar results (although the Negative Binomial model had a tendency towards
numerical instability). In the case of the geometric model, where P (Ki|γ) = γ(1− γ)Ki ,
the infinite series in the previous equation can be evaluated analytically to yield:

P (Ci ∈ Cρ|γ) ≈1− (1− ρ)×
∞∑

Ki=0

(1− ρ)Ki × P (Ki)

≈1− γ(1− ρ)×
∞∑

Ki=0

[
(1− ρ)(1− γ)

]Ki
≈1− γ(1− ρ)

1− (1− ρ)(1− γ)
.

Therefore, the expected total number of concepts remaining in C after removing some
fraction of synonyms 1− ρ given the previously described redundancy model is:

E
[
|Cρ|
]
≈

N∑
i=1

P (Ci ∈ Cρ|γ)

=N − Nγ(1− ρ)

1− (1− ρ)(1− γ)
, (2)

which is a convex (sub-linear) function of the sub-sampled fraction of synonyms.
Given that the parameter γ in 2 is known, we can directly estimate: 1) the number

mentions that were normalized using redundant synonyms, and 2) the total number of
redundant synonymous relationships paired to the concepts in C. The former is obtained
simply by computing the probability that a particular mention-to-concept mapping has
zero redundant synonyms, and under the geometric model, this is simply:

P (Ki = 0|γ) = γ.
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The latter is estimated by noting that the sum of N geometric random variables is a
negative binomial distribution, and therefore, the total number of redundant synonyms
paired to the concepts in C (denoted K =

∑N
i=1Ki) is:

P (K|γ) =

(
K +N − 1

K

)
(1− γ)KγN .

In Table 1 (Column 5), we report this value after normalizing it by the total number
synonyms paired to the concepts in C, demonstrating that a considerable majority of
the annotated relationships do not correspond to the redundant synonyms used by the
algorithms in the present analyses.

The estimates outlined above assume that γ is known, which is not true in practice.
To estimate this parameter from the recall curves in Figure S1, we assumed that the
concept recall probabilities after sampling (denoted P (Ci ∈ Cρ|γ)) were independent of
one another. Given the geometric model outlined above, this yields the following simple
likelihood for the recall data returned for a particular 1− ρ sub-sampling experiment:

P (Cρ|γ) ∝
J∏
j=1

(
1− γ(1− ρj)

1− (1− ρj)(1− γ)

)|Cρj |( γ(1− ρj)
1− (1− ρj)(1− γ)

)N−|Cρj |
, (3)

where j indexes a total of J independent sub-sampling experiments and N can be directly
determined by removing all of the synonyms in the terminology of interest (as described
previously). In practice, we estimated γ by maximizing 3 with respect to this parameter.
Note, the independence assumption invoked during the specification of this likelihood is
violated at many levels. For instance, we sampled synonym pairs without replacement,
which should theoretically generate a small amount of negative covariance among the
returned concepts. Nevertheless, we found that on simulated data with properties similar
to our actual terminologies and corpora, the effect was negligible (the R2-value between
1000 uniformly sampled and inferred γ values was 0.99 while the slope and intercept for
the line-of-best-fit between these quantities was approximately 1.0 and 0.0 respectively).
Perhaps more importantly, none of the algorithms considered in this study normalize
concepts in an independent fashion. To some extent, they are all ranking algorithms,
indicating that the concept returned for any particular mention depends on the other
concepts and their annotated synonyms. That said, such correlations should only effect
the recall data variance, not its expectation (due to the linearity of the latter), so we
believe that our estimator should be relatively consistent in practice.

Finally, we would like to note that the pairwise Learning-to-Rank (pLTR) method
generally yielded the lowest amount of redundant synonymy while MetaMap typically
had the highest. This difference likely reflects the distinct approaches underlying these
two algorithms. MetaMap performs automatic variant generation during the construction
of its database, so it is able to generate a synonym that was previously removed during
sub-sampling, creating redundancy. Alternatively, the pLTR algorithm actually learns
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a matrix of weights during training that allows non-matching tokens to contribute to
the similarity score for two phrases. Thus, this “token synonymy” matrix likely benefits
from the inclusion of even redundant synonyms, as they potentially allow the algorithm
to learn other examples of synonymy that are not currently annotated. That said, we
restricted our analysis to unique mentions, and we found that it was easy to over-train
the pLTR algorithm (especially on the NCBI corpus), likely due to the limited amount
of information available in the training sets. Therefore, we feel that our estimates of
redundant synonymy for this algorithm may be inflated.

