## Title

FLP-FRT-based method for unmarked deletions of CHU\_3237 (porU) and large genomic

fragments of Cytophaga hutchinsonii

### **Running title**

Deletions by FLP-FRT in Cytophaga hutchinsonii

# Authors

Ying Wang, Zhiquan Wang, Jing Cao, Zhiwei Guan and Xuemei Lu\*

# Authors' affiliation

State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China

\*Corresponding author. Address: State Key Laboratory of Microbial Technology, School

of Life Science, Shandong University, Jinan 250100,

China.

Tel: +86-531-88369495.

Fax: +86-531-88565610.

E-mail: <u>luxuemei@sdu.edu.cn</u>

### SUPPLEMENTAL MATERIAL

#### SUPPLEMENTAL METHODS

**Construction of pSKSO8TG.** A derivative of pSKSO8 (1), pSKSO83, whose the *oriC* region was replaced with PCR-amplified fragment with primers soriF and soriR6 at the restriction sites of *PstI* and *XbaI*, was used as the vector backbone. A Rho-independent transcription terminator predicted by TransTermHP (2) between gldJ and purF was amplified by PCR with primers TermF and TermR, digested with XbaI and BglII, and inserted into the backbone of pSKSO8 digested with XbaI and BamHI to generate pSKSO8T. The green fluorescent protein gene (gfp) was amplified from pSK1284gfp (1) with primers gfpF and gfpR (introducing a SalI site next to BamHI). The fragment was digested with XbaI and BamHI and inserted into the corresponding site of pSKSO8T to generate pSKSO8TG pSKSO8TG was designed as an expressing vector into which promoters and CTDs from C. hutchinsonii could be ligated upstream and downstream of gfp, respectively. Besides using pSKSO8TG as a fusion expression vector to secrete GFP into the medium (data not shown), it was used to construct the FLP recombinase expressing vector pCHF.

**Measurement of growth rates in PY6 culture.** Growth rates of cells in PY6 medium were measured using a Bioscreen C analyzer (Oy Growth Curves Ab Ltd, Helsinki, Finland) in a honeycomb plate. *C. hutchinsonii* cells were grown in PY6 medium to mid-exponential phase and harvested by centrifugation. Cells were resuspended in PY6 medium to an optical density at 600 nm of 0.7~0.8. Then they were inoculated into fresh

medium without or with antibiotics. The inoculum concentration was 3% (v/v) of 200 µl medium in each well. The measurement was carried out in triplicate. The cultures were grown at 30°C with continuously shaking (Amplitude: medium; Speed: normal) and OD<sub>600</sub> measurements were taken every 90 min.

In-gel digestion and LC-ESI-MS/MS Analysis by Q Exactive. The gel slices were cut into small cubes of 1 mm<sup>3</sup> and then washed three times with ddH<sub>2</sub>O. The gel pieces were destained with 50% ethanol at 37°C overnight and dehydrated with acetonitrile and dried in a speed-vacuum concentrator (Thermo Scientific, San Jose, CA). Disulfide bonds were cleaved by incubating with 200  $\mu$ l of 10 mM DTT/100 mM ammonium bicarbonate for 1 h at 56°C. Alkylation of cysteines was performed by incubating with 200  $\mu$ l of 55 mM iodoacetamide/100 mM ammonium bicarbonate for 45 min at room temperature in darkness. The gel pieces were dehydrated again and vacuum-dried. Gel pieces were rehydrated with trypsin solution (10 ng/ $\mu$ l in 100 mM ammonium bicarbonate). After a 15-min incubation at 4°C, the gel pieces were covered with 100 mM ammonium bicarbonate. Proteolysis was performed overnight at 37°C. The peptides in gel was extracted once with 100  $\mu$ l 5% formic acid/50% acetonitrile, once with 75% acetonitrile, twice by 100% acetonitrile. All the supernatant was combined and vacuum-dried.

The peptide was resuspended in buffer A (2% ACN, 0.1% FA) and centrifuged at 20 000 g for 2min. The supernatant was transferred into sample tube and loaded onto an Acclaim PepMap 100 C18 trap column (Dionex, Sunnyvale, CA, 75  $\mu$ m×2 cm) by EASY nLC1000 nanoUPLC (Thermo Scientific, San Jose, CA) and the peptide was eluted onto

an Acclaim PepMap RSLC C18 analytical column (Dionex, Sunnyvale, CA, 50  $\mu$ m×15 cm). A 34 min-gradient program was run at 300 nl/min, starting from 5 to 30% B (80% ACN, 0.1% FA), followed by 2 min linear gradient to 40% B, then 2 min to 80% B, and maintenance at 80% B for 4 min.

