Supplemental information belonging to:

Sialylation of Galactosyl-lactoses Using *Trypanosoma cruzi Trans*-Sialidase as Biocatalyst and Bovine κ-Casein-Derived Glycomacropeptide as Donor Substrate

Maarten H. Wilbrink,^a Geert A. ten Kate,^a Sander S. van Leeuwen,^a Peter Sanders,^a Erik Sallomons,^b Johannes A. Hage,^c Lubbert Dijkhuizen,^a Johannis P. Kamerling^a

Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands^a; Royal FrieslandCampina Innovation Center, Wageningen, The Netherlands^b; Darlingii, Son, The Netherlands^c

FIG. S1. Anion-exchange chromatograms on Resource Q of TcTS-catalyzed incubations of (A) β 3'-GL, yielding α 3Sia β 3'-GL, (B) β 4'-GL, yielding α 3Sia β 4'-GL, and (C) β 6'-GL, yielding α 3Sia β 6'-GL and α 3Sia $_2\beta$ 6'-GL, using GMP as sialic acid donor (24 h, 25°C, pH 5.0; UV detection).

NMR analysis of sialylated 3'-galactosyl-lactose (β3'-GL), 4'-galactosyl-lactose (β4'-GL), and 6'-galactosyl-lactose (β6'-GL).

In the following discussion of the NMR data, the sequence of each GL is represented by C-B-A with C as terminal Gal unit, **B** as internal Gal unit, and **A** as reducing Glc unit; **D** stands for Neu5Ac(α 2-3). The ¹H NMR spectra of the acceptor substrates β 3'-GL, β 4'-GL, and β 6'-GL are included in Figs. S2, S3, and S4, respectively.

The ¹H NMR spectrum of mono-sialylated β 3'-GL (Fig. S2, Table 1, MALDI-TOF-MS: [M-H]⁻ *m/z* 795.26) showed anomeric signals at δ 5.223 (**A** α H-1), δ 4.664 (**A** β H-1), δ 4.513 (**B** H-1), and δ 4.689 (**C** H-1). The **D** H-3a and H-3e signals at δ 1.802 and δ 2.764, respectively, are indicative of a Neu5Ac(α 2-3) residue (1). The ¹H NMR spectrum is identical to that earlier reported for Neu5Ac(α 2-3)Gal(β 1-3)Gal(β 1-4) Glc (α 3Sia β 3'-GL) (2).

In the ¹H NMR spectrum of mono-sialylated β 4'-GL (Fig. S3, Table 1, MALDI-TOF-MS: [M-H]⁻ *m/z* 795.26) anomeric signals are observed at δ 5.220 (A α H-1), δ 4.663 (A β H-1), δ 4.473 (B H-1), and δ 4.660 (C H-1). The Neu5Ac(α 2-3) residue is reflected by the D H-3a and H-3e signals at δ 1.796 and δ 2.762, respectively (1). Going from β 4'-GL to mono-sialylated β 4'-GL (Fig. S3), the sialylation of O-3 of the terminal Gal residue in β 4'-GL is evident from the strong downfield shift of C H-3 (δ 3.66 $\rightarrow \delta$ 4.107). Summarizing the analytical data, the structure of mono-sialylated β 4'-GL is Neu5Ac(α 2-3)Gal(β 1-4)Gal(β 1-4)Glc (α 3Sia β 4'-GL).

