www.sciencemag.org/content/343/6176/1216/suppl/DC1

Supplementary Materials for

Ligand-Controlled C(sp³)–H Arylation and Olefination in Synthesis of Unnatural Chiral α–Amino Acids

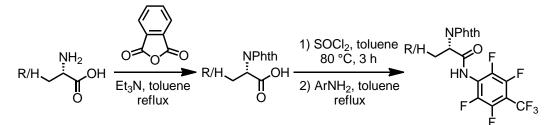
Jian He, Suhua Li, Youqian Deng, Haiyan Fu, Brian N. Laforteza, Jillian E. Spangler, Anna Homs, Jin-Quan Yu*

*Corresponding author. E-mail: yu200@scripps.edu

Published 14 March 2014, *Science* **343**, 1216 (2014) DOI: 10.1126/science.1249198

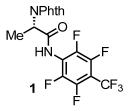
This PDF file includes:

Supplementary Text Figs. S1 to S3 Tables S1 to S6 NMR Spectra Full Reference List

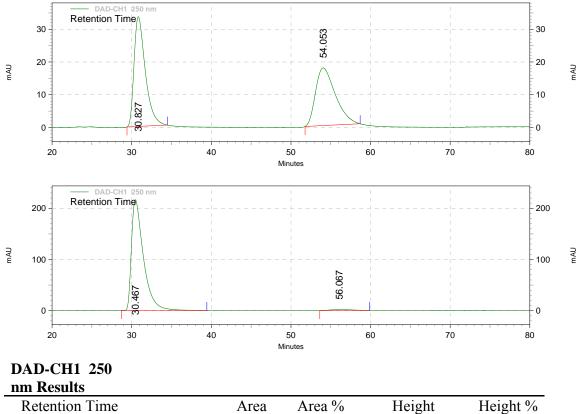

Table of Contents

General Information	S2
Experimental Section	
Substrate Preparation	S3–S8
Ligand-Promoted Primary C(sp ³)–H Arylation (Fig. 2A)	S9–S26
Ligand-Promoted Secondary C(sp ³)–H Arylation (Fig. 3)	S27–S39
Sequential C(sp ³)–H Arylation Reactions (Fig. 4)	S40-S47
Ligand-Enabled C(sp ³)–H Arylation with Heteroaryl Iodides (Fig. 5A)	S48-S50
Auxiliary Cleavage (Fig. 2B)	S51-S52
Synthesis of N-Boc-Protected Unnatural Amino Acid Derivatives via	
C(sp ³)–H Olefination (Fig. 5B and 5C)	S53-S60
Synthesis and Reactivity of Palladacycle Intermediates in C(sp ³)–H	
Arylation (Fig. 6)	S61-S67
Synthesis of N-Fmoc-Protected Unnatural Amino Acid	S68-S70
Intramolecular Isotope Effect and Ligand Acceleration	S71
¹ H and ¹³ C NMR Spectra	S72–S129

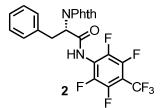
General Information: Solvents were obtained from Sigma-Aldrich, Alfa-Aesar and Acros and used directly without further purification. Amino acids and 2,3,5,6-tetrafluoro-4-(trifluoromethyl)aniline were obtained from the commercial sources or synthesized following literature procedures, and used to prepare the corresponding amides. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light and Vogel's permanganate. ¹H NMR spectra were recorded on Bruker AMX-400 instrument (400 MHz) or Bruker DRX-600 instrument (600 MHz). Chemical shifts were quoted in parts per million (ppm) referenced to 0.0 ppm for tetramethylsilane. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br =broad. Coupling constants, J, were reported in Hertz unit (Hz). ¹³C NMR spectra were recorded on Bruker AMX-400 instrument (100 MHz) or Bruker DRX-600 instrument (150 MHz), and were fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.0 ppm of chloroform-d. In the 13 C NMR analysis, peaks that correspond to those of the polyfluoroarylamide auxiliary appeared as nearly invisible, complex sets of multiplets; they are omitted in the following spectroscopic analysis. High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight). Enantiomeric excesses values were determined on a Hitachi LaChrom Elite HPLC system using commercially available chiral columns. Optical rotation data were obtained on a Perkin-Elmer 341 polarimeter. Melting points were recorded on a Fisher-Johns 12-144 melting point apparatus.


Experimental Section

A. Substrate Preparation

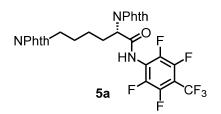

General Procedure for the Preparation of Amide Substrates: To a 100 mL roundbottom flask were added the appropriate amino acid (20 mmol), finely ground phthalic anhydride (20 mmol or 40 mmol in the synthesis of lysine derivatives), toluene (45 mL), and triethylamine (2 mmol, 0.28 mL). After refluxing the reaction mixture overnight, the crude product was evacuated and dissolved in DCM. After adding concentrated hydrochloric acid (0.4 mL), the mixture was washed by water (50 mL) and dried over anhydrous Na₂SO₄. The organic solvent was removed and recrystallized to give the *N*phthalimido-protected amino acid.

N-Phthalimido-protected amino acid (10 mmol), thionyl chloride (25 mmol) and several drops of DMF were added in toluene at 80 °C for 3 h. After the reaction, the excess of thionyl chloride was removed *in vacuo*, and the crude acid chloride was added to a vigorously stirring solution of 2,3,5,6-tetrafluoro-4-(trifluoromethlyl)aniline (10 mmol) in toluene (8 mL). The reaction mixture was stirred for 12 h under reflux, and then stirred at room temperature for 0.5 h. The product mixture was concentrated *in vacuo* and was recrystallized from ethyl acetate/hexane to give the amide.

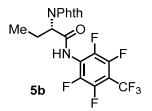


(S)-2-Phthalimido-N-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (1)

¹H NMR (600 MHz, CDCl₃) δ 8.39 (br s, 1H), 7.87-7.84 (m, 2H), 7.78-7.75 (m, 2H), 5.15 (q, *J* = 7.2 Hz, 1H), 1.79 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 167.7, 167.5, 134.6, 131.4, 123.8, 49.9, 15.5; HRMS (ESI-TOF) Calcd for C₁₈H₁₀F₇N₂O₃ [M+H]⁺: 435.0574; found: 435.0574. The ee value was determined by HPLC analysis on a Chiralcel OD-H column (20% isopropanol/hexanes, 0.5 mL/min) with t_r 30.5 min (major), 56.1 min (minor): 97% ee.



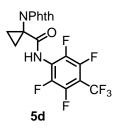
Retention Time	Area	Area %	Height	Height %
30.467	90549321	98.49	866017	99.11
56.067	1392244	1.51	7815	0.89
Totals	91941565	100.00	873832	100.00

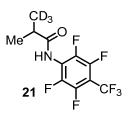

(S)-3-Phenyl-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2)

¹H NMR (400 MHz, CDCl₃) δ 8.50 (br s, 1H), 7.83-7.78 (m, 2H), 7.75-7.71 (m, 2H), 7.23-7.13 (m, 5H), 5.34 (dd, $J_1 = 6.4$ Hz, $J_2 = 10.4$ Hz, 1H), 3.64 (ABqd, $J_1 = 6.4$ Hz, $J_2 = 14.2$ Hz, 1H), 3.58 (ABqd, $J_1 = 10.4$ Hz, $J_2 = 14.2$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 166.6, 135.4, 134.7, 131.0, 128.9, 128.8, 127.4, 123.8, 56.6, 35.3; HRMS (ESI-TOF) Calcd for C₂₄H₁₄F₇N₂O₃ [M+H]⁺: 511.0887; found: 511.0883.

(S)-2,6-Bis(phthalimido)-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)hexanamide (5a)

¹H NMR (400 MHz, CDCl₃) δ 8.68 (br s, 1H), 7.91-7.87 (m, 2H), 7.82-7.77 (m, 4H), 7.73-7.70 (m, 2H), 5.04 (dd, $J_1 = 6.4$ Hz, $J_2 = 9.6$ Hz, 1H), 3.70 (t, J = 7.0 Hz, 2H), 2.49-2.32 (m, 2H), 1.82-1.74 (m, 2H), 1.50-1.38 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 168.5, 168.2, 166.8, 134.7, 134.0, 131.9, 131.3, 124.0, 123.2, 55.3, 36.9, 28.6, 27.5, 23.2; HRMS (ESI-TOF) Calcd for C₂₉H₁₉F₇N₃O₅ [M+H]⁺: 622.1207; found: 622.1203.

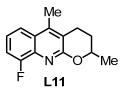

(S)-2-Phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)butanamide (5b) ¹H NMR (400 MHz, CDCl₃) δ 8.68 (br s, 1H), 7.95-7.91 (m, 2H), 7.83-7.79 (m, 2H), 5.00 (dd, $J_1 = 6.8$ Hz, $J_2 = 9.6$ Hz, 1H), 2.42-2.25 (m, 2H), 1.02 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 167.1, 134.8, 131.2, 123.9, 57.1, 22.9, 10.6; HRMS (ESI-TOF) Calcd for C₁₉H₁₂F₇N₂O₃ [M+H]⁺: 449.0731; found: 449.0733.


1-Phthalimido-N-(2,3,5,6-tetrafluoro-4-

(trifluoromethyl)phenyl)cyclobutanecarboxamide (5c)

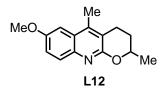
¹H NMR (400 MHz, CDCl₃) δ 8.23 (br s, 1H), 7.89-7.85 (m, 2H), 7.79-7.76 (m, 2H), 3.14-3.09 (m, 2H), 2.84-2.75 (m, 2H), 2.19-2.00 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 168.0, 134.6, 131.5, 123.5, 60.8, 31.6, 17.3; HRMS (ESI-TOF) Calcd for C₂₀H₁₂F₇N₂O₃ [M+H]⁺: 461.0731; found: 461.0727.

1-Phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)cyclopropanecarboxamide (5d) ¹H NMR (600 MHz, CDCl₃) δ 7.94-7.91 (m, 2H), 7.84-7.80 (m, 2H), 7.50 (br s, 1H), 1.97 (dd, $J_1 = 5.4$ Hz, $J_2 = 9.0$ Hz, 2H), 1.50 (dd, $J_1 = 5.4$ Hz, $J_2 = 9.0$ Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 168.0, 135.0, 131.2, 124.0, 33.5, 17.3; HRMS (ESI-TOF) Calcd for C₁₉H₉F₇N₂O₃Na [M+Na]⁺: 469.0394; found: 469.0389.



3,3,3-Trideuterio-2-methyl-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propionamide (21)

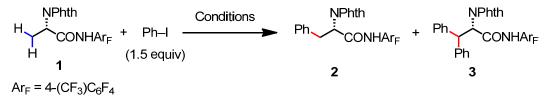
¹H NMR (600 MHz, CDCl₃) δ 7.00 (br s, 1H), 2.67 (q, *J* = 7.2 Hz, 1H), 1.31 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.6, 35.6, 19.3; HRMS (ESI-TOF) Calcd for C₁₁H₆D₃F₇NO [M+H]⁺: 307.0752; found: 307.0754.


2,5-Dimethyl-3,4-dihydro-2*H*-pyrano[2,3-*b*]quinoline (L10)

L10 was synthesized according to the literature procedure (27). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.59-7.55 (m, 1H), 7.39-7.35 (m, 1H), 4.42-4.35 (m, 1H), 3.04-2.98 (m, 1H), 2.92-2.83 (m, 1H), 2.56 (s, 3H), 2.18-2.12 (m, 1H), 1.90-1.76 (m, 1H), 1.52 (d, J = 6.4 Hz, 3H).