1.4 A Corpus-Based Estimate of Semantic Similarity for General-
English Words

To computationally assess the quality of the harvested headword-synonym pairings, we
wanted to measure their overall semantic similarities using a large corpus of natural lan-
guage and compare these measurements to those obtained for both known and random
pairings. Many methods are available for estimating the semantic similarity shared be-
tween two words using large text corpora [7, 8]. In the present study, we adapted the
method outlined in [9] due to its simplicity and scalability. Briefly, let Ch denote the
set of contexts surrounding some headword wh within a large text corpus (in our case
Wikipedia), and let Cs denote the same for some synonym ws. For simplicity, we defined
context as the two flanking tokens occurring before and after each headword/synonym
occurrence, ignoring order (the “bag-of-words” assumption). Our estimate of the seman-
tic similarity compared the information content of the contexts shared by two words with
the total information content of their contexts as follows. First, let I(Ci) denote the
information content of the ith context, where:

I(Ci) = − logP (Ci|Corpus).

The semantic similarity shared between a headword and its synonym was defined as [9]:

Sem. Sim.(wh, ws) =
2×

∑
Ci∈Ch∩Cs I(Ci)∑

Ci∈Ch I(Ci) +
∑

Cj∈Cs I(Cj)
. (4)

For the sake of brevity, we do not present the formal justification for this measurement of
similarity and instead direct the interested reader to [9]. In practice, we found that differ-
ent classes of headwords tended to have very different background semantic similarities.
For example, nouns of high frequency tended to pervasively share semantic similarity with
other words simply because of their low information content, making comparisons across
different headwords difficult. Therefore, we constructed a null, background distribution
of semantic similarity for each headword by computing 4 between it and every other word
not currently paired with it in our true positive, true negative, and novel synonym pair
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datasets. We then used the mean (µi) and variance (σ2
i ) from this background distribution

to standardize the semantic similarities for the word pairs of interest:

Sem. Sim. Score(wh, ws) =
Sem. Sim.(wh, ws)− µi√

σ2
i

. (5)

The output of the previous equation was reported in the main text and in Figure 3E and
3F.

1.5 A Probabilistic Model for Estimating the Extent of Undoc-
umented Synonymy

In the main text, we outlined a statistical model for inferring the number of concepts
(headwords) and terms (synonyms) that are missing from some set of thesauri. In this
section, we further develop our approach by extending the model to multiple, indepen-
dent terminologies, and subsequently, we increase its descriptive potential by allowing
the annotation rates to vary across concepts and terms that were included within the
same dictionary. We also briefly outline our Bayesian approach to inferring the extent
of undocumented synonymy given the described models and the observed data, and we
demonstrate how our prior distribution over the number of terms per concept (synonyms
per headword) can used to estimate the total number of such relationships in the language
given any possible number of concepts (headwords).

1.5.1 Extending the Model to Multiple, Independent Terminologies

Consistent with the notation used in the main text, consider a set of N ′ concepts that
were harvested from a collection of T independent terminologies. Furthermore, let ~S ′ =
〈S ′1, S ′2, . . . S ′N ′−1, S

′
N ′〉 denote the total number of annotated terms specific to these con-

cepts. At this point, it is important to note that not all of the ~S ′ relationships were
annotated by each of the T terminologies. To be included into ~S ′, each relationship only
had to be annotated by at most one terminology. To encode the annotation status of
each concept-to-term relationship across the T thesauri, we used the following nested
list (a list of lists). Let C denote the complete list of concepts and terms obtained by
combining multiple terminologies, such that C = {R1,R2, . . . ,RN ′−1,RN ′}. Each Ri ∈ C
represents the list of terms paired to the ith concept, and to encode the annotation
statuses of these relationships, Ri contains a total of S ′i vectors of length T , such that
Ri = {~ai,1, ~ai,2, . . . , ~ai,S′−1, ~ai,S′}. Finally, each element in ~ai,j, denoted ai,j,k, indicates
whether the jth term of the ith concept was annotated within the kth terminology:

ai,j,k =

{
1 if (concepti, termj) ∈ terminologyk
0 otherwise.
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To specify the likelihood for the combined dataset, let 1−pk~θ(0) denote probability that
a concept-to-term relationship was sampled at least once by the lexicographer assigned
to the kth terminology and was therefore included into the dictionary. To ease notational
burden, we set 1 − pk~θ(0) ≡ pk. With this simplification in place, the probability of

observing ~S ′ terms annotated to a total of N ′ concepts, given the latent variables ~S, φ,
and N and the model parameters Θ, is:

P (~S ′, N ′|~S, φ,N,Θ) =

(
N

N −N ′

)
×
[(

φ− 1

φ+N ′ −N

)( T∏
k=1

[1− pk]
)φ]
× . . .

. . .

[ N ′∏
i=1

(
Si

Si − S ′i

)( S′
i∏

j=1

T∏
k=1

p
ai,j,k
k [1− pk]1−ai,j,k

)( T∏
k=1

[1− pk]
)Si−S′

i
]
, (6)

where Θ = {pk : ∀k = 1 . . . T}.

1.5.2 Allowing Annotation Rates to Vary Across Concepts and Terms

As discussed in the main text, the coverage of different terminologies with respect to
the same linguistic domain can vary wildly due to a multitude of factors, including their
preference to annotate certain relationships at the expense of others (see Figure S3 for
examples) and their potentially differing definitions of synonymy. To account for this
variability, we applied an approach that has recently shown promise within the fields of
ecology [10] and metagenomics [11]. Specifically, we assumed that concepts and their
terms belonged to different classes, and we allowed each to be annotated at a distinct
rate by the same terminology. This somewhat agnostic, mixture-modeling approach to
accounting for annotation variability is an obvious oversimplification, but in practice, we
found that our models well described the variation that we observed within our datasets
(see main Figure 2F for example) and were capable of capturing specific examples of
annotation bias (see main Figure 2G and Figure S4).

Briefly, our mixture model assumes that each concept belongs to one of H components,
which in turn harbor their own set of Lh term classes. The subscript h associated with
the previous variable indicates that those term classes only belong to concepts assigned
to the hth component. Thus, our specific mixture model divides the space of possible
synonymous relationships into H×Lh components, each with their own unique annotation
rate. Let zi denote the class assigned to the ith concept, where zi = h and h ∈ {1 . . . H}.
Similarly, let yi,j denote the class assignment of the jth concept-to-term relationship
annotated to the ith concept, where yi,j = lh and lh ∈ {1 . . . Lh}. We assume that
concept and term classes were instantiated according to simple categorical models, such
that:

P (zi = h|~π) = πh, where ~π = 〈π1, π2, . . . , πH−1, πH〉
P (yi,j = lh|zi = h,~λh) = λh,lh , where ~λh = 〈λh,1, λh,2, . . . , λLh−1, λLh〉.
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Therefore, the joint probability for the class assignments of N ′ concepts and ~S ′ terms,
denoted using z and ~y respectively, is:

P (z, ~y|~π,Λ) =
N ′∏
i=1

P (zi = h|~π)

S′
i∏

j=1

P (yi,j = lh|zi = h,~λh)

≡
N∏
i=1

πh

S′
i∏

j=1

λh,lh ,

where Λ = {~λh : ∀h = 1 . . . H}.
To incorporate these classes into the model, let ph,lh,k denote the probability of an-

notation for a concept-to-term relationship whose concept belongs to class h and whose
term belongs class lh. Furthermore, let ~ξi denote the number of undocumented terms that
are paired to the ith concept (that is instantiated with class h) and belong to each of the
Lh different synonym classes:

~ξi = 〈ξi,1, ξi,2, . . . , ξi,Lh−1, ξi,Lh〉,

where
∑Lh

lh=1 ξi,lh = S − Si and Ξ = {~ξi : ∀h = 1 . . . N ′}. Similarly, let ~η denote the
number of undocumented concepts that belong to each of the H classes:

~η = 〈η1, η2, . . . , ηH−1, ηH〉, where
H∑
h=1

ηh = N −N ′.

