Appendix

Mean field approximations

Below we provide more information about the mean field approximation used to estimate both the conditional probabilities of a site (cell) belonging to a particular cluster given the parameter values as well as the intractable normalizing constant.

First, at iteration (l), we define the model's full expectation as:

$$Q(\boldsymbol{\psi} \mid \boldsymbol{\psi}^{(l)}) = \underbrace{\sum_{\boldsymbol{z}} p(\boldsymbol{z} \mid \boldsymbol{y}; \boldsymbol{\psi}^{(l)}) \log p(\boldsymbol{y} \mid \boldsymbol{z}; \boldsymbol{\Theta})}_{R_{\boldsymbol{y}}(\boldsymbol{\Theta} \mid \boldsymbol{\psi}^{l})} + \underbrace{\sum_{\boldsymbol{z}} p(\boldsymbol{z} \mid \boldsymbol{y}; \boldsymbol{\psi}^{(l)}) \log p(\boldsymbol{z} \mid \boldsymbol{\beta})}_{R_{\boldsymbol{z}}(\boldsymbol{\beta} \mid \boldsymbol{\psi}^{(l)})}$$

Subsequently, if z_i denotes the cluster that site i is allocated to, we can re-write R_y as:

$$R_y(\Theta \mid \boldsymbol{\psi}^{(l)}) = \sum_{i \in S} \sum_{z_i=1}^K [\log f_{z_i}(\boldsymbol{y_i}; \Theta)] \ p(Z_i = z_i \mid \boldsymbol{y}; \boldsymbol{\psi}^{(l)})$$

Here, $f_{z_i}(z_i \in K, i \in S)$ denotes the emission density associated with cluster z_i , such that:

$$f_{z_i}(\mathbf{y_i} \mid z_i; \Theta) = f_{z_i}(\mathbf{y_i} \mid z_i; \boldsymbol{\theta_{z_i}})$$

$$= \prod_{m \in M} \theta_{m, z_i}^{y_{m, i}} \times (1 - \theta_{m, z_i}^{1 - y_{m, i}})$$

Given this, we can define the intractable probability, $t_{i\,h}^{(l+1)}$, that a site, i belongs to cluster h at iteration (l+1) as:

$$t_{ih}^{(l+1)} = p(Z_i = h \mid \boldsymbol{y}; \boldsymbol{\psi}^{(l)})$$

The mean field approximation allows us to write the following fixed point equation:

$$t_{i\,h}^{l+1} \approx \frac{f_h(y_i; \boldsymbol{\theta}_h^{(l)}) \exp\{\beta_h^{(l)} \sum_{j \in N(i)} t_{j\,h}^{(l+1)}\}}{\sum_{u=1}^{K} f_u(y_i; \boldsymbol{\theta}_u^{(l)}) \exp\{\beta_u^{(l)} \sum_{j \in N(i)} t_{j\,u}^{(l+1)}\}}$$

Similarly, it can be noted that R_y contains an intractable normalizing constant, $W(\beta)$, which can be factorized using the mean field approximation as:

$$W(\boldsymbol{\beta}) = \sum_{\boldsymbol{z'}} exp(-H(\boldsymbol{z'})) \approx \sum_{i \in S} \sum_{\boldsymbol{z_i}} exp(-H(\boldsymbol{z_i})) = \sum_{i \in S} \sum_{\boldsymbol{z_i}} exp(\beta_{z_i} \sum_{j \in N(i)} 1[z_i = z_j])$$

EM algorithm

Below we use pseudo-code to outline the EM Mean-field algorithm used in our HMRF implementation.

Listing 1: EM Mean-field algorithm in pseudo-code

```
/*retrieving parameters*/
/*Starting initialization*/
  /*Reading initialization file */
  if(initialization provided) {
    Read initialization file
    Assign cluster values to z^{(0)}
  /*Random initialization*/
  else {
     /*Generating R random initializations*/
    for (R runs) {
       Generate random initialization
       Compute field likelihood (the R_z part of the full likelihood)
    Select initialization with highest likelihood
     Assign cluster values to z^{(0)}
\stackrel{'}{*}z^{(0)} is now defined
*Compute the initial parameters values
  For every cluster h, gene \underline{m}, compute:
    	heta_{m,h}^{(1)} = arg \max_{\Theta} R_y(\Theta \mid \boldsymbol{\psi}^{(0)}) = \frac{Expr_{m,h}}{Num_h}
  With Expr_{m,h} the number of sites expressing m in cluster h
  And Num_h the number of sites in cluster h in z^{(0)}
  Set \beta^{(1)} to the user defined value
/*Start EM procedure*/
  /*Alternate E step and M step until convergence is reached*/
  while (Clusters changed < user defined convergence limit) {
    /*Iteration l*/
     /*E step*/
    Compute densities f_{z_i}(y_i \mid z_i; \Theta^{(l)}) from the emission model
    Fixed point algorithm to compute t_{ih}^{(l)}
     /*Create z^{(l)}*/
    Assign each site i to its most probable cluster using
    t_{ih}^{(l+1)} = p(Z_i = h \mid \boldsymbol{y}; \boldsymbol{\psi}^{(l)})
     /*M step*/
    Compute \Theta^{(l+1)} from z^{(l)}
    Gradient ascent algorithm to compute eta^{(l+1)} using the approximate
      form of W(\beta)
/*Output clustering results*/
```