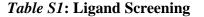
9-Fluoro-2,5-dimethyl-3,4-dihydro-2*H*-pyrano[2,3-b]quinoline (L11)

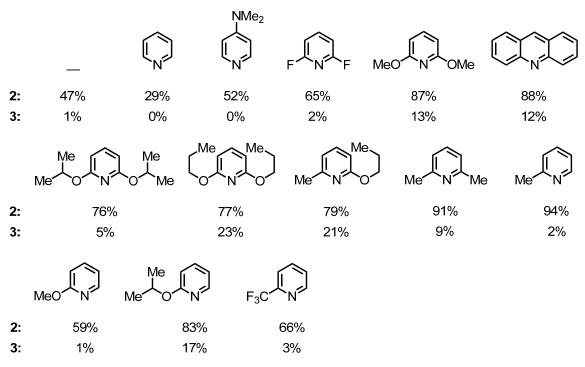
L11 was synthesized according to the literature procedure (27). ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.61 (m, 1H), 7.31-7.25 (m, 2H), 4.44-4.36 (m, 1H), 3.04-2.98 (m, 1H), 2.92-2.84 (m, 1H), 2.55 (s, 3H), 2.19-2.13 (m, 1H), 1.91-1.76 (m, 1H), 1.52 (d, *J* = 6.4 Hz, 3H).



7-Methoxy-2,5-dimethyl-3,4-dihydro-2*H*-pyrano[2,3-b]quinoline (L12)

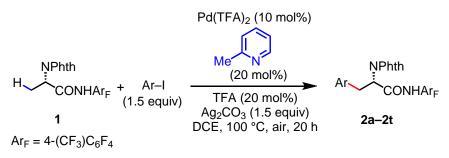
L12 was synthesized according to the literature procedure (27). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.8 Hz, 1H), 7.24 (d, *J* = 8.8 Hz, 1H), 7.12 (s, 1H), 4.40-4.34 (m, 1H), 3.93 (s, 3H), 3.02-2.96 (m, 1H), 2.90-2.82 (m, 1H), 2.53 (s, 3H), 2.18-2.11 (m, 1H), 1.90-1.75 (m, 1H), 1.52 (d, *J* = 6.4 Hz, 3H).


B. Ligand-Promoted Primary C(sp³)–H Arylation

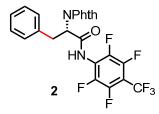

Condition Screening Scheme

Condition Screening Tables

Screening experiments were carried out using (S)-2-Phthalimido-N-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (**1**) (43.4 mg, 0.1 mmol) as the substrate and iodobenzene. The conditions for each trial are specified in the tables below. All yields were determined by analysis of the crude ¹H NMR (CDCl₃) spectrum using CH₂Br₂ as the internal standard after filtration of the reaction mixture through a pad of silica gel.


Pd(TFA)₂ (10 mol%), ligand (20 mol%), TFA (20 mol%), Ag₂CO₃ (1.5 equiv), DCE, 100 °C, 20 h

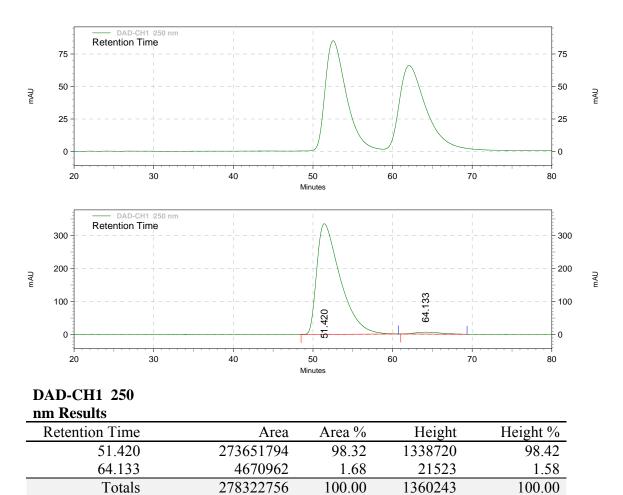
Entry	Pd catalyst (mol%)	L7 (mol%)	Ag salt (equiv)	Temp. (°C)	¹ H NMR 2	yield (%) 3
1	none	20	Ag ₂ CO ₃ (1.5)	100	0	0
2	Pd(TFA) ₂ (10)	20	Ag ₂ CO ₃ (1.5)	100	94	2
3	Pd(TFA) ₂ (10)	40	Ag ₂ CO ₃ (1.5)	100	60	0
4	Pd(TFA) ₂ (5)	10	Ag ₂ CO ₃ (1.5)	100	79	2
5	Pd(OAc) ₂ (10)	20	Ag ₂ CO ₃ (1.5)	100	80	10
6	Pd(TFA) ₂ (10)	20	Ag ₃ PO ₄ (1.5)	100	82	2
7	Pd(TFA) ₂ (10)	20	Ag ₂ CO ₃ (1)	100	75	2
8	Pd(TFA) ₂ (10)	20	AgOAc (3)	100	45	1
9	Pd(TFA) ₂ (10)	20	AgTFA (3)	100	0	0
10	Pd(TFA) ₂ (10)	20	none	100	0	0
11	Pd(TFA) ₂ (10)	20	Ag ₂ CO ₃ (1.5)	90	53	1
12	Pd(TFA) ₂ (10)	20	Ag ₂ CO ₃ (1.5)	80	32	0
13	Pd(TFA) ₂ (10)	0	Ag ₂ CO ₃ (1.5)	100	47	1
14	Pd(TFA) ₂ (20)	0	Ag ₂ CO ₃ (1.5)	100	55	1
15	Pd(TFA) ₂ (30)	0	Ag ₂ CO ₃ (1.5)	100	52	1
16	Pd(TFA) ₂ (10)	0	Ag ₂ CO ₃ (1.5)	100	32*	N/A

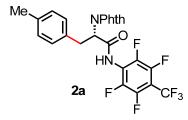

Table S2: Further Optimization and Control Experiments

Ph–I (1.5 equiv), TFA (20 mol%), DCE, air, 20 h. *1 (1.0 equiv) and 2 (0.5 equiv) were added, and the yield was based on the crude ¹H NMR (minus 50% of 2).

General Procedure Scheme A

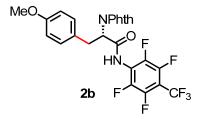
General Arylation Procedure A: Substrate 1 (0.1 mmol, 43.4 mg), $Pd(TFA)_2$ (0.01 mmol, 3.3 mg), and Ag_2CO_3 (0.15 mmol, 41.4 mg) were weighed out open to air and placed in a microwave tube (5 mL) with a magnetic stir bar. The aryl iodide (0.15 mmol), 2-picoline (0.02 mmol, 2 μ L), TFA (0.02 mmol, 2 μ L), and DCE (0.5 mL) were added. The reaction vessel was sealed and the mixture was first stirred at room temperature for 10 min and then heated to 100 °C for 20 hours with vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature. The solvents were removed under reduced pressure and the resulting mixture was purified by a silica gel-packed flash chromatography column using toluene/EtOAc or hexane/EtOAc as the eluent.



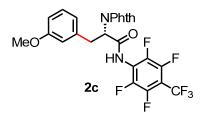

(S)-3-Phenyl-2-phthalimido-N-(2,3,5,6-tetrafluoro-4-

(trifluoromethyl)phenyl)propanamide (2)

Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using toluene/EtOAc mixtures (30/1) as the eluent, **2** was obtained as a white solid (45.2 mg, 89%, 97% ee). The ee value was determined by HPLC analysis on a Chiralcel OD-H column (20% isopropanol/hexanes, 0.5 mL/min) with t_r 51.4 min (major), 64.1 min (minor). ¹H NMR (600 MHz, CDCl₃) δ 8.48 (br s, 1H), 7.84-

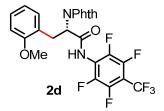

7.81 (m, 2H), 7.76-7.73 (m, 2H), 7.23-7.18 (m, 4H), 7.17-7.15 (m, 1H), 5.35 (dd, $J_1 = 6.6$ Hz, $J_2 = 10.8$ Hz, 1H), 3.64 (ABqd, $J_1 = 6.6$ Hz, $J_2 = 14.2$ Hz, 1H), 3.59 (ABqd, $J_1 = 10.8$ Hz, $J_2 = 14.2$ Hz, 1H).

(S)-2-Phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-3-(*p*-tolyl)propanamide (2a)


Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **2a** was obtained as a white solid (48.1 mg, 92%). ¹H NMR (600 MHz, CDCl₃) δ 8.46 (br s, 1H), 7.83-7.81 (m, 2H), 7.76-7.73 (m, 2H), 7.09 (d, *J* = 7.8 Hz, 2H), 7.02 (d, *J* = 7.8 Hz, 2H), 5.32 (dd, *J*₁ = 6.6 Hz, *J*₂ = 10.2 Hz, 1H), 3.60 (ABqd, *J*₁ = 6.6 Hz, *J*₂ = 14.4 Hz, 1H), 3.54 (ABqd, *J*₁ = 10.2 Hz, *J*₂ = 14.4 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.1, 166.7, 137.1, 134.7, 132.2, 131.1, 129.6, 128.7, 123.8, 56.7, 34.9, 21.0; HRMS (ESI-TOF) Calcd for C₂₅H₁₆F₇N₂O₃ [M+H]⁺: 525.1044; found: 525.1049.

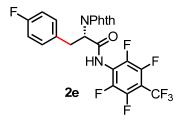
(S)-3-(4-Methoxyphenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2b)

Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **2b** was obtained as a white solid (48.2 mg, 89%). ¹H NMR (600 MHz, CDCl₃) δ 8.52 (br s, 1H), 7.81-7.80 (m, 2H), 7.74-7.72 (m, 2H), 7.11 (d, *J* = 7.8 Hz, 2H), 6.73 (d, *J* = 7.8 Hz, 2H),

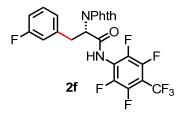

5.29 (dd, $J_1 = 6.6$ Hz, $J_2 = 10.2$ Hz, 1H), 3.71 (s, 3H), 3.57 (ABqd, $J_1 = 6.6$ Hz, $J_2 = 14.4$ Hz, 1H), 3.52 (ABqd, $J_1 = 10.2$ Hz, $J_2 = 14.4$ Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 168.1, 166.7, 158.7, 134.7, 131.1, 129.9, 127.3, 123.8, 114.2, 56.7, 55.1, 34.5; HRMS (ESI-TOF) Calcd for C₂₅H₁₆F₇N₂O₄ [M+H]⁺: 541.0993; found: 541.0994.

(S)-3-(3-Methoxyphenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2c)

Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **2c** was obtained as a white solid (46.6 mg, 86%). ¹H NMR (600 MHz, CDCl₃) δ 8.49 (br s, 1H), 7.82-7.79 (m, 2H), 7.75-7.73 (m, 2H), 7.12-7.09 (m, 1H), 6.77 (d, *J* = 7.2 Hz, 1H), 6.73-6.72 (m, 1H), 6.70-6.68 (m, 1H), 5.35 (dd, *J*₁ = 6.3 Hz, *J*₂ = 10.5 Hz, 1H), 3.67 (s, 3H), 3.61 (ABqd, *J*₁ = 6.3 Hz, *J*₂ = 14.4 Hz, 1H), 3.56 (ABqd, *J*₁ = 10.5 Hz, *J*₂ = 14.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 168.0, 166.6, 159.8, 137.0, 134.7, 131.1, 129.9, 123.8, 121.1, 114.1, 113.3, 56.4, 55.1, 35.3; HRMS (ESI-TOF) Calcd for C₂₅H₁₆F₇N₂O₄ [M+H]⁺: 541.0993; found: 541.0989.