The ¹H NMR spectrum of mono-sialylated $\beta 6'$ -GLa (Fig. S4B, Table S1, MALDI-TOF-MS: [M-H]⁻ m/z 795.26) showed anomeric signals at δ 5.217 (**A** α H-1), δ 4.662 (**A** β H-1), δ 4.535 (**B** H-1), and δ 4.470 (**C** H-1). The Neu5Ac H-3a and H-3e signals at δ 1.810 and δ 2.756, respectively, confirmed the presence of a Neu5Ac(α 2-3) residue (1). Using two-dimensional ¹H-¹H COSY, ¹H-¹H TOCSY, and ¹H-¹H ROESY spectra, in combination with two-dimensional ¹³C-¹H HSQC spectra (data not shown), all ¹H and ¹³C chemical shifts could be assigned (Table S1). Similar to residue **A** in $\beta 6'$ -GL (Table S1), residue **A** showed a δ -value pattern fitting with a 4-substituted Glc residue, i.e. **A** α H-4 at δ 3.64, **A** β H-4 at δ 3.65, **A** α and **A** β C-4 at δ 80.0. Residue **B** turned out to be a di-substituted Gal(β 1-4) residue. An O-6 substitution is indicated by clear downfield shifts of both ¹H and ¹³C δ -values, i.e. **B** H-6a at δ 4.037, **B** H-6b at δ 3.92, and **B** C-6 at δ 70.1 (compare with residues **B** and **C** in $\beta 6'$ -GL) (3). An O-3 substitution is reflected by the downfield chemical shift values of **B** H-3 at δ 4.125 and **B** C-3 at δ 76.3 (compare with **B** H-3 at δ 3.66 and **B** C-3 at δ 73.8 in $\beta 6'$ -GL), combined with slight upfield shifts for **B** C-2 and **B** C-4 (compare with **B** C-2 and **B** C-4 in $\beta 6'$ -GL) (3) (Table S1). Residue **C** shows the δ -value pattern fitting a terminal Gal(β 1-6) residue. The ROESY

spectrum showed cross-peaks between C H-1 and **B** H-6a,6b and between **B** H-1 and **A** H-4, supporting the C1-6B1-4A sequence. In view of the results, the Neu5Ac residue should be located at O-3 of residue **B**. Summarizing the NMR and MS data, the structure of mono-sialylated $\beta6'$ -GLa is Gal($\beta1$ -6)[Neu5Ac($\alpha2$ -3)] Gal($\beta1$ -4)Glc ($\alpha3$ Sia $\beta6'$ -GLa).

In the ¹H NMR spectrum of mono-sialylated β 6'-GLb (Fig. S4C, Table S1, MALDI-TOF-MS: [M-H]⁻ m/z 795.26) anomeric signals are detected at δ 5.228 (**A** α H-1), δ 4.660 (**A** β H-1), δ 4.528 (**C** H-1), and δ 4.462 (**B** H-1). The Neu5Ac H-3a and H-3e signals at δ 1.815 and δ 2.755, respectively, confirmed the presence of a Neu5Ac(α 2-3) residue (1). Using two-dimensional NMR spectroscopy as carried out for α 3Sia β 6'-GLa, all ¹H and ¹³C chemical shifts could be assigned (Table S1). Residue **A** showed for both the α - and β -anomeric configuration a similar δ -value pattern as found for α 3Sia β 6'-GLa, indicating a 4-substituted reducing Glc residue. Internal residue **B** was found to be a 6-O-substituted Gal(β 1-4) residue with significant downfield shifts of **B** H-6a at δ 4.073 and **B** C-6 at δ 69.8 (compare with residues **B** and **C** in β 6'-GL) (3). Residue **C** showed evidence for an O-3 substitution as revealed by the downfield shifts of **C** H-3 at δ 4.100 and **C** C-3 at δ 76.8 (compare with **C** H-3 at δ 3.67 and **C** C-3 at δ 73.8 in β 6'-GL), combined with slight upfield shifts for **C** C-2 and **C** C-4 (compare with **C** C-2 and **C** C-4 in β 6'-GL) (3). In the ROESY spectrum cross-peaks are detected between **C** H-1 and **B** H-6a,6b and between **B** H-1 and **A** H-4, supporting the C1-6**B**1-4**A** sequence. In view of the results, the Neu5Ac residue should be located at O-3 of residue **C**. Summarizing the NMR and MS data, the structure of mono-sialylated β 6'-GLb is Neu5Ac(α 2-3)Gal(β 1-6)Gal(β 1-4)Glc (α 3Sia β 6'-GLb).

