Text S1: Event driven map

A major advantage for numerical simulations comes from the possibility of transforming the set of dif-
ferential equations (1), (3) and (4) appearing in the article into an event—driven map [1]. In fact, these
differential equations can be formally integrated from time ¢, to time 41, where ¢, is the instant of time
immediately after the emission of the n-th spike in the network, to obtain a discrete time evolution from
one spike to the successive one. The resulting map for neuron ¢ reads
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where the index s refers to the neuron spiking at time ¢,41, 7(n) = t,+1 — t, is the n-th inter-spike-
interval (ISI) in the network and F;(n) has the following expression,
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with the sum running over the index j, which denotes all direct connections (afferent synapses) reaching
neuron ¢ from all the other neurons. Notice that 7(n) can be determined by computing the time
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needed to each neuron ith neuron to reach the threshold value and by selecting the shortest one, namely

7(n) = 1r11f{n(n)|z =1,2,--- ,N}.
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