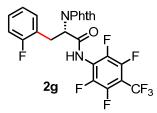

Large scale reaction: Substrate **1** (10 mmol, 4.34 g), $Pd(TFA)_2$ (1.0 mmol, 0.33 g), and Ag_2CO_3 (15 mmol, 4.14 g) were weighed in air and placed in a round-bottom flask (100 mL) with a magnetic stir bar. 3-Iodoanisole (15 mmol, 3.51 g), 2-picoline (2.0 mmol, 0.19 g), TFA (2.0 mmol, 0.23 g), and DCE (35 mL) were added. The pressure vessel was sealed. The reaction mixture was first stirred at room temperature for 10 min and then heated to 100 °C. Upon completion, the reaction mixture was purified by a silica gel-packed flash chromatography column, and **2c** was obtained in 87% yield (4.69 g).

(S)-3-(2-Methoxyphenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2d)


Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **2d** was obtained as a white solid (47.3 mg, 88%). ¹H NMR (600 MHz, CDCl₃) δ 8.53 (br s, 1H), 7.80-7.78 (m, 2H), 7.73-7.70 (m, 2H), 7.17-7.14 (m, 1H), 7.08-7.06 (m, 1H), 6.78 (d, *J* = 7.8 Hz, 1H), 6.76-6.74 (m, 1H), 5.47 (dd, *J*₁ = 5.7 Hz, *J*₂ = 9.9 Hz, 1H), 3.77 (s, 3H), 3.65 (ABqd, *J*₁ = 5.7 Hz, *J*₂ = 14.1 Hz, 1H), 3.50 (ABqd, *J*₁ = 9.9 Hz, *J*₂ = 14.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 167.9, 166.9, 157.3, 134.4, 131.3, 130.9, 128.9, 124.0, 123.6, 120.7, 110.4, 55.2, 54.6, 30.9; HRMS (ESI-TOF) Calcd for C₂₅H₁₆F₇N₂O₄ [M+H]⁺: 541.0993; found: 541.0993.

Large scale reaction: Substrate **1** (15 mmol, 6.51 g), $Pd(TFA)_2$ (1.5 mmol, 0.50 g), and Ag_2CO_3 (22.5 mmol, 6.12 g) were weighed in air and placed in a round-bottom flask (100 mL) with a magnetic stir bar. 2-Iodoanisole (22.5 mmol, 5.27 g), 2-picoline (3.0 mmol, 0.28 g), TFA (3.0 mmol, 0.34 g), and DCE (50 mL) were added. The pressure vessel was sealed. The reaction mixture was first stirred at room temperature for 10 min and then heated to 100 °C. Upon completion, the reaction mixture was purified by a silica gelpacked flash chromatography column, and **2d** was obtained in 80% yield (6.48 g).

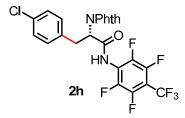
(S)-3-(4-Fluorophenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2e)


Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using toluene/EtOAc (30/1) mixtures as the eluent, **2e** was obtained as a white solid (47.4 mg, 90%). ¹H NMR (600 MHz, CDCl₃) δ 8.54 (br s, 1H), 7.82-7.79 (m, 2H), 7.76-7.73 (m, 2H), 7.16-7.13 (m, 2H), 6.90-6.86 (m, 2H), 5.29 (dd, $J_1 = 6.6$ Hz, $J_2 = 10.2$ Hz, 1H), 3.60 (ABqd, $J_1 = 6.6$ Hz, $J_2 = 14.4$ Hz, 1H), 3.56 (ABqd, $J_1 = 10.2$ Hz, $J_2 = 14.4$ Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 168.0, 166.5, 162.0 (d, $J_{FC} = 244.5$ Hz), 134.8, 131.1 (d, $J_{FC} = 3.3$ Hz), 130.9, 130.5 (d, $J_{FC} = 8.0$ Hz), 123.9, 115.7 (d, $J_{FC} = 21.2$ Hz), 56.4, 34.4; HRMS (ESI-TOF) Calcd for C₂₄H₁₃F₈N₂O₃ [M+H]⁺: 529.0793; found: 529.0793.

(S)-3-(3-Fluorophenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2f)

Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **2f** was

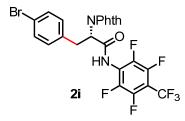
obtained as a white solid (44.1 mg, 84%). ¹H NMR (600 MHz, CDCl₃) δ 8.51 (br s, 1H), 7.82-7.79 (m, 2H), 7.76-7.73 (m, 2H), 7.19-7.15 (m, 1H), 6.97 (d, J = 7.2 Hz, 1H), 6.91-6.89 (m, 1H), 6.87-6.83 (m, 1H), 5.32 (dd, $J_1 = 6.0$ Hz, $J_2 = 10.8$ Hz, 1H), 3.63 (ABqd, $J_1 = 6.0$ Hz, $J_2 = 14.4$ Hz, 1H), 3.58 (ABqd, $J_1 = 10.8$ Hz, $J_2 = 14.4$ Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 167.9, 166.4, 162.8 (d, $J_{FC} = 245.4$ Hz), 138.0 (d, $J_{FC} = 7.4$ Hz), 134.8, 130.9, 130.3 (d, $J_{FC} = 8.3$ Hz), 124.6 (d, $J_{FC} = 2.9$ Hz), 123.9, 115.9 (d, $J_{FC} = 21.3$ Hz), 114.4 (d, $J_{FC} = 20.7$ Hz), 56.1, 34.8; HRMS (ESI-TOF) Calcd for C₂₄H₁₃F₈N₂O₃ [M+H]⁺: 529.0793; found: 529.0794.



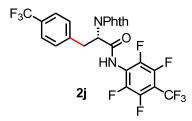
(S)-3-(2-Fluorophenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2g)

Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **2g** was obtained as a white solid (45.0 mg, 85%). ¹H NMR (600 MHz, CDCl₃) δ 8.46 (br s, 1H), 7.81-7.78 (m, 2H), 7.74-7.71 (m, 2H), 7.18-7.13 (m, 2H), 6.96-6.93 (m, 2H), 5.36 (dd, $J_1 = 5.7$ Hz, $J_2 = 10.5$ Hz, 1H), 3.67 (ABqd, $J_1 = 5.7$ Hz, $J_2 = 14.1$ Hz, 1H), 3.60 (ABqd, $J_1 = 5.7$ Hz, $J_2 = 14.1$ Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 167.8, 166.3, 161.3 (d, $J_{FC} = 244.7$ Hz), 134.7, 131.3 (d, $J_{FC} = 4.5$ Hz), 131.0, 129.4 (d, $J_{FC} = 8.1$ Hz), 124.4 (d, $J_{FC} = 3.5$ Hz), 123.8, 122.7 (d, $J_{FC} = 15.5$ Hz), 115.5 (d, $J_{FC} = 21.6$ Hz), 54.8, 29.2 (d, $J_{FC} = 2.1$ Hz); HRMS (ESI-TOF) Calcd for C₂₄H₁₃F₈N₂O₃ [M+H]⁺: 529.0793; found: 529.0789.

Large scale reaction: Substrate **1** (10 mmol, 4.34 g), $Pd(TFA)_2$ (1.0 mmol, 0.33 g), and Ag_2CO_3 (15 mmol, 4.14 g) were weighed in air and placed in a round-bottom flask (100

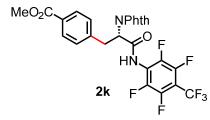

mL) with a magnetic stir bar. 1-Fluoro-2-iodobenzene (15 mmol, 3.33 g), 2-picoline (2.0 mmol, 0.19 g), TFA (2.0 mmol, 0.23 g), and DCE (35 mL) were added. The pressure vessel was sealed. The reaction mixture was first stirred at room temperature for 10 min and then heated to 100 °C. Upon completion, the reaction mixture was purified by a silica gelpacked flash chromatography column, and **2g** was obtained in 78% yield (4.11 g).

(S)-3-(4-Chlorophenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2h)

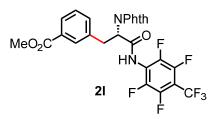

Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **2h** was obtained as a white solid (46.1 mg, 85%). ¹H NMR (600 MHz, CDCl₃) δ 8.51 (br s, 1H), 7.82-7.79 (m, 2H), 7.76-7.73 (m, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 7.12 (d, *J* = 7.8 Hz, 2H), 5.30 (dd, *J*₁ = 6.6 Hz, *J*₂ = 10.2 Hz, 1H), 3.61-3.54 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 168.0, 166.4, 134.8, 133.9, 133.3, 130.9, 130.2, 129.0, 123.9, 56.1, 34.5; HRMS (ESI-TOF) Calcd for C₂₄H₁₃ClF₇N₂O₃ [M+H]⁺: 545.0497; found: 545.0496.

Large scale reaction: Substrate **1** (10 mmol, 4.34 g), $Pd(TFA)_2$ (1.0 mmol, 0.33 g), and Ag_2CO_3 (15 mmol, 4.14 g) were weighed in air and placed in a round-bottom flask (100 mL) with a magnetic stir bar. 1-Chloro-2-iodobenzene (15 mmol, 3.58 g), 2-picoline (2.0 mmol, 0.19 g), TFA (2.0 mmol, 0.23 g), and DCE (35 mL) were added. The pressure vessel was sealed. The reaction mixture was first stirred at room temperature for 10 min and then heated to 100 °C. Upon completion, the reaction mixture was purified by a silica gelpacked flash chromatography column, and **2h** was obtained in 78% yield (4.24 g).

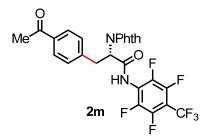
(S)-3-(4-Bromophenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2i)


Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **2i** was obtained as a white solid (50.7 mg, 86%). ¹H NMR (600 MHz, CDCl₃) δ 8.50 (br s, 1H), 7.82-7.80 (m, 2H), 7.76-7.74 (m, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.07 (d, *J* = 8.4 Hz, 2H), 5.30 (dd, *J*₁ = 6.9 Hz, *J*₂ = 9.9 Hz, 1H), 3.60-3.53 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 167.9, 166.4, 134.9, 134.4, 131.9, 130.9, 130.6, 123.9, 121.4, 56.1, 34.6; HRMS (ESI-TOF) Calcd for C₂₄H₁₃BrF₇N₂O₃ [M+H]⁺: 588.9992; found: 588.9999.

(S)-2-Phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-3-(4-(trifluoromethyl)phenyl)propanamide (2j)

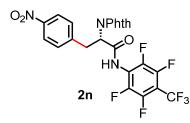

Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **2j** was obtained as a white solid (49.5 mg, 86%). ¹H NMR (600 MHz, CDCl₃) δ 8.45 (br s, 1H), 7.83-7.81 (m, 2H), 7.77-7.75 (m, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 5.30 (dd, *J*₁ = 6.6 Hz, *J*₂ = 10.2 Hz, 1H), 3.72-3.64 (m, 2H); ¹³C NMR (150 MHz, CDCl₃)

δ 167.9, 166.2, 139.6, 134.9, 130.8, 129.7 (q, J_{FC} = 32.3 Hz), 129.3, 125.7 (q, J_{FC} = 3.8 Hz), 124.0, 123.9 (q, J_{FC} = 270.5 Hz), 55.9, 34.9; HRMS (ESI-TOF) Calcd for C₂₅H₁₃F₁₀N₂O₃ [M+H]⁺: 579.0761; found: 579.0767.