The peptides were subjected to NSI source followed by tandem mass spectrometry (MS/MS) in Q Exactive (Thermo Scientific, San Jose, CA) coupled online to the UPLC. Intact peptides were detected in the Orbitrap at a resolution of 70 000. Peptides were selected for MS/MS using 25% NCE with 4% stepped NCE; ion fragments were detected in the Orbitrap at a resolution of 17 500. A data-dependent procedure that alternated between one MS scan followed by 15 MS/MS scans was applied for the top15 precursor ions above a threshold ion count of 3E4 in the MS survey scan with 5.0 s dynamic exclusion. The electrospray voltage applied was 1.8 kV. Automatic gain control (AGC) was used to prevent overfilling of the ion trap; 2E5 ions were accumulated for generation of MS/MS spectra. For MS scans, the m/z scan range was 350 to 1 800 Da.

Scanning electron microscopy. Samples for scanning electron microscopy were prepared as described by Ji (3). Cells were grown on Whatman No. 1 filter paper on Stanier agar and fixed with 2.5% (v/v) glutaraldehyde in 100 mM PBS buffer (NaH<sub>2</sub>PO<sub>4</sub>-Na<sub>2</sub>HPO<sub>4</sub>, pH 7.3) for 8 hours at 4°C. Fixed samples were washed twice in 100 mM PBS buffer, and dehydrated with 30%, 50%, 70%, 90% ethanol once and 100% ethanol for twice, then dried in a glass desiccator. Samples were processed according to standard procedure, and viewed with a JEOL JSM-6700F field emission scanning electron microscope.

| Primers     | Sequence <sup>a</sup>                                                       |
|-------------|-----------------------------------------------------------------------------|
| blaF        | CTGGTG <u>AGTACT</u> CAACCAAGTCA                                            |
| blaR        | TCCAC <u>GAATTC</u> TTACCAGGTTCAA                                           |
| isermF      | TTAAAA <u>GGATCC</u> TACA <u>CTGCAG</u> CAAAA <u>GGTACC</u> TCTTGACAACCACCC |
|             | G                                                                           |
| isermR      | GAGCGA <u>GCATGC</u> GGAGCTG <u>TCTAGA</u> TACAT <u>GAGCTC</u> CGAGCAAGGCAA |
|             | GACC                                                                        |
| sermF       | TATG <u>GAGCTC</u> TGACGCTCATCGGTATTTG                                      |
| sermR       | ACTA <u>GGTACC</u> TCTTGACAACCACCCGAC                                       |
| frtSKF      | CTTA <u>GAGCTC</u> ATCAA <u>GTCGAC</u> GTGTAGGCTGGAGCTGCTTCG                |
| frtSKR      | CGGA <u>GGTACC</u> GAATTAGCCATGGTCCATATG                                    |
| KSfrtF      | TTTA <u>GGTACC</u> GTGTAGGCTGGAGCTGCTTCG                                    |
| KSfrtR      | TACC <u>GAGCTC</u> TACGT <u>GTCGAC</u> GAATTAGCCATGGTCCATATG                |
| BssHII-ermF | ACAT <u>GCGCGC</u> TGACGCTCATCGGTATTTGC                                     |
| BssHII-ermR | TATT <u>GCGCGC</u> TCTTGACAACCACCCGAC                                       |
| cfxA-F      | ATTG <u>GCGCGC</u> AATCAGTTCTTTAGCGATTAC                                    |
| cfxA-R      | CACT <u>GCGCGC</u> TTTAAGATTTTACTGAAGTTTGC                                  |
| soriR6      | GATATA <u>CTGCAG</u> ATATTTTAAACAGC                                         |
| soriF       | CTATA <u>TCTAGA</u> ACTAGTGGATCCTATATATCATTTCTTC                            |
| TermF       | CCA <u>TCTAGA</u> CAGA <u>GGATCC</u> TCAGATAGACTTTCATTTC                    |
| TermR       | TCTG <u>AGATCT</u> GAGCTGCAAAAGTGAG                                         |
| gfpF        | CCGT <u>TCTAGA</u> TATGGTAAGCAAAGGAGAAGAAC                                  |
| gfpR        | ATC <u>GGATCC</u> CAGA <u>GTCGAC</u> TTTGTATAGTTCATC                        |
| ompAF       | AGCC <u>GAGCTC</u> TTGCCACATTTGGTGTTTTTTTG                                  |
| ompAR       | CCAGTGATTTTTTTCTCCATACTTAATTTTTTAATTAC                                      |
| catF        | GTAATTAAAAAAATTAAGTATGGAGAAAAAAATCACTGG                                     |
| catR        | AATG <u>GGTACC</u> GTTTAAGGGCACCAATAAC                                      |
| cat-PstIF   | AGCC <u>CTGCAG</u> TTGCCACATTTGGTGTTTTTTTG                                  |
| cat-SDR     | AAC <u>GGTACC</u> CACTT <u>GCATGC</u> GATAAACTTTTAATTACGCCCCGCCCTGC         |
|             | CACTCATC                                                                    |
| P1284galK-F | CTTG <u>GAGCTC</u> GCCACTGTTTGATGTAGTTAG                                    |
| P1284galK-R | AAGC <u>TCTAGA</u> TTAGCACTGTCCTGCTCCTTGTG                                  |
| flpF        | GGCC <u>GCATGC</u> CACAATTTGATATATTAT                                       |
| flpR        | ACGT <u>GGTACC</u> TGCGTACTTATATGCGTCTAT                                    |
| cat-KpnIR   | AATC <u>GGTACC</u> CAACT <u>GCATGC</u> GTTTAAGGGCACCAATAAC                  |
| C3237F      | GTCT <u>GAGCTC</u> TTTCTGTTTCCGTTGGTTAC                                     |
| C3237R      | AAGT <u>GTCGAC</u> TGCAGATTGACCAAACGTGTG                                    |
| 3237H1F     | GTAA <u>GGATCC</u> AATATTCTGCTCGGGTTCTGC                                    |