The ¹H NMR spectrum of di-sialylated β 6'-GL (Fig. S4D, Table S1, MALDI-TOF-MS: [M-H]⁻ *m/z* 1086.36) showed anomeric signals at δ 5.222 (A α H-1), δ 4.656 (A β H-1), δ 4.514 (C H-1), and δ 4.545 (B H-1). The Neu5Ac H-3a and H-3e signals at δ 1.812 and δ 2.752, respectively, with twice the intensity compared with α 3Sia β 6'-GLa and α 3Sia β 6'-GLb, confirmed the presence of two Neu5Ac(α 2-3) residues (1). Using two-dimensional NMR spectroscopy, as carried out for the mono-sialylated β 6'-GL components, all ¹H and ¹³C chemical shifts were determined (Table S1). The δ -value pattern of residue **A**, both in the α - and β -configuration, matches that of β 6'-GL, indicating a 4-substituted reducing Glc residue. Residue **B** showed a δ -value pattern comparable with that of residue **B** in α 3Sia β 6'-GLa, with evidence for both O-3 (B H-3, δ 4.126; B C-3, δ 76.3) and O-6 (B H-6a, δ 4.044; B C-6, δ 70.1) substitution of the Gal(β 1-4) residue (3). Residue C showed a δ -value pattern comparable with that of residue B in α 3Sia β 6'-GLb, showing evidence for O-3 substitution (C H-3, δ 4.093; C C-3, δ 76.5) of the terminal Gal residue (3). The ROESY spectrum showed correlations between **B** H-1 and **A** H-4 and between **C** H-1 and **B** H-6a, 6b, in agreement

with the C1-6B1-4A sequence. Summarizing the NMR and MS data, the structure of di-sialylated β 6'-GL is Neu5Ac(α 2-3)Gal(β 1-6)[Neu5Ac(α 2-3)]Gal(β 1-4)Glc (α 3Sia, β 6'-GL).

References

1. **Vliegenthart JFG, Kamerling JP.** 2007. ¹H NMR Structural-reporter-group concepts in carbohydrate analysis, p. 133-191. *In* Kamerling JP, Boons GJ, Lee YC, Suzuki A, Taniguchi N, Voragen AGJ (ed), Comprehensive Glycoscience – From Chemistry to Systems Biology, vol. 2. Elsevier, Amsterdam, The Netherlands.

2. Fukuda K, Yamamoto A, Ganzorig K, Khuukhenbaatar J, Senda A, Saito T, Urashima T. 2010. Chemical characterization of the oligosaccharides in Bactrian camel (*Camelus bactrianus*) milk and colostrum. J. Dairy Sci. **93:**5572-5587.

3. Bock K, Thøgersen H. 1982. Nuclear magnetic resonance spectroscopy in the study of mono- and oligosaccharides. Annu. Rep. NMR Spectrosc. **13**:1-57.

FIG. S2. One-dimensional 600-MHz ¹H NMR (D_2O , 298 K) spectra of (A) Gal(β 1-3)Gal(β 1-4)Glc (β '3-GL) and (B) Neu5Ac(α 2-3)Gal(β 1-3)Gal(β 1-4)Glc (α 3Sia β 3'-GL). Coding system: Glc, blue circle; Gal, yellow circle; Neu5Ac, pink square; * and #, contaminants.

FIG. S3. One-dimensional 600-MHz ¹H NMR (D_2O , 298 K) spectra of (A) Gal(β 1-4)Gal(β 1-4)Glc (β '4-GL) and (B) Neu5Ac(α 2-3)Gal(β 1-4)Gal(β 1-4)Glc (α 3Sia β 4'-GL). Coding system, see Fig. S2; * and #, contaminants.

GL), (B) Gal(β 1-6)[Neu5Ac(α 2-3)]Gal(β 1-4)Glc (α 3Sia β 6'-GLa), (C) Neu5Ac(α 2-3)Gal(β 1-6)Gal(β 1-4) Glc (α 3Sia β 6'-GLb), and (D) Neu5Ac(α 2-3)Gal(β 1-6)[Neu5Ac(α 2-3)]Gal(β 1-4)Glc (α 3Sia $_{2}\beta$ 6'-GL). Coding system, see Fig. S2; * and #, contaminants.