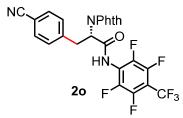

(S)-Methyl 4-(3-oxo-2-phthalimido-3-((2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)amino)propyl)benzoate (2k)

Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using hexane/EtOAc (4/1) as the eluent, **2k** was obtained as a white solid (49.5 mg, 87%). ¹H NMR (600 MHz, CDCl₃) δ 8.50 (br s, 1H), 7.86 (d, *J* = 7.8 Hz, 2H), 7.81-7.79 (m, 2H), 7.74-7.73 (m, 2H), 7.27 (d, *J* = 7.8 Hz, 2H), 5.36 (dd, *J*₁ = 7.5 Hz, *J*₂ = 9.3 Hz, 1H), 3.85 (s, 3H), 3.72-3.64 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 167.9, 166.7, 166.3, 140.8, 134.9, 130.9, 130.1, 129.2, 129.0, 124.0, 56.0, 52.1, 35.1; HRMS (ESI-TOF) Calcd for C₂₆H₁₆F₇N₂O₅ [M+H]⁺: 569.0942; found: 569.0940.

(S)-Methyl 3-(3-oxo-2-phthalimido-3-((2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)amino)propyl)benzoate (2l) Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using hexane/EtOAc (5/1) as the eluent, **2l** was obtained as a white solid (50.0 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 8.58 (br s, 1H), 7.85-7.77 (m, 4H), 7.75-7.70 (m, 2H), 7.41-7.38 (m, 1H), 7.30-7.26 (m, 1H), 5.34 (dd, $J_1 = 6.0$ Hz, $J_2 = 10.4$ Hz, 1H), 3.80 (s, 3H), 3.69 (ABqd, $J_1 = 6.2$ Hz, $J_2 = 14.3$ Hz, 1H), 3.63 (ABqd, $J_1 = 10.4$ Hz, $J_2 = 14.3$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 166.6, 166.4, 136.0, 134.7, 133.5, 131.0, 130.5, 130.0, 128.9, 128.6, 123.9, 56.2, 52.1, 34.9; HRMS (ESI-TOF) Calcd for C₂₆H₁₆F₇N₂O₅ [M+H]⁺: 569.0942; found: 569.0941. Large scale reaction: Substrate **1** (10 mmol, 4.34 g), Pd(TFA)₂ (1.0 mmol, 0.33 g), and


Ag₂CO₃ (15 mmol, 4.14 g) were weighed in air and placed in a round-bottom flask (100 mL) with a magnetic stir bar. Methyl 3-iodobenzoate (15 mmol, 3.93 g), 2-picoline (2.0 mmol, 0.19 g), TFA (2.0 mmol, 0.23 g), and DCE (35 mL) were added. The pressure vessel was sealed. The reaction mixture was first stirred at room temperature for 10 min and then heated to 100 °C. Upon completion, the reaction mixture was purified by a silica gelpacked flash chromatography column, and **21** was obtained in 78% yield (4.43 g).

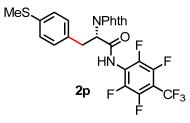
(S)-3-(4-Acetylphenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2m)


Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using hexane/EtOAc (3/1) as the eluent, **2m** was obtained as a white solid (45.8 mg, 83%). ¹H NMR (600 MHz, CDCl₃) δ 8.59 (br s, 1H),

7.81-7.73 (m, 6H), 7.29 (d, J = 7.8 Hz, 2H), 5.37 (dd, $J_1 = 6.6$ Hz, $J_2 = 10.2$ Hz, 1H), 3.72-3.65 (m, 2H), 2.50 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.8, 167.9, 166.3, 141.2, 136.0, 134.8, 130.9, 129.2, 128.8, 123.9, 55.8, 35.0, 26.5; HRMS (ESI-TOF) Calcd for C₂₆H₁₆F₇N₂O₄ [M+H]⁺: 553.0993; found: 553.0992.

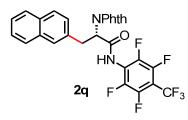
(S)-3-(4-Nitrophenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2n)

Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using hexane/EtOAc (4/1) as the eluent, **2n** was obtained as a white solid (45.6 mg, 82%). ¹H NMR (600 MHz, CDCl₃) δ 8.41 (br s, 1H), 8.06 (d, *J* = 7.8 Hz, 2H), 7.83-7.81 (m, 2H), 7.78-7.76 (m, 2H), 7.38 (d, *J* = 7.8 Hz, 2H), 5.37 (dd, *J*₁ = 6.6 Hz, *J*₂ = 10.2 Hz, 1H), 3.76-3.69 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 167.7, 166.0, 147.2, 143.3, 135.1, 130.7, 129.9, 124.1, 124.0, 55.4, 34.8; HRMS (ESI-TOF) Calcd for C₂₄H₁₃F₇N₃O₅ [M+H]⁺: 556.0738; found: 556.0732.

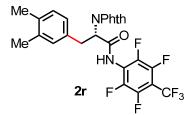


(S)-3-(4-Cyanophenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-

(trifluoromethyl)phenyl)propanamide (20)

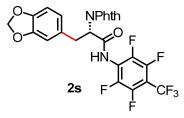

Substrate 1 was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After

purification by column chromatography using hexane/EtOAc (5/1) as the eluent, **20** was obtained as a white solid (45.9 mg, 86%). ¹H NMR (600 MHz, CDCl₃) δ 8.42 (br s, 1H), 7.84-7.81 (m, 2H), 7.78-7.75 (m, 2H), 7.48 (d, *J* = 7.8 Hz, 2H), 7.32 (d, *J* = 7.8 Hz, 2H), 5.33 (dd, *J*₁ = 6.0 Hz, *J*₂ = 10.8 Hz, 1H), 3.70 (ABqd, *J*₁ = 6.0 Hz, *J*₂ = 14.3 Hz, 1H), 3.65 (ABqd, *J*₁ = 10.8 Hz, *J*₂ = 14.3 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 167.7, 166.0, 141.3, 135.0, 132.5, 130.8, 129.8, 124.0, 118.4, 111.2, 55.4, 35.1; HRMS (ESI-TOF) Calcd for C₂₅H₁₃F₇N₃O₃ [M+H]⁺: 536.0840; found: 536.0838.

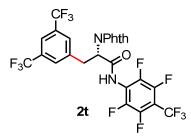

(S)-(4-(Methylthio)phenyl)-2-phthalimido-3-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2p)

Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **2p** was obtained as a white solid (39.8 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 8.53 (br s, 1H), 7.83-7.79 (m, 2H), 7.76-7.71 (m, 2H), 7.12-7.06 (m, 4H), 5.31 (dd, $J_1 = 6.8$ Hz, $J_2 = 10.0$ Hz, 1H), 3.62-3.52 (m, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 166.6, 137.6, 134.7, 132.0, 131.0, 129.3, 126.7, 123.9, 56.3, 34.7, 15.6; HRMS (ESI-TOF) Calcd for C₂₅H₁₆F₇N₂O₃S [M+H]⁺: 557.0764; found: 557.0765.

(S)-3-(Naphthalen-2-yl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2q)


Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a 14:1 ratio of mono- and diarylated products. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **2q** was obtained as a light yellow solid (50.7 mg, 91%). ¹H NMR (600 MHz, CDCl₃) δ 8.52 (br s, 1H), 7.77-7.71 (m, 4H), 7.68-7.62 (m, 4H), 7.41-7.37 (m, 2H), 7.36-7.34 (m, 1H), 5.47 (dd, $J_1 = 6.6$ Hz, $J_2 = 10.2$ Hz, 1H), 3.82-3.74 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 168.1, 166.7, 134.6, 133.3, 132.9, 132.5, 131.0, 128.7, 127.9, 127.6, 127.5, 126.5, 126.2, 125.9, 123.8, 56.3, 35.4; HRMS (ESI-TOF) Calcd for C₂₈H₁₆F₇N₂O₃ [M+H]⁺: 561.1044; found: 561.1048.

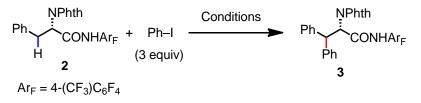
(S)-3-(3,4-Dimethylphenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2r)


Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **2r** was obtained as a white solid (47.0 mg, 87%). ¹H NMR (600 MHz, CDCl₃) δ 8.44 (br s, 1H), 7.83-7.80 (m, 2H), 7.75-7.72 (m, 2H), 6.97-6.96 (m, 2H), 6.94-6.92 (m, 1H), 5.31 (dd, *J*₁ = 6.6 Hz, *J*₂ = 10.2 Hz, 1H), 3.58 (ABqd, *J*₁ = 6.6 Hz, *J*₂ = 14.4 Hz, 1H), 3.48 (ABqd, *J*₁ = 10.2 Hz, *J*₂ = 14.4 Hz, 1H), 2.14 (s, 3H), 2.11 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.1, 166.7, 137.2, 135.7, 134.6, 132.7, 131.2, 130.13, 130.09, 126.1, 123.8, 56.6, 34.9, 19.5, 19.3; HRMS (ESI-TOF) Calcd for C₂₆H₁₈F₇N₂O₃ [M+H]⁺: 539.1200; found: 539.1195.

Large scale reaction: Substrate **1** (15 mmol, 6.51 g), $Pd(TFA)_2$ (1.5 mmol, 0.50 g), and Ag_2CO_3 (22.5 mmol, 6.12 g) were weighed in air and placed in a round-bottom flask (100 mL) with a magnetic stir bar. 4-Iodo-*o*-xylene (22.5 mmol, 5.22 g), 2-picoline (3.0 mmol, 0.28 g), TFA (3.0 mmol, 0.34 g), and DCE (50 mL) were added. The pressure vessel was sealed. The reaction mixture was first stirred at room temperature for 10 min and then heated to 100 °C. Upon completion, the reaction mixture was purified by a silica gelpacked flash chromatography column, and **2r** was obtained in 79% yield (6.38 g).

(S)-3-(3,4-Methylenedioxyphenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2s)

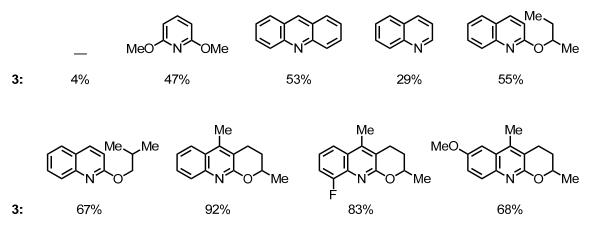
Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **2s** was obtained as a white solid (47.3 mg, 85%). ¹H NMR (600 MHz, CDCl₃) δ 8.50 (br s, 1H), 7.85-7.81 (m, 2H), 7.77-7.73 (m, 2H), 6.70 (s, 1H), 6.63-6.60 (m, 2H), 5.88 (ABq, *J* = 1.5 Hz, 1H), 5.86 (ABq, *J* = 1.5 Hz, 1H), 5.27 (dd, *J*₁ = 6.0 Hz, *J*₂ = 10.2 Hz, 1H), 3.55 (ABqd, *J*₁ = 6.0 Hz, *J*₂ = 14.4 Hz, 1H), 3.49 (ABqd, *J*₁ = 10.2 Hz, *J*₂ = 14.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 168.1, 166.6, 148.0, 146.8, 134.7, 131.1, 129.0, 123.9, 122.1, 109.1, 108.5, 101.0, 56.6, 35.0; HRMS (ESI-TOF) Calcd for C₂₅H₁₄F₇N₂O₅ [M+H]⁺: 555.0785; found: 555.0776.