Each class of undocumented concepts in turn has its own set of unannotated terms, and
we let ~χ denote the total number of undocumented concept-to-term relationships that
belong to each concept class:

~χ = 〈χ1, χ2, . . . , χH−1, χH〉, where
H∑
h=1

χh = φ.

Finally, we introduce a set of H vectors, denoted Ω, where each ~ωh ∈ Ω contains the
number of relationships that belong to each of the Lh synonym classes:

~ωh = 〈ωh,1, ωh,2, . . . , ωh,Lh−1, ωh,Lh〉, where

Lh∑
lh=1

ωh,lh = χh.

With this notation in place, the full likelihood for the observed concept-to-term relation-
ships ~S ′, the observed number of concepts N ′, the various class instantiations for the
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observed concepts and terms (z and ~y respectively), and the four sets of latent variables
described above is:

P (~S ′, N ′, z, ~y,Ξ, ~η, ~χ,Ω|N, ~S, φ,Θ) =

[(
N

N −N ′

)(
N −N ′

η1, . . . , ηH

)
× . . .

. . .
H∏
h=1

πηh
(
χh − 1

χh − ηh

)(
χh

ωh,1, . . . , ωh,Lh

) Lh∏
lh=1

(
λh,lh

T∏
k=1

[1− ph,lh,k]
)ωh,gh]

× . . .

. . .

[
S′∏
i=1

πh

(
Si

Si − S ′i

)( S′
i∏

j=1

λh,lh

T∏
k=1

[ph,lh,k]
ai,j,k [1− ph,lh,k]1−ai,j,k

)
×

. . .

((
Si − S ′i

ξi,1, . . . , ξi,Lh

) S∏
i=1

[
λh,lh

T∏
k=1

[1− ph,lh,k]
]ξi,lh)]

, (7)

where Θ = {~p, ~π,Λ} and ~p = {ph,lh,k : ∀h = 1 . . . H, lh = 1 . . . Lh, k = 1 . . . T}.

1.5.3 Model Inference and Undocumented Synonymy Estimation

The joint likelihoods defined in [6] and [7] can be used to estimate the latent variables of

interest (specifically ~S, φ, and N) using a variety of techniques, and in current study, we
took a Bayesian approach and sought the following posterior distribution:

P (~S, φ,N |~S ′, N ′,Θ,Σ) =

P (~S ′, N ′|~S, φ,N,Θ)× P (N, ~S, φ|Σ)∑∞
N=N ′

∑∞
φ=N−N ′

∑∞
Si=S′

i, ∀i=1...N ′ P (~S ′, N ′|~S, φ,N,Θ)× P (N, ~S, φ|Σ)
.

where Σ denotes the set of parameters defining our prior over the variables ~S, φ, and N .
Although this posterior is analytically tractable (see below for details), it is important
to note that the model parameters Θ are unknown, rendering it irrelevant in practice.
However, by placing a prior distribution over the unknown parameters, we generate a
hierarchical model for ~S ′ and N ′, and by integrating Θ out of this model, we can obtain
a posterior distribution that does not explicitly depend on the unknown parameters:

P (~S, φ,N |~S ′, N ′,Σ,Ψ) =

∫
Θ

P (~S ′, N ′|~S, φ,N,Θ)P (Θ|Ψ)dΘ,

where Ψ denotes the set of parameters that define the prior for Θ. Unfortunately, the pre-
vious integral is analytically intractable, necessitating an approximate inference strategy.
In the present work, we invoked a mean-field variational approximation [12], which re-
casts the intractable integral in terms of optimizing a simple functional over joint posterior
space [13].
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Specifically, let P (~S ′, N ′|Σ,Ψ) denote the likelihood for the observed concepts and

terms, marginalized over the model parameters Θ and the latent variables ~S, φ, and N :

P (~S ′,N ′|Σ,Ψ) =∫
Θ

∞∑
N=N ′

∞∑
φ=N−N ′

∞∑
Si=S′

i, ∀i=1...N ′

P (~S ′, N ′|~S, φ,N,Θ)× P (N, ~S, φ|Σ)P (Θ|Ψ)dΘ (8)