TABLE S1. Primers used in this study

| 3237H1R  | GCAC <u>GGTACC</u> AAATACCTAATAGGAAGATGC     |
|----------|----------------------------------------------|
| 3237H2F  | ACCT <u>GTCGAC</u> GTTTTTGAGAAACTGGTGCTC     |
| 3237H2R  | ACTT <u>GAGCTC</u> TTGTTGGTTTTAACAGGCTCGG    |
| 3237UF   | CCATACGGAAACCAGATATAC                        |
| 3237UR   | TGAACGCTTACGGAAGAAAG                         |
| 3237DR   | TACAGAAGACTGTACGCTTCC                        |
| 3237Test | TGTTTTGCTGGTCATTC                            |
| 0344H1F  | GCCG <u>TCTAGA</u> TCCGAAAAGCAGAAACATAGAG    |
| 0344H1R  | CACC <u>GAGCTC</u> AACATAAAACCACCATAAGCAGCTC |
| 0344H2F  | CCGA <u>GGTACC</u> ATTAAACTAACTATAAGGCAG     |
| 0344H2R  | ATGT <u>GGATCC</u> TTACCTGTACCGCAACTGTTC     |
| 0344UF   | GGCAAAGGTTTAACACATTCAGAG                     |
| 0344UR   | TCATTTGCTGATTGGTATAGGG                       |
| 0344DR   | GTGGCAATCATACAATCATTCAGG                     |
| 3202H1F  | TGGT <u>GGATCC</u> TTTAGGTGTGAAGAACTTTGC     |
| 3202H1R  | CGTC <u>GGTACC</u> TTTCATGTTGTTCATCGTC       |
| 3202H2F  | GCCA <u>GTCGAC</u> AACATTTTGTAGTACCCGATC     |
| 3202H2R  | TTAA <u>GAGCTC</u> AACTCCTACCACCAGACCCAG     |
| 3202UF   | TCCGAAATGGATGCTAAGAC                         |
| 3202UR   | GGATAATAAAGCATGACTGGC                        |
| 3202DR   | AAATGAATTGCCTAGCTGG                          |
| 3202Test | AGGAGTATTATTGGTCGTC                          |
| 3190H1F  | CGGC <u>GAGCTC</u> ATTTAATTGTTGTAGTTACAC     |
| 3190H1R  | CTGC <u>GTCGAC</u> TAAAGTACTATAGAGTATG       |
| 3190H2F  | AATT <u>GGTACC</u> GGAGGAATCGGAGCCTGAC       |
| 3190H2R  | CTTA <u>GGATCC</u> AGCAGCGCTTACCAAATCTG      |
| 3190UF   | TCATTTTGATACACAGACGC                         |
| 3190UR   | CGTCTTCGCCGTAATATAC                          |
| 3190DR   | CTATACCCATGATTGTCATC                         |
| 0804H1F  | TGGA <u>GGATCC</u> ATGCCTTTTATCTGGATATTG     |
| 0804H1R  | GAGT <u>GGTACC</u> TAGTGTTGATCTGGTAACTTC     |
| 0804H2F  | GTCA <u>GTCGAC</u> AATGGTACATTGGGCGTTAG      |
| 0804H2R  | TTAT <u>GCATGC</u> GAACTGATACAGCAACCGTAC     |
| 0804UF   | GATTTTGGATTCGAACGCAAG                        |
| 0804UR   | CTCCAACAGACAACTCAATC                         |
| 0804DR   | GTATTTCTTTCGTCTCCTGG                         |
| 0804Test | CATGGATTGAGCTTTACACC                         |
| 0819H1F  | TGCT <u>GGATCC</u> TTTGACATTAACGGGATTCAC     |
| 0819H1R  | CGCA <u>GGTACC</u> ATGTATTTTGTATGCAGTATC     |
| 0819H2F  | GTTC <u>GTCGAC</u> ACCATGTATAACAGGTTCAGC     |
| 0819H2R  | TACAGCATGCACAGGCAATGATCTCCTTCAG              |