(S)-3-(3,5-Bis(trifluoromethyl)phenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2t)

Substrate **1** was arylated following the general arylation procedure A. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **2t** was obtained as a white solid (55.4 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 8.44 (br s, 1H), 7.83-7.73 (m, 4H), 7.68 (s, 1H), 7.63 (s, 2H), 5.31 (dd, $J_1 = 6.0$ Hz, $J_2 = 10.4$ Hz, 1H), 3.78 (ABqd, $J_1 = 6.0$ Hz, $J_2 = 14.4$ Hz, 1H), 3.68 (ABqd, $J_1 = 10.4$ Hz, $J_2 = 14.4$ Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 167.8, 165.8, 138.3, 135.1, 132.0 (q, $J_{FC} = 33.3$ Hz), 130.7, 129.3 (q, $J_{FC} = 3.6$ Hz), 124.0, 122.9 (q, $J_{FC} = 271.2$ Hz), 121.4-121.3, 55.4, 34.6; HRMS (ESI-TOF) Calcd for C₂₆H₁₂F₁₃N₂O₃ [M+H]⁺: 647.0635; found: 647.0630.

C. Ligand-Promoted Secondary C(sp³)–H Arylation


Condition Screening Scheme

Condition Screening Table

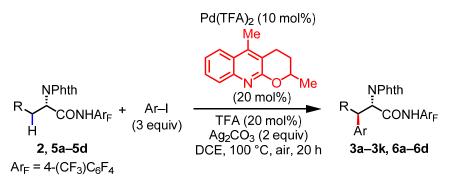
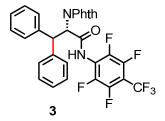
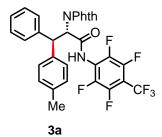

Screening experiments were carried out using (S)-3-Phenyl-2-phthalimido-N-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (**2**) (51.0 mg, 0.1 mmol) as the substrate and iodobenzene. The conditions for each trial are specified in the tables below. All yields were determined by analysis of the crude ¹H NMR (CDCl₃) spectrum using CH₂Br₂ as the internal standard after filtration of the reaction mixture through a pad of silica gel.

Table S3: Ligand Screening

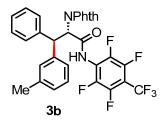


Pd(TFA)₂ (10 mol%), ligand (20 mol%), TFA (20 mol%), Ag₂CO₃ (2 equiv), DCE, 100 °C, 20 h

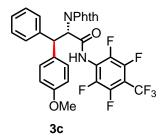
General Procedure Scheme B


General Arylation Procedure B: Substrate 2 or 5a–5d (0.1 mmol), $Pd(TFA)_2$ (0.01 mmol, 3.3 mg), L10 (0.02 mmol, 4.3 mg) and Ag_2CO_3 (0.2 mmol, 55.0 mg) were weighed out open to air and placed in a microwave tube (5 mL) with a magnetic stir bar. The aryl iodide (0.3 mmol), TFA (0.02 mmol, 2 μ L), and DCE (0.5 mL) were added. The reaction vessel was sealed and the mixture was first stirred at room temperature for 10 min and then heated to 100 °C for 20 hours with vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature. The solvents were removed under reduced pressure and the resulting mixture was purified by a silica gel-packed flash chromatography column using toluene/EtOAc or hexane/EtOAc as the eluent.

(S)-3,3-Diphenyl-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (3)

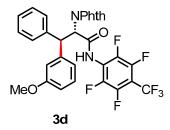

Substrate **2** was arylated following the general arylation procedure B. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **3** was obtained as a white solid (52.7 mg, 90%). ¹H NMR (600 MHz, CDCl₃) δ 8.70 (br s, 1H), 7.78-7.76 (m, 2H), 7.70-7.67 (m, 2H), 7.57 (d, *J* = 7.2 Hz, 2H), 7.38-7.36 (m, 2H), 7.32-7.26 (m, 3H), 7.16-7.14 (m, 2H), 7.06-7.04 (m, 1H), 5.90 (d, *J* = 12.6 Hz, 1H), 5.33 (d, *J* = 12.6 Hz, 1H);

¹³C NMR (150 MHz, CDCl₃) δ 165.3, 139.3, 138.8, 134.6, 130.9, 129.3, 128.8, 128.0, 127.5, 127.4, 123.8, 59.1, 50.9; HRMS (ESI-TOF) Calcd for $C_{30}H_{18}F_7N_2O_3$ [M+H]⁺: 587.1200; found: 587.1193.

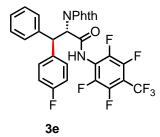


(2S,3R)-3-Phenyl-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-3-(*p*-tolyl)propanamide (3a)

Substrate **2** was arylated following the general arylation procedure B. Analysis of crude reaction mixture by ¹H NMR showed a 20:1 diastereomer ratio. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **3a** was obtained as a white solid (53.5 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 8.65 (br s, 1H), 7.78-7.74 (m, 2H), 7.70-7.67 (m, 2H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.31-7.29 (m, 2H), 7.19-7.12 (m, 4H), 7.06-7.02 (m, 1H), 5.89 (d, *J* = 12.8 Hz, 1H), 5.28 (d, *J* = 12.8 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 139.6, 137.8, 135.8, 134.5, 130.9, 130.0, 128.8, 127.8, 127.4, 127.3, 123.7, 59.0, 50.6, 21.1; HRMS (ESI-TOF) Calcd for C₃₁H₂₀F₇N₂O₃ [M+H]⁺: 601.1357; found: 601.1349.

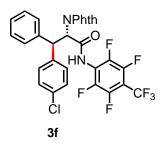


(2S,3R)-3-Phenyl-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-3-(*m*-tolyl)propanamide (3b) Substrate **2** was arylated following the general arylation procedure B. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 diastereomer ratio. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **3b** was obtained as a white solid (51.5 mg, 86%). ¹H NMR (600 MHz, CDCl₃) δ 8.54 (br s, 1H), 7.78-7.75 (m, 2H), 7.69-7.66 (m, 2H), 7.39-7.36 (m, 2H), 7.31 (d, *J* = 7.8 Hz, 2H), 7.28-7.25 (m, 1H), 7.16-7.14 (m, 2H), 7.09 (d, *J* = 7.8 Hz, 1H), 7.06-7.03 (m, 1H), 5.89 (d, *J* = 12.6 Hz, 1H), 5.29 (d, *J* = 12.6 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.3, 139.5, 139.1, 138.8, 134.5, 130.9, 129.2, 128.83, 128.80, 128.76, 127.5, 127.3, 124.9, 123.7, 58.9, 50.8, 21.5; HRMS (ESI-TOF) Calcd for C₃₁H₂₀F₇N₂O₃ [M+H]⁺: 601.1357; found: 601.1355.

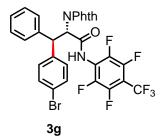

(2S,3R)-3-(4-Methoxyphenyl)-3-phenyl-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (3c)

Substrate **2** was arylated following the general arylation procedure B. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 diastereomer ratio. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **3c** was obtained as a white solid (52.5 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.70 (br s, 1H), 7.80-7.75 (m, 2H), 7.71-7.66 (m, 2H), 7.50-7.47 (m, 2H), 7.30-7.28 (m, 2H), 7.17-7.13 (m, 2H), 7.06-7.02 (m, 1H), 6.92-6.88 (m, 2H), 5.85 (d, *J* = 12.8 Hz, 1H), 5.28 (d, *J* = 12.8 Hz, 1H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 159.2, 139.7, 134.6, 130.9, 130.8, 129.1, 128.8, 127.4, 127.3, 123.8, 114.7, 59.2, 55.2, 50.2; HRMS (ESI-TOF) Calcd for C₃₁H₂₀F₇N₂O₄ [M+H]⁺: 617.1306; found: 617.1295.

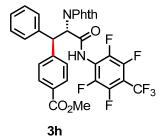
(2S,3R)-3-(3-Methoxyphenyl)-3-phenyl-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (3d)


Substrate **2** was arylated following the general arylation procedure B. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 diastereomer ratio. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **3d** was obtained as a white solid (49.6 mg, 81%). ¹H NMR (600 MHz, CDCl₃) δ 8.56 (br s, 1H), 7.78-7.76 (m, 2H), 7.70-7.67 (m, 2H), 7.32-7.29 (m, 3H), 7.18-7.14 (m, 3H), 7.09-7.08 (m, 1H), 7.07-7.04 (m, 1H), 6.82-6.80 (m, 1H), 5.89 (d, *J* = 12.6 Hz, 1H), 5.30 (d, *J* = 12.6 Hz, 1H), 3.80 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.2, 160.1, 140.5, 139.3, 134.6, 130.9, 130.4, 128.8, 127.5, 127.4, 123.8, 120.0, 114.1, 113.1, 58.8, 55.2, 50.8; HRMS (ESI-TOF) Calcd for C₃₁H₂₀F₇N₂O₄ [M+H]⁺: 617.1306; found: 617.1300.

(2S,3R)-3-(4-Fluorophenyl)-3-phenyl-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (3e)

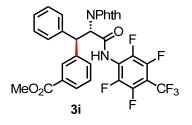

Substrate 2 was arylated following the general arylation procedure B. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 diastereomer ratio. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **3e** was obtained as a white solid (46.2 mg, 76%). ¹H NMR (600 MHz, CDCl₃) δ 8.93 (br s, 1H), 7.80-7.77 (m,

2H), 7.72-7.69 (m, 2H), 7.53-7.51 (m, 2H), 7.29-7.26 (m, 2H), 7.18-7.15 (m, 2H), 7.08-7.03 (m, 3H), 5.83 (d, J = 12.6 Hz, 1H), 5.32 (d, J = 12.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 165.2, 162.2 (d, $J_{FC} = 245.7$ Hz), 139.0, 134.7, 134.5 (d, $J_{FC} = 3.2$ Hz), 130.7, 129.7 (d, $J_{FC} = 8.1$ Hz), 128.9, 127.6, 127.4, 123.9, 116.1 (d, $J_{FC} = 21.5$ Hz), 59.4, 50.2; HRMS (ESI-TOF) Calcd for C₃₀H₁₇F₈N₂O₃ [M+H]⁺: 605.1106; found: 605.1097.

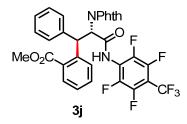

(2S,3R)-3-(4-Chlorophenyl)-3-phenyl-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (3f)

Substrate **2** was arylated following the general arylation procedure B. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 diastereomer ratio. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **3f** was obtained as a white solid (45.7 mg, 74%). ¹H NMR (600 MHz, CDCl₃) δ 8.92 (br s, 1H), 7.79-7.76 (m, 2H), 7.72-7.69 (m, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.27-7.26 (m, 2H), 7.17-7.14 (m, 2H), 7.08-7.05 (m, 1H), 5.84 (d, *J* = 12.6 Hz, 1H), 5.31 (d, *J* = 12.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 165.2, 138.7, 137.3, 134.8, 133.8, 130.7, 129.4, 129.3, 129.0, 127.7, 127.5, 123.9, 59.2, 50.3; HRMS (ESI-TOF) Calcd for C₃₀H₁₇ClF₇N₂O₃ [M+H]⁺: 621.0810; found: 621.0803.