Now, consider some approximate joint posterior over the model parameters and the latent
variables, denoted q(~S, φ,N,Θ). Given this approximate distribution, the previous inte-
gral can be manipulated to provide a lower bound on the model log-marginal likelihood
as follows:

lnP (~S ′, N ′|Σ,Ψ) = ln

∫
Θ

∑
V

q(~S, φ,N,Θ)
P (~S ′, N ′, ~S, φ,N,Θ|Σ,Ψ)

q(~S, φ,N,Θ)
dΘ

≥
∫

Θ

∫
γ

∑
V

q(~S, φ,N,Θ) ln
P (~S ′, N ′, ~S, φ,N,Θ|Σ,Ψ)

q(~S, φ,N,Θ)
dΘ, (9)

where V = {N, ~S, φ} and
∑
V abbreviates the three series specified in 8. Of course,

the previous lower bound becomes exact when q(~S, φ,N,Θ) ≡ P (~S ′, N ′, ~S, φ,N,Θ|Σ,Ψ),

but we already know that P (~S ′, N ′, ~S, φ,N,Θ|Σ,Ψ) cannot be expressed in closed form,
necessitating the specification of an alternative, approximate posterior. In our applica-
tion, we computed the lower bound on the model evidence subject to the constraint that
q(~S, φ,N,Θ) factorizes over the latent variables and the model parameters:

q(~S, φ,N,Θ) = q(~S, φ,N)q(Θ), (10)

also known as the mean-field approximation. Plugging 10 into 9, taking functional deriva-
tives with respect to each term in 10, and solving for maxima (subject to the constraint
that each function integrates to 1) yields a set of interdependent equations for the prob-
ability distributions defined in 10. By cycling through the equations and updating each
in turn, one obtains a coordinate-ascent algorithm for computing the functional that op-
timizes the lower bound in 9. Furthermore, upon convergence, standard theory indicates
that q(~S, φ,N,Θ) represents a locally optimal approximation of P (~S ′, N ′, ~S, φ,N,Θ|Σ,Ψ)

in that q(~S, φ,N,Θ) minimizes the Kullback-Liebler Divergence from the analytical pos-
terior subject to the mean-field constraint [13].

By placing independent, conjugate priors over each element of Θ, the joint approximate
posterior q(Θ) is guaranteed to have a closed-form solution [12]. Therefore, in order for the

lower bound defined in 9 to be computationally tractable, q(~S, φ,N) must have a closed

form solution as well, which is true when the conditional posterior P (~S, φ,N |~S ′, N ′,Θ,Σ)
can be specified analytically. To demonstrate that this is true, we must first specify our
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prior for the latent variables ~S, φ, and N . We assumed that the true number of terms
paired to each concept scales geometrically, and we invoked an improper, uniform prior
over the total number of concepts. According to these assumptions, the prior model, after
collecting like terms and simplifying, is:

P (N, ~S, φ|Σ) = γN(1− γ)φ−N+N ′
N ′∏
i=1

(1− γ)Si−1, (11)

where Σ = {γ} and γ denotes the geometric scaling parameter. In practice, we inferred γ
from the data by including it within the lower bound on the marginal likelihood defined
in 9 and adding an additional term to the approximate posterior specified in 10.

With this prior in place, the conditional posterior distribution described at the start of
this section, denoted P (~S, φ,N |~S ′, N ′,Θ,Σ), can be specified in closed form with respect
to both the straightforward annotation model defined in the main text and for the mixture-
model defined in the previous section. For the sake of simplicity, we perform all subsequent
derivations with respect to the simple annotation model (which is equivalent to a mixture-
model with only a single concept and term class), and we note that the derivation for
the more general model follows a similar procedure, but with the class specific latent
variables {z, ~y,Ξ, ~η, ~χ,Ω} included within the joint posterior (thus becoming part of the
inference problem). First, we note that the desired conditional posterior can be computed
according to:

P (~S, φ,N |~S ′, N ′,Θ,Σ) =

P (~S ′, N ′|~S, φ,N,Θ)× P (N, ~S, φ|Σ)∑∞
N=N ′

∑∞
φ=N−N ′

∑∞
Si=S′

i, ∀i=1...N ′ P (~S ′, N ′|~S, φ,N,Θ)× P (N, ~S, φ|Σ)
.