	β6'-GL		α3Siaβ6'-GLa		α3Siaβ6'-GLb		α3Sia ₂ β6'-GL	
	¹ H	¹³ C	¹ H	¹³ C	ΙΗ	¹³ C	¹ H	¹³ C
Αα-1	5.223	93.1	5.217	92.6	5.228	92.7	5.222	92.9
Αα-2	3.57	72.1	3.59	72.1	3.60	72.0	3.60	72.0
Αα-3	3.83	72.8	3.84	72.6	3.83	72.6	3.83	72.6
Αα-4	3.63	80.2	3.64	80.0	3.62	80.2	3.65	80.2
Αα-5	3.94	71.1	3.94	71.0	3.96	71.0	3.95	71.2
Aα-6a	3.88	61.1	3.88	60.9	3.88	61.0	3.88	61.1
Aa-6b	3.84		3.83		3.82		3.84	
Αβ-1	4.667	96.9	4.662	96.6	4.660	96.7	4.656	96.7
Αβ-2	3.294	74.9	3.293	74.5	3.306	74.8	3.299	74.8
Αβ-3	3.63	75.8	3.67	76.0	3.64	75.8	3.65	75.9
Αβ-4	3.65	80.2	3.65	80.0	3.63	80.2	3.61	80.2
Αβ-5	3.60	75.9	3.60	75.4	3.60	75.2	3.60	75.6
Αβ-6α	3.94	61.4	3.96	60.9	3.96	61.0	3.95	61.1
Aβ-6b	3.80		3.81		3.81		3.80	
B-1	4.483	104.4	4.535	104.0	4.462	104.3	4.545	103.9
B-2	3.53	72.0	3.58	70.2	3.54	71.8	3.58	70.2
B-3	3.66	73.8	4.125	76.3	3.67	73.9	4.126	76.3
B-4	3.940	69.7	3.986	68.4	3.98	69.4	3.997	68.5
B-5	3.96	75.0	3.91	74.9	3.91	74.8	3.93	74.8
B-6a	4.079	70.3	4.037	70.1	4.073	69.8	4.044	70.1
B-6b	3.93		3.92		3.93		3.90	
C-1	4.460	104.4	4.470	104.4	4.528	104.1	4.514	104.1
C-2	3.54	72.0	3.53	72.8	3.57	70.2	3.56	70.2
C-3	3.67	73.8	3.66	73.8	4.100	76.8	4.093	76.5
C-4	3.974	69.7	3.914	69.4	3.95	68.5	3.942	68.6
C-5	3.68	76.3	3.68	75.9	3.69	76.1	3.68	75.3
C-6a	3.81	62.2	3.80	62.0	3.80	62.0	3.80	62.0
C-6b	3.76		3.75		3.75		3.75	
D-3a			1.810	40.6	1.815	40.6	1.812	40.5
D-3e			2.756		2.755		2.752	
D-4			3.68	69.5	3.68	69.4	3.69	69.5
D-5			3.83	52.8	3.84	52.6	3.83	52.7
D-6			3.66	73.7	3.66	73.8	3.67	73.8
D-7			3.60	69.2	3.60	69.2	3.61	69.2
D-8			3 86	72.6	3 86	72.9	3 85	72.6
D-92			3.86	63.5	3.86	63.7	3.85	63.5
			2.64	00.0	2.64	00.1	2.65	0.0
D-90			3.04	22.1	3.04	22 û	3.03	22.1
D-NAc			2.030	23.1	2.031	23.0	2.028	23.1

TABLE S1. ¹H and ¹³C chemical shifts^a (D₂O, 298 K) of β 6'-GL, α 3Sia β 6'-GLa, α 3Sia β 6'-GLb, and α 3Sia₂ β 6'-GL.

^aIn ppm relative to the signal of internal acetone (δ^{1} H 2.225, δ^{13} C 31.08). $\beta6'$ -GL = Gal($\beta1$ -6)Gal($\beta1$ -4)Glc; $\alpha3$ Sia $\beta6'$ -GLa = Gal($\beta1$ -6)[Neu5Ac($\alpha2$ -3)]Gal($\beta1$ -4)Glc; $\alpha3$ Sia $\beta6'$ -GLb = Neu5Ac($\alpha2$ -3)Gal($\beta1$ -6)Gal($\beta1$ -4)Glc; $\alpha3$ Sia $_{2}\beta6'$ -GL = Neu5Ac($\alpha2$ -3)Gal($\beta1$ -6)[Neu5Ac($\alpha2$ -3)]Gal($\beta1$ -6)[Neu5Ac($\alpha2$ -3)[Neu5Ac($\alpha2$ -3)]Gal($\beta1$ -6)[Neu5Ac($\alpha2$ -3)[Neu5Ac($\alpha2$ -6)[Neu5Ac($\alpha2$ -