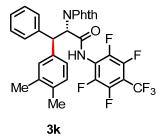
(2S,3R)-3-(4-Bromophenyl)-3-phenyl-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (3g)


Substrate **2** was arylated following the general arylation procedure B. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 diastereomer ratio. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **3g** was obtained as a white solid (47.7 mg, 72%). ¹H NMR (600 MHz, CDCl₃) δ 8.91 (br s, 1H), 7.79-7.77 (m, 2H), 7.72-7.70 (m, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 7.27-7.26 (m, 2H), 7.17-7.14 (m, 2H), 7.08-7.06 (m, 1H), 5.83 (d, *J* = 12.6 Hz, 1H), 5.30 (d, *J* = 12.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 165.1, 138.6, 137.8, 134.8, 132.2, 130.7, 129.7, 129.0, 127.7, 127.5, 123.9, 121.9, 59.1, 50.4; HRMS (ESI-TOF) Calcd for C₃₀H₁₇BrF₇N₂O₃ [M+H]⁺: 665.0305; found: 665.0290.

Methyl 4-((1R,2S)-3-oxo-1-phenyl-2-phthalimido-3-((2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)amino)propyl)benzoate (3h)

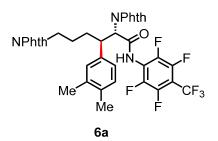

Substrate 2 was arylated following the general arylation procedure B. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 diastereomer ratio. After purification by column chromatography using hexane/EtOAc (5/1) as the eluent, **3h** was obtained as a

white solid (52.8 mg, 82%). ¹H NMR (600 MHz, CDCl₃) δ 8.92 (br s, 1H), 8.02 (d, *J* = 7.8 Hz, 2H), 7.79-7.77 (m, 2H), 7.71-7.69 (m, 2H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.30-7.28 (m, 2H), 7.17-7.15 (m, 2H), 7.08-7.06 (m, 1H), 5.91 (d, *J* = 12.6 Hz, 1H), 5.40 (d, *J* = 12.6 Hz, 1H), 3.89 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 166.6, 165.1, 143.9, 138.4, 134.8, 130.7, 130.4, 129.6, 129.0, 128.1, 127.7, 127.6, 123.9, 58.9, 52.1, 50.8; HRMS (ESI-TOF) Calcd for C₃₂H₂₀F₇N₂O₅ [M+H]⁺: 645.1255; found: 645.1246.

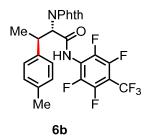

Methyl 3-((1R,2S)-3-oxo-1-phenyl-2-phthalimido-3-((2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)amino)propyl)benzoate (3i)

Substrate **2** was arylated following the general arylation procedure B. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 diastereomer ratio. After purification by column chromatography using hexane/EtOAc (5/1) as the eluent, **3i** was obtained as a white solid (50.2 mg, 78%). ¹H NMR (600 MHz, CDCl₃) δ 8.97 (br s, 1H), 8.21-8.20 (m, 1H), 7.95-7.93 (m, 1H), 7.80-7.77 (m, 3H), 7.72-7.69 (m, 2H), 7.46-7.44 (m, 1H), 7.33-7.31 (m, 2H), 7.18-7.15 (m, 2H), 7.09-7.06 (m, 1H), 5.92 (d, *J* = 12.6 Hz, 1H), 5.42 (d, *J* = 12.6 Hz, 1H), 3.90 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 166.6, 165.1, 139.3, 138.6, 134.7, 132.5, 130.9, 130.8, 129.25, 129.23, 129.1, 129.0, 127.7, 127.6, 123.9, 59.1, 52.2, 50.6; HRMS (ESI-TOF) Calcd for C₃₂H₂₀F₇N₂O₅ [M+H]⁺: 645.1255; found: 645.1264.

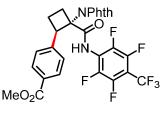
Methyl 2-((1R,2S)-3-oxo-1-phenyl-2-phthalimido-3-((2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)amino)propyl)benzoate (3j)


Substrate **2** was arylated following the general arylation procedure B. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 diastereomer ratio. After purification by column chromatography using hexane/EtOAc (5/1) as the eluent, **3j** was obtained as a white solid (43.8 mg, 68%). ¹H NMR (600 MHz, CDCl₃) δ 9.76 (br s, 1H), 7.90 (d, *J* = 7.8 Hz, 1H), 7.84-7.80 (m, 3H), 7.72-7.69 (m, 2H), 7.62-7.59 (m, 1H), 7.35-7.33 (m, 3H), 7.17-7.14 (m, 2H), 7.08-7.06 (m, 1H), 6.75 (d, *J* = 12.6 Hz, 1H), 6.01 (d, *J* = 12.6 Hz, 1H), 4.01 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.5, 165.2, 140.0, 138.9, 134.5, 132.8, 131.0, 130.9, 129.6, 128.9, 128.0, 127.6, 127.52, 127.49, 123.8, 58.9, 52.9, 42.6; HRMS (ESI-TOF) Calcd for C₃₂H₂₀F₇N₂O₅ [M+H]⁺: 645.1255; found: 645.1248.

(2S,3R)-3-(3,4-Dimethylphenyl)-3-phenyl-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (3k)


Substrate 2 was arylated following the general arylation procedure B. Analysis of crude reaction mixture by ¹H NMR showed a 19:1 diastereomer ratio. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **3k** was obtained as a white solid (54.2 mg, 88%). ¹H NMR (600 MHz, CDCl₃) δ 8.48 (br s, 1H), 7.77-7.75 (m,

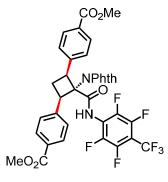
2H), 7.69-7.66 (m, 2H), 7.32-7.30 (m, 4H), 7.15-7.13 (m, 3H), 7.04-7.02 (m, 1H), 5.88 (d, J = 12.6 Hz, 1H), 5.25 (d, J = 12.6 Hz, 1H), 2.25 (s, 3H), 2.21 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.4, 139.8, 137.8, 136.5, 136.3, 134.5, 131.0, 130.6, 129.2, 128.8, 127.4, 127.2, 125.1, 123.7, 58.8, 50.6, 19.9, 19.4; HRMS (ESI-TOF) Calcd for C₃₂H₂₂F₇N₂O₃ [M+H]⁺: 615.1513; found: 615.1512.


(2S,3R)-3-(3,4-Dimethylphenyl)-2,6-bis(phthalimido)-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)hexanamide (6a)

Substrate **5a** was arylated following the general arylation procedure B. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 diastereomer ratio. After purification by column chromatography using hexane/EtOAc (3/1) as the eluent, **6a** was obtained as a white solid (47.8 mg, 66%). ¹H NMR (600 MHz, CDCl₃) δ 8.30 (br s, 1H), 7.92-7.89 (m, 2H), 7.82-7.79 (m, 2H), 7.73-7.70 (m, 2H), 7.68-7.65 (m, 2H), 7.14-7.11 (m, 3H), 5.24 (d, J = 11.4 Hz, 1H), 3.87-3.83 (m, 1H), 3.51 (t, J = 7.5 Hz, 2H), 2.25 (s, 3H), 2.22 (s, 3H), 1.68-1.56 (m, 2H), 1.46-1.41 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 168.1, 165.3, 137.8, 136.7, 135.3, 134.7, 133.8, 131.9, 131.3, 130.6, 129.4, 125.6, 124.0, 123.1, 60.6, 43.9, 37.3, 30.1, 25.6, 19.8, 19.5; HRMS (ESI-TOF) Calcd for C₃₇H₂₇F₇N₃O₅ [M+H]⁺: 726.1833; found: 726.1826.

(2S,3R)-2-Phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-3-(*p*-tolyl)butanamide (6b)

Substrate **5b** was arylated following the general arylation procedure B. Analysis of crude reaction mixture by ¹H NMR showed a 15:1 diastereomer ratio. After purification by column chromatography using hexane/EtOAc (4/1) as the eluent, **6b** was obtained as a white solid (47.6 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 8.39 (br s, 1H), 7.98-7.93 (m, 2H), 7.84-7.80 (m, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 5.22 (d, *J* = 12.0 Hz, 1H), 4.07-3.99 (m, 1H), 2.34 (s, 3H), 1.26 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 165.5, 137.79, 137.77, 134.8, 131.2, 130.0, 127.4, 124.0, 61.4, 39.0, 21.1, 20.0; HRMS (ESI-TOF) Calcd for C₂₆H₁₈F₇N₂O₃ [M+H]⁺: 539.1200; found: 539.1196.

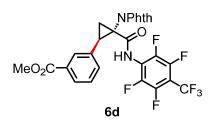

6c-mono

Methyl 4-(2-phthalimido-2-((2,3,5,6-tetrafluoro-4-

 $(trifluoromethyl) phenyl) carbamoyl) cyclobutyl) benzoate\ (6c-mono)$

Substrate **5c** was arylated following the general arylation procedure B. After purification by column chromatography using hexane/EtOAc (4/1) as the eluent, **6c-mono** was obtained as a white solid (35.6 mg, 60%). ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 8.4 Hz, 2H), 7.91-7.87 (m, 2H), 7.81-7.78 (m, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.29 (br s, 1H), 4.75 (t, *J* = 9.9

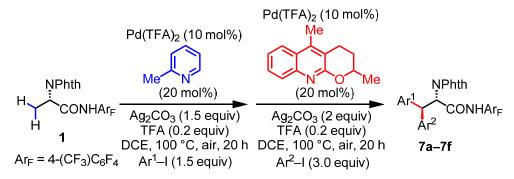
Hz, 1H), 3.84 (s, 3H), 3.45-3.42 (m, 1H), 2.64-2.57 (m, 1H), 2.55-2.50 (m, 1H), 2.43-2.38 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 168.0, 167.0, 166.9, 143.2, 134.8, 131.5, 129.42, 129.39, 129.0, 123.7, 67.5, 52.0, 47.4, 28.3, 23.1; HRMS (ESI-TOF) Calcd for C₂₈H₁₈F₇N₂O₅ [M+H]⁺: 595.1098; found: 595.1101.



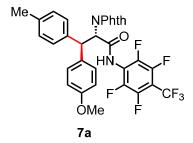
Dimethyl 4,4'-(2-phthalimido-2-((2,3,5,6-tetrafluoro-4-

(trifluoromethyl)phenyl)carbamoyl)cyclobutane-1,3-diyl)dibenzoate (6c-di)

6c-di was obtained as a yellow solid (22.0 mg, 30%). ¹H NMR (600 MHz, CDCl₃) δ 7.97-7.92 (m, 6H), 7.83-7.81 (m, 2H), 7.56 (d, J = 8.4 Hz, 4H), 7.36 (br s, 1H), 4.90-4.87 (m, 2H), 3.84 (s, 6H), 3.24-3.19 (m, 1H), 2.80-2.75 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 168.4, 167.0, 164.6, 142.6, 135.0, 131.4, 129.2, 129.0, 128.9, 123.9, 72.6, 52.0, 45.7, 26.8; HRMS (ESI-TOF) Calcd for C₃₆H₂₄F₇N₂O₇ [M+H]⁺: 729.1466; found: 729.1453.