The steps required for the computation of the normalization constant in the denominator
of previous equation are somewhat tedious, so for the sake of brevity, we simply note
that each summation corresponds to a negative binomial series, and by performing these
summations, collecting like terms, and simplifying, we end up with the following, closed
form expression for the desired conditional posterior:

P (~S,φ,N |~S ′, N ′,Θ) =

(
N

N −N ′

)(
1− γ

∏T
k=1[1− pk]

1− (1− γ)
∏T

k=1[1− pk]

)N ′+1

× . . .

. . .

[(
γ

T∏
k=1

[1− pk]
)N−N ′(

φ− 1

φ+N ′ −N

)(
(1− γ)

T∏
k=1

[1− pk]
)φ+N ′−N

]
× . . .

. . .

[
N ′∏
i=1

(
Si

Si − S ′i

)(
1− (1− γ)

T∏
k=1

[1− pk]
)S′

i+1(
(1− γ)

T∏
k=1

[1− pk]
)Si−S′

i

]
. (12)

All estimates reported reported in the main text were obtained by taking the posterior
expectation of the approximate density q(~S, φ,N). Table S5 provides these estimates
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for each of the three datasets considered in this study along with their 99% confidence
intervals, although such intervals are likely an underestimate of the true variability [11].
Note, for the biomedical terminologies, the estimates of missing synonymy provided in
the main text and figures were adjusted to account for the fact that one term paired to
each concept was considered the preferred term while the remainder were assumed to be
synonyms.

Practically speaking, computing the approximate posterior defined in 10 through al-
ternating coordinate ascent was relatively straightforward, barring a few minor issues.
First, upon extending the model to multiple headword and synonym classes, the func-
tional approximation surface became highly multimodal, and some local modes appeared
very inferior when compared to others. To overcome this issue, we developed a series
of algorithm initialization strategies, which relied on “seeding” the approximation algo-
rithm using parameter values from models of lower complexity [14, 15] and performing

simulated annealing on the normalization constant of q(~S, φ,N) to move the algorithm to
parameter regimes with greater support [16]. We found this approach to be very effective
on simulated data.

Second, although our mixture model allowed us to account for the annotation vari-
ability that was observed within our datasets, it was not immediately obvious how many
headword and synonym components to include into the model. In practice, we started
with the simplest model (H = 1, Lh = 1) and added components in a stepwise manner,
keeping the number of synonym classes constant across the various headword components
(i.e. Lh = Lg ∀h, g ∈ {1, . . . , H}). We used the lower bound on the log-marginal like-
lihood to select among models with differing dimensionality, and the we found that the
most complex model that we tried (H = 10, Lh = 4) performed the best with respect to
each dataset. Therefore, all of the results reported in the main text and in Table S5 are
for a model with 10 concept (headword) components, each with 4 term (synonym) classes.
The stopping criteria at (H = 10, Lh = 4) was dictated by computational limitations, as
larger models quickly became unwieldy in terms of convergence times.

1.5.4 A More Liberal Estimate for the Extent of Undocumented Synonymy

In the previous section, we developed a prior model for the number of undocumented
terms (or synonyms, depending on domain), denoted P (N, ~S, φ|Σ), whose mathematical
form was chosen mostly for the sake of convenience. However, one can also view this
prior distribution as “generative,” and after inferring its parameters from the data, this
viewpoint can be invoked to provide additional insight into the inherent scale of synonymy
given an arbitrary number of concepts. Assume that some fixed set of N concepts accrued
terms according to the following simple scheme. Initially, each concept was paired with
only a single term, and subsequently, terms were added stochastically to each concept
at some constant rate − ln(γ)/τ for an undetermined amount of time τ . This scheme
produces the same prior distribution as defined in [11] [17], and therefore, the parame-
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ter γ sets an intrinsic, geometric scale for the number of terms per concept. Assuming
an arbitrary number of concepts N and a geometric scaling parameter γ, then the ex-
pected number of concept-to-term relationships in the language (denoted W ) is given by
a negative binomial distribution:

P (W |N, γ) =

(
N +W − 1

W

)
γN(1− γ)N−W . (13)

In main Figure 2E, we used the posterior expectation the scaling parameter obtained from
the best fitting annotation model to estimate W for a wide range of N .
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