| 0819UF   | TCGATCTCTTATCTGGTGAC                      |
|----------|-------------------------------------------|
| 0819UR   | CGTATACCAGCACAAGTATGC                     |
| 0819DR   | TTCCCGATTCTTTGATTGCTC                     |
| 0834H1F  | TCTG <u>GAGCTC</u> TTTCAGCCTTTAGTATTAGGC  |
| 0834H1R  | GTGC <u>GTCGAC</u> TTTATAGAATTGCATAGTCTG  |
| 0834H2F  | CGAC <u>GGTACC</u> TTAAGTACGCAGAATCCTTC   |
| 0834H2R  | TGTC <u>GGATCC</u> ATATAGCAGATAACGCATCTC  |
| 0834UF   | CTGTCATTTCTTCTACAAACATCCG                 |
| 0834UR   | TCACATTCGTAAAGTCCATCAC                    |
| 0834DR   | ACTTCCACAGGATGTATAGGTGC                   |
| 0834Test | CGCAAAAGCACATTGG                          |
| 0841H1F  | ACTA <u>GAGCTC</u> ACCTTTCAATGGCGTAACTTC  |
| 0841H1R  | CGTT <u>GTCGAC</u> GCCTGTATAGGTATAAGTAG   |
| 0841H2F  | ATTG <u>CCATGG</u> TAGAAGGGTTAGCATCAGGAG  |
| 0841H2R  | GTTC <u>GGATCC</u> TTCCATCTTCTAACGTTCG    |
| 0841UF   | CAAATTCAAACCTTACGGTC                      |
| 0841UR   | GTTGTCATTCGGTACACTAC                      |
| 0841DR   | AGGAAGAATAATCTGTCAGG                      |
| 0428H1F  | TGCT <u>GAGCTC</u> TACTTGTAACTTCCCACTTTG  |
| 0428H1R  | CTCA <u>GTCGAC</u> ATTCCCCTGTAAATCGTAATG  |
| 0428H2F  | ATGA <u>CCATGG</u> AACACAGATTGCACCCAAG    |
| 0428H2R  | TCAA <u>GGATCC</u> AACAGCGATGGTATGGTCAG   |
| 0428UF   | GTAGATTGAGTAGCAGTCTG                      |
| 0428UR   | TCAAAAAGCGTGTTGTACTC                      |
| 0428DR   | TCCAGAACCATCTCCTAACTG                     |
| 0428Test | GCAGGAAAACTTTAACAGTG                      |
| 0449H1F  | CAGC <u>GCATGC</u> AGAACATAAAAGATCTGTAC   |
| 0449H1R  | TAAC <u>GTCGAC</u> TGACAAGAATACAACGACCTG  |
| 0449H2F  | GTTA <u>GGTACC</u> ATCATAGAGCTCAGGCGTTAG  |
| 0449H2R  | ATCT <u>GGATCC</u> TGCACCTATTCAGAATGGAG   |
| 0449UF   | ACAGACTGATCGAAATGAAC                      |
| 0449UR   | TGTTCAGGAGCAAGTATTAG                      |
| 0449DR   | CTGTTTGTAATGCACCTACC                      |
| 1075H1F  | TAAC <u>GCATGC</u> TGCTGCAGGGAATTCACCGTAC |
| 1075H1R  | ATTC <u>GTCGAC</u> AGCTCCGGATGGTGTATTGATC |
| 1075H2F  | GCAC <u>GGTACC</u> ATATCGTAGAGGTATCTACAGC |
| 1075H2R  | TCTC <u>GGATCC</u> TTGTCGTTCGCGTTTGTCATC  |
| 1075UF   | GTTTGCCTTAGGTGATTTCAG                     |
| 1075UR   | GGCATTGTTGTTCCAGATTAC                     |
| 1075DR   | AAGGTTTCCTGTGTTTCAAG                      |
| 1075Test | TTGATTGCCTGTCTGTAC                        |