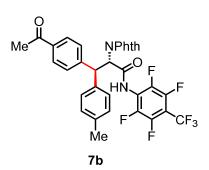


Methyl 3-(2-phthalimido-2-((2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)carbamoyl)cyclopropyl)benzoate (6d)


Substrate **5d** was arylated following the general arylation procedure B. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using hexane/EtOAc (2/1) as the eluent, **6d** was obtained as a yellow solid (40.5 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (br s, 1H), 7.95-7.91 (m, 3H), 7.84-7.78 (m, 4H), 7.45 (t, *J* = 7.6 Hz, 1H), 3.90 (s, 3H), 3.08 (t, *J* = 9.6 Hz, 1H), 2.76 (dd, *J*₁ = 7.2 Hz, *J*₂ = 9.2 Hz, 1H), 2.05 (dd, *J*₁ = 7.2 Hz, *J*₂ = 10.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 166.8, 164.3, 135.0, 133.8, 131.2, 130.4, 130.1, 129.2, 128.7, 124.0, 52.2, 40.5, 33.8, 17.4; HRMS (ESI-TOF) Calcd for C₂₇H₁₆F₇N₂O₅ [M+H]⁺: 581.0942; found: 581.0943.

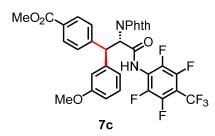
D. Sequential C(sp³)–H Arylation Reactions

General Procedure Scheme C

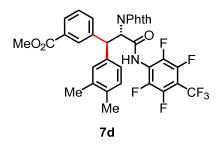


General Arylation Procedure C: Substrate **1** (0.1 mmol, 43.4 mg), Pd(TFA)₂ (0.01 mmol, 3.3 mg), and Ag₂CO₃ (0.15 mmol, 41.4 mg) were weighed out open to air and placed in a microwave tube (5 mL) with a magnetic stir bar. Ar¹–I (0.15 mmol), 2-picoline (0.02 mmol, 2 μ L), TFA (0.02 mmol, 2 μ L), and DCE (0.5 mL) were added and the reaction vessel was sealed. The reaction mixture was first stirred at room temperature for 10 min and then heated to 100 °C for 20 hours with vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature. Pd(TFA)₂ (0.01 mmol, 3.3 mg), **L10** (0.02 mmol, 4.3 mg), and Ag₂CO₃ (0.2 mmol, 55.0 mg) were weighed open to air and added in the reaction mixture. Ar²–I (0.3 mmol) and TFA (0.02 mmol, 2 μ L) were then added. The reaction vessel was sealed to 100 °C for 20 hours with vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature. Pd(TFA)₂ (0.2 mmol, 2 μ L) were then added in the reaction mixture. Ar²–I (0.3 mmol) and TFA (0.02 mmol, 2 μ L) were then added. The reaction vessel was sealed to 100 °C for 20 hours with vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature was first stirred at room temperature for 10 min and then heated to 100 °C for 20 hours with vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature. The solvents were removed under reduced pressure and the resulting mixture was purified by a silica gel-packed flash chromatography column using toluene/EtOAc or hexane/EtOAc as the eluent.

(2S,3R)-3-(4-Methoxyphenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-3-(*p*-tolyl)propanamide (7a)

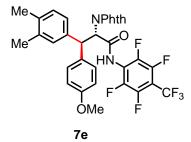

Substrate **1** was arylated following the general arylation procedure C. Analysis of crude reaction mixture by ¹H NMR showed a 19:1 diastereomer ratio. 19% of monoarylated products were observed. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **7a** was obtained as a white solid (42.9 mg, 68%). ¹H NMR (600 MHz, CDCl₃) δ 8.68 (br s, 1H), 7.79-7.78 (m, 2H), 7.70-7.69 (m, 2H), 7.46 (d, *J* = 7.8 Hz, 2H), 7.17 (d, *J* = 7.8 Hz, 2H), 6.95 (d, *J* = 7.8 Hz, 2H), 6.89 (d, *J* = 7.8 Hz, 2H), 5.83 (d, *J* = 12.6 Hz, 1H), 5.24 (d, *J* = 12.6 Hz, 1H), 3.77 (s, 3H), 2.14 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.5, 159.1, 136.9, 136.7, 134.5, 131.1, 131.0, 129.5, 129.0, 127.2, 123.8, 114.7, 59.2, 55.2, 49.8, 20.9; HRMS (ESI-TOF) Calcd for C₃₂H₂₂F₇N₂O₄ [M+H]⁺: 631.1462; found: 631.1460.

(2S,3S)-3-(4-Acetylphenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-3-(*p*-tolyl)propanamide (7b)

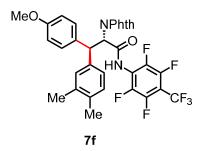

Substrate **1** was arylated following the general arylation procedure C. Analysis of crude reaction mixture by ¹H NMR showed a 19:1 diastereomer ratio. 23% of monoarylated products were observed. After purification by column chromatography using hexane/EtOAc (3/1) as the eluent, **7b** was obtained as a white solid (39.7 mg, 62%). ¹H NMR (600 MHz, CDCl₃) δ 8.54 (br s, 1H), 7.76-7.73 (m, 4H), 7.69-7.66 (m, 2H), 7.44-7.40 (m, 4H), 7.17 (d, *J* = 7.8 Hz, 2H), 5.91 (d, *J* = 12.6 Hz, 1H), 5.41 (d, *J* = 12.6 Hz, 1H), 2.43 (s, 3H), 2.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.5, 165.0, 145.1, 138.2, 136.0, 135.1, 134.7, 130.8, 130.2, 128.9, 127.8, 127.7, 123.9, 58.4, 50.3, 26.5, 21.0; HRMS (ESI-TOF) Calcd for C₃₃H₂₂F₇N₂O₄ [M+H]⁺: 643.1462; found: 643.1458.

Large scale reaction: Substrate **1** (5 mmol, 2.17 g), Pd(TFA)₂ (0.5 mmol, 0.17 g), and Ag₂CO₃ (7.5 mmol, 2.07 g) were weighed out open to air and added in a round-bottom flask (100 mL) with a magnetic stir bar. 4'-Iodoacetophenone (7.5 mmol, 1.85 g), 2-picoline (1 mmol, 100 μ L), TFA (1 mmol, 0.11 g), and DCE (25 mL) were added and the pressure vessel was sealed. The reaction mixture was first stirred at room temperature for 10 min and then heated to 100 °C for 20 hours under vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature. Pd(TFA)₂ (0.5 mmol, 0.17 g), **L10** (1 mmol, 0.21 g), Ag₂CO₃ (10 mmol, 2.75 g), and 4-iodotoluene (15 mmol, 3.27 g) were weighed out open to air and added in the reaction mixture was first stirred at room temperature for 10 min and then heated to 100 °C for 20 hours under vigorous stirring. Upon completion, the reaction was sealed. The reaction were sealed and the reaction were sealed and the reaction were been added in the reaction were sealed and the reaction were been added at the reaction were been added. The vessel was sealed and the reaction were was first stirred at room temperature for 10 min and then heated to 100 °C for 20 hours under vigorous stirring. Upon completion, the resulting mixture was purified by a silica gel-packed flash chromatography column, and **7b** was obtained in 60% yield (1.92 g).

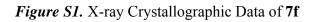
Methyl 4-((1R,2S)-1-(3-methoxyphenyl)-3-oxo-2-phthalimido-3-((2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)amino)propyl)benzoate (7c)

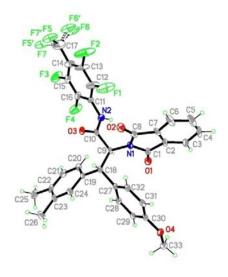

Substrate **1** was arylated following the general arylation procedure C. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 diastereomer ratio. 25% of monoarylated products were observed. After purification by column chromatography using hexane/EtOAc (5/1) as the eluent, **7c** was obtained as a white solid (43.5 mg, 65%). ¹H NMR (600 MHz, CDCl₃) δ 8.45 (br s, 1H), 7.84 (d, *J* = 7.8 Hz, 2H), 7.78-7.77 (m, 2H), 7.71-7.69 (m, 2H), 7.40 (d, *J* = 7.8 Hz, 2H), 7.33-7.30 (m, 1H), 7.16 (d, *J* = 7.8 Hz, 1H), 7.07 (s, 1H), 6.83 (d, *J* = 7.8 Hz, 1H), 5.90 (d, *J* = 12.6 Hz, 1H), 5.41 (d, *J* = 12.6 Hz, 1H), 3.80 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 166.5, 164.9, 160.2, 144.5, 139.7, 134.7, 130.8, 130.6, 130.2, 129.3, 127.6, 123.9, 120.0, 114.2, 113.3, 58.3, 55.3, 52.1, 50.6; HRMS (ESI-TOF) Calcd for C₃₃H₂₂F₇N₂O₆ [M+H]⁺: 675.1361; found: 675.1358.

Methyl 3-((1S,2S)-1-(3,4-dimethylphenyl)-3-oxo-2-phthalimido-3-((2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)amino)propyl)benzoate (7d)


Substrate 1 was arylated following the general arylation procedure C. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 diastereomer ratio. 16% of monoarylated products were observed. After purification by column chromatography using

hexane/EtOAc (3/1) as the eluent, **7d** was obtained as a white solid (44.1 mg, 66%). ¹H NMR (600 MHz, CDCl₃) δ 8.42 (br s, 1H), 7.97 (s, 1H), 7.79-7.76 (m, 2H), 7.75-7.73 (m, 1H), 7.70-7.67 (m, 2H), 7.55-7.53 (m, 1H), 7.33-7.31 (m, 2H), 7.27-7.24 (m, 1H), 7.15 (d, J = 7.8 Hz, 1H), 5.90 (d, J = 12.6 Hz, 1H), 5.34 (d, J = 12.6 Hz, 1H), 3.84 (s, 3H), 2.26 (s, 3H), 2.21 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 166.5, 165.2, 140.3, 138.0, 136.8, 135.8, 134.6, 131.6, 130.9, 130.7, 130.6, 129.2, 129.0, 128.9, 128.6, 125.1, 123.8, 58.6, 52.1, 50.3, 19.9, 19.4; HRMS (ESI-TOF) Calcd for C₃₄H₂₄F₇N₂O₅ [M+H]⁺: 673.1568; found: 673.1566.


(2S,3S)-3-(3,4-Dimethylphenyl)-3-(4-methoxyphenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (7e)


Substrate **1** was arylated following the general arylation procedure C. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 diastereomer ratio. 19% of monoarylated products were observed. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **7e** was obtained as a white solid (37.8 mg, 59%). ¹H NMR (600 MHz, CDCl₃) δ 8.69 (br s, 1H), 7.80-7.78 (m, 2H), 7.70-7.69 (m, 2H), 7.46 (d, *J* = 7.8 Hz, 2H), 7.02-7.01 (m, 2H), 6.90-6.87 (m, 3H), 5.82 (d, *J* = 12.6 Hz, 1H), 5.20 (d, *J* = 12.6 Hz, 1H), 3.76 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.6, 159.1, 137.03, 136.99, 135.5, 134.5, 131.2, 131.0, 130.0, 129.0, 128.8, 124.3, 123.8, 114.6, 59.3, 55.2, 49.7, 19.7, 19.2; HRMS (ESI-TOF) Calcd for C₃₃H₂₄F₇N₂O₄ [M+H]⁺: 645.1619; found: 645.1618.