| 1107H1F | CTTA <u>GCATGC</u> ATTAAGCGAAAATGGTGCTGCTG |
|---------|--------------------------------------------|
| 1107H1R | GCCG <u>GTCGAC</u> GAACGTATATTCATATGTATAG  |
| 1107H2F | CCAC <u>GGTACC</u> AGCATTCCGGGTTTATTATAAC  |
| 1107H2R | CGCA <u>GGATCC</u> ATGTGTCAATAGAATACCGATC  |
| 1107UF  | CGTAGTTATAACTGCTGACG                       |
| 1107UR  | TGGTCTGTATCAACTCATTG                       |
| 1107DR  | ATCATCCAGAGATTGACTGC                       |
|         |                                            |

<sup>a</sup> Restriction sites on the primers are underlined

TABLE S2. Putative protein substrates of the T9SS absent from the culture fluid of the

| Locus tag | Protein description                      |
|-----------|------------------------------------------|
| CHU_0220  |                                          |
| CHU_0268  |                                          |
| CHU_0344  |                                          |
| CHU_0353  | β-mannanase                              |
| CHU_0361  |                                          |
| CHU_0420  |                                          |
| CHU_0521  |                                          |
| CHU_0530  |                                          |
| CHU_0531  |                                          |
| CHU_0804  |                                          |
| CHU_0834  |                                          |
| CHU_0835  |                                          |
| CHU_0938  |                                          |
| CHU_0939  |                                          |
| CHU_0961  | Candidate β-glycosidase                  |
| CHU_1075  | Candidate β-glycosidase                  |
| CHU_1105  |                                          |
| CHU_1107  | Endoglucanase                            |
| CHU_1155  | Candidate xyloglucanase                  |
| CHU_1221  |                                          |
| CHU_1251  |                                          |
| CHU_1335  | Endoglucanase-related protein            |
| CHU_1336  | Endoglucanase-related protein            |
| CHU_1557  |                                          |
| CHU_1634  |                                          |
| CHU_1655  | Non-processive endocellulase             |
| CHU_1858  |                                          |
| CHU_1906  |                                          |
| CHU_2149  | Candidate retaining $\beta$ -glycosidase |
| CHU_2225  | Gliding motility-related protein         |
| CHU_2243  |                                          |
| CHU_2304  |                                          |
| CHU_2437  |                                          |
| CHU_2463  |                                          |
| CHU 2524  | Subtilisin-like serine protease          |

 $\Delta 3237$  mutant identified by LC-MS/MS

| CHU_2603 |                                                   |
|----------|---------------------------------------------------|
| CHU_2674 |                                                   |
| CHU_2755 | Concanavalin A-like lectin/glucanases superfamily |
| CHU_2780 |                                                   |
| CHU_2818 |                                                   |
| CHU_2850 |                                                   |
| CHU_2852 | Candidate β-glycosidase                           |
| CHU_2922 |                                                   |
| CHU_3021 |                                                   |
| CHU_3251 |                                                   |
| CHU_3267 |                                                   |
| CHU_3435 |                                                   |
| CHU_3439 |                                                   |
| CHU_3440 | β-glycosidase related protein                     |
| CHU_3441 | β-glycosidase related protein                     |
| CHU_3488 |                                                   |
| CHU_3587 |                                                   |
| CHU_3618 |                                                   |
| CHU_3654 |                                                   |
| CHU_3715 |                                                   |
| CHU_3802 | Possible protease                                 |





Fig. S1. PCR verification and plate tests of the unmarked deletion of *CHU\_3237*. (a) PCR verification of the unmarked deletion of *CHU\_3237*. *1-4*, four transformants of the  $\Delta 3237$  mutant; 5, disruption mutant 3237::*erm*; *WT*, wild-type strain; *M*, DNA marker. (b) plate tests to confirm the loss or existence of the resistance gene and pCHF in the  $\Delta 3237$ mutant. *Control*, PY6 agar without any antibiotics; *Em*, PY6 agar containing erythromycin; *Cm*, PY6 agar containing chloramphenicol.



**Fig. S2.** PCR verification and plate tests of mutant  $\Delta 3202-3190$ . (a) PCR verification of mutant  $\Delta 3202-3190$ . *1-6*, six transformants of the  $\Delta 3202-3190$  mutant; *C*, mutant  $\Delta 3202-3190$ ::*erm*; *WT*, wild-type strain; *M*, DNA marker. (b) plate tests to confirm the loss of the selectable marker in the  $\Delta 3202-3190$  mutant. *Control*, PY6 agar without any antibiotics; *Em*, PY6 agar containing erythromycin.

Fig. S3



**Fig. S3.** Deletions of the fragments between *CHU\_0834* and *CHU\_0841* (a), *CHU\_0428* and *CHU\_0449* (b). Black arrows show approximate locations and orientations of primers; black filled boxes indicate homologous arms; open arrowheads show arrangements and orientations of genes; open boxes indicate residual genes; grey arrowheads indicate FRT sites and their relative orientations.



**Fig. S4.** PCR verification and plate tests of mutant  $\Delta 0804-0819$ . (a) PCR verification of mutant  $\Delta 0804-0819$ . *1-6*, six transformants of the  $\Delta 0804-0819$  mutant; *C*, mutant 0804::erm-0819::cfx; *WT*, wild-type strain; *M*, DNA marker. (b) plate tests to confirm the loss of the selectable markers in the  $\Delta 0804-0819$  mutant. *Control*, PY6 agar without any antibiotics; *Em*, PY6 agar containing erythromycin; *Cf*, PY6 agar containing cefoxitin.



**Fig. S5.** Transformation efficiency of mutant  $\Delta 1075$ -1107::*erm. Left*,  $\Delta 1075$ -1107::*erm* with pCHF; *right*,  $\Delta 1075$ -1107::*erm* with control plasmid pCHSD.



**Fig. S6.** Growth curves of the wild-type strain and the  $\Delta 3237$  mutant in PY6 medium measured by a Bioscreen C analyzer. The cells were grown at 30°C with continuously shaking (Amplitude: medium; Speed: normal) and OD<sub>600</sub> measurements were taken every 90 min. *Black square*, wild-type strain; *Purple circle, blue triangle, green diamond*, three strains of the  $\Delta 3237$  mutant. All measurements were carried out in triplicate.



**Fig. S7.** Scanning electron microscopy of the arrangement of cells on filter paper fiber. *Left*, wild-type strain; *right*, mutant  $\Delta 3237$ . *Bars* indicate 1 µm.

### REFERENCE

- Xu Y, Ji X, Chen N, Li P, Liu W, Lu X. 2012. Development of replicative *oriC* plasmids and their versatile use in genetic manipulation of *Cytophaga hutchinsonii*. Appl. Microbiol. Biotechnol. 93:697–705.
- Kingsford CL, Ayanbule K, Salzberg SL. 2007. Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol. 8:R22.
- 3. Ji X, Bai X, Li Z, Wang S, Guan Z, Lu X. 2013. A novel locus essential for spreading of *Cytophaga hutchinsonii* colonies on agar. Appl. Microbiol. Biotechnol. **97**:7317–7324.