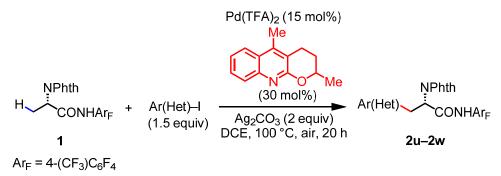
(2S,3R)-3-(3,4-Dimethylphenyl)-3-(4-methoxyphenyl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (7f)

Substrate **1** was arylated following the general arylation procedure C. Analysis of crude reaction mixture by ¹H NMR showed a 16:1 diastereomer ratio. 15% of monoarylated products were observed. After purification by column chromatography using toluene/EtOAc (30/1) as the eluent, **7f** was obtained as a white solid (38.8 mg, 60%). **7f** was recrystallized in EtOAc/hexane, and the structure was determined by X-ray diffraction. $[\alpha]_{D}^{20} = -31.5$ (c = 1.00, CHCl₃); m.p. 192-193 °C (EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.46 (br s, 1H), 7.81-7.76 (m, 2H), 7.71-7.69 (m, 2H), 7.30-7.28 (m, 2H), 7.23-7.20 (m, 2H), 7.14-7.12 (m, 1H), 6.69-6.65 (m, 2H), 5.83 (d, *J* = 12.4 Hz, 1H), 5.19 (d, *J* = 12.4 Hz, 1H), 3.63 (s, 3H), 2.25 (s, 3H), 2.20 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.5, 158.5, 137.7, 136.7, 136.4, 134.5, 131.9, 131.0, 130.6, 129.1, 128.5, 125.0, 123.8, 114.2, 58.9, 55.1, 49.8, 19.9, 19.4; HRMS (ESI-TOF) Calcd for C₃₃H₂₄F₇N₂O₄ [M+H]⁺: 645.1619; found: 645.1622.

Table S4: Crystal Data and Structure Refinement for 7f

CCDC-985675		
Identification code	7f	
Empirical formula	$C_{33}H_{23}F_7N_2O_4\\$	
Molecular formula	$C_{33}H_{23}F_7N_2O_4\\$	
Formula weight	644.53	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2	
Unit cell dimensions	a = 47.544(18) Å	$\alpha = 90^{\circ}$.
	b = 5.5459(19) Å	$\beta = 92.544(9)^{\circ}.$
	c = 21.860(7) Å	$\gamma = 90^{\circ}$.
Volume	5758(3) Å ³	

Ζ

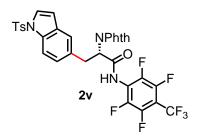

Density (calculated) Absorption coefficient F(000) Crystal size Crystal color, habit Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.00° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F^2 Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Largest diff. peak and hole

8

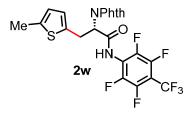

 1.487 Mg/m^3 0.128 mm⁻¹ 2640 0.18 x 0.05 x 0.02 mm³ colourless PLATE 1.71 to 25.71°. -50<=h<=58, -6<=k<=6, -26<=l<=26 18316 10714 [R(int) = 0.0343] 99.8 % multi-scan / sadabs 0.9974 and 0.9773 Full-matrix least-squares on F² 10714 / 35 / 954 1.005 R1 = 0.0597, wR2 = 0.1179R1 = 0.1199, wR2 = 0.1407-1.2(8)0.314 and -0.371 e.Å⁻³

E. Ligand-Enabled C(sp³)–H Arylation with Heteroaryl Iodides

General Procedure Scheme D

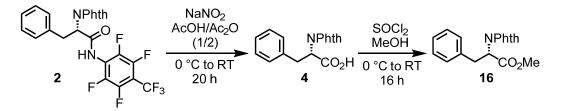

General Arylation Procedure D: Substrate 1 (0.1 mmol), $Pd(TFA)_2$ (0.015 mmol, 5.0 mg), L10 (0.03 mmol, 6.5 mg) and Ag₂CO₃ (0.2 mmol, 55 mg) were weighed out open to air and placed in a microwave tube (5 mL) with a magnetic stir bar. The heteroaryl iodide (0.15 mmol) and DCE (0.5 mL) were added. The reaction vessel was sealed and the mixture was first stirred at room temperature for 10 min and then heated to 100 °C for 20 hours with vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature. The solvents were removed under reduced pressure and the resulting mixture was purified by a silica gel-packed flash chromatography column using hexane/EtOAc as the eluent.

(S)-3-(2-Chloropyridin-4-yl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2u)

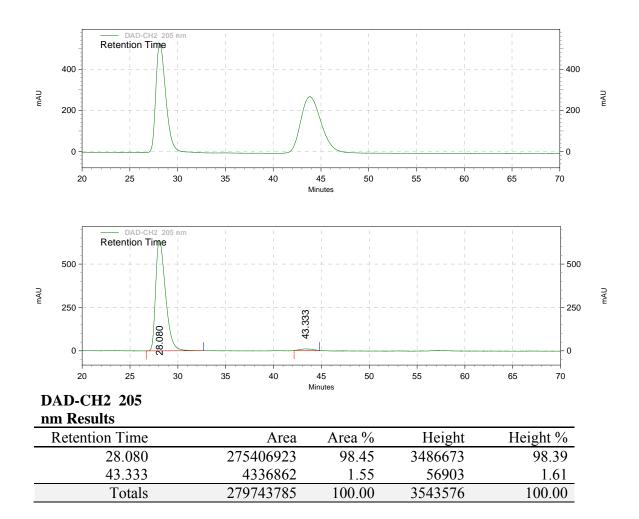

Substrate **1** was arylated following the general arylation procedure D. Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using hexane/EtOAc (4/1) as the eluent, **2u** was obtained as a white solid (29.8 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 8.54 (br s, 1H),

8.21-8.20 (m, 1H), 7.85-7.80 (m, 2H), 7.79-7.74 (m, 2H), 7.17-7.16 (m, 1H), 7.09-7.07 (m, 1H), 5.35 (dd, $J_1 = 6.4$ Hz, $J_2 = 10.4$ Hz, 1H), 3.66 (ABqd, $J_1 = 6.4$ Hz, $J_2 = 14.4$ Hz, 1H), 3.59 (ABqd, $J_1 = 10.4$ Hz, $J_2 = 14.4$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 165.8, 152.0, 149.9, 148.4, 135.0, 130.8, 124.7, 124.1, 122.8, 54.5, 34.0; HRMS (ESI-TOF) Calcd for C₂₃H₁₂ClF₇N₃O₃ [M+H]⁺: 546.0450; found: 546.0451.

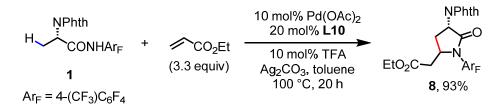
(S)-2-Phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-3-(1-tosyl-1*H*-indol-5-yl)propanamide (2v)


Substrate **1** was arylated following the general arylation procedure D. Analysis of crude reaction mixture by ¹H NMR showed a 12:1 ratio of mono- and diarylated products. After purification by column chromatography using hexane/EtOAc (3/1) as the eluent, **2v** was obtained as a white solid (45.5 mg, 65%). ¹H NMR (600 MHz, CDCl₃) δ 8.40 (br s, 1H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.79-7.76 (m, 2H), 7.72-7.70 (m, 2H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 3.6 Hz, 1H), 7.37-7.36 (m, 1H), 7.18 (d, *J* = 7.8 Hz, 2H), 7.14-7.13 (m, 1H), 6.50 (d, *J* = 3.6 Hz, 1H), 5.35 (dd, *J*₁ = 6.6 Hz, *J*₂ = 10.2 Hz, 1H), 3.70 (ABqd, *J*₁ = 6.6 Hz, *J*₂ = 14.4 Hz, 1H), 3.61 (ABqd, *J*₁ = 10.2 Hz, *J*₂ = 14.4 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.1, 166.6, 145.0, 135.1, 134.7, 134.0, 131.2, 131.0, 130.5, 129.8, 126.9, 126.7, 125.3, 123.9, 121.7, 113.9, 108.8, 56.7, 35.1, 21.5; HRMS (ESI-TOF) Calcd for C₃₃H₂₁F₇N₃O₅S [M+H]⁺: 704.1085; found: 704.1085.

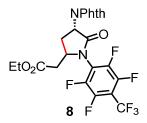
(S)-3-(5-Methylthiophen-2-yl)-2-phthalimido-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)propanamide (2w)


Substrate **1** was arylated following the general arylation procedure D. Analysis of crude reaction mixture by ¹H NMR showed > 20:1 ratio of mono- and diarylated products. After purification by column chromatography using hexane/EtOAc (4/1) as the eluent, **2w** was obtained as a white solid (38.3 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (br s, 1H), 7.88-7.84 (m, 2H), 7.79-7.74 (m, 2H), 6.63 (d, *J* = 3.6 Hz, 1H), 6.47-6.46 (m, 1H), 5.35 (t, *J* = 8.0 Hz, 1H), 3.66 (d, *J* = 8.0 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 166.2, 139.9, 135.0, 134.7, 131.2, 126.8, 125.1, 123.9, 56.4, 29.7, 15.3; HRMS (ESI-TOF) Calcd for C₂₃H₁₄F₇N₂O₃S [M+H]⁺: 531.0608; found: 531.0606.

F. Auxiliary Cleavage

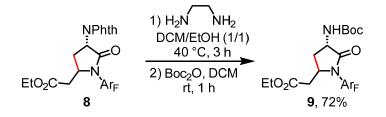

The mono-arylated product **2** (153mg, 0.3 mmol) was dissolved in the mixed solvents (3 mL, AcOH/Ac₂O = 1/2), and then cooled to 0 °C. NaNO₂ (414 mg, 6 mmol) was slowly added into the reaction mixture in portions. The reaction mixture was first stirred at 0 °C for 3 hours and then at room temperature for 17 hours. Upon completion, the solvents were removed under reduced pressure, and the mixture was neutralized by slow addition of saturated NaHCO₃ solution to pH 8. The aqueous phase was extracted with ether (4 × 10 mL), and then carefully acidified with cold HCl solution (1 N) to pH 2, and then extracted with ether (4 × 20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to afford the desired product **4** (84.5 mg, 95%) (28). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (br s, 1H), 7.80-7.75 (m, 2H), 7.70-7.65 (m, 2H), 7.21-7.11 (m, 5H), 5.22 (dd, $J_1 = 7.6$ Hz, $J_2 = 8.8$ Hz, 1H), 3.60-3.58 (m, 2H).

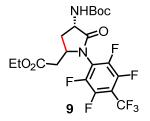
To a solution of **4** (29.5 mg, 0.1 mmol) in anhydrous methanol (5 mL) was added thionyl chloride (44 μ L, 0.6 mmol) dropwise at 0 °C. The solution was stirred overnight at room temperature. After concentration, the mixture was purified by column chromatography using hexane/EtOAc (5/1) as the eluent, and the product **16** was obtained as white solid (27.8 mg, 90%, 97% ee) (29). The ee value was determined by HPLC analysis on a Chiralcel OJ column (25% isopropanol/hexanes, 0.5 mL/min) with t_r = 28.1 min (major), 43.3 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.76 (m, 2H), 7.71-7.66 (m, 2H), 7.21-7.11 (m, 5H), 5.16 (dd, $J_1 = 5.2$ Hz, $J_2 = 11.2$ Hz, 1H), 3.78 (s, 3H), 3.60 (ABqd, $J_1 = 5.2$ Hz, $J_2 = 14.4$ Hz, 1H), 3.54 (ABqd, $J_1 = 11.2$ Hz, $J_2 = 14.4$ Hz, 1H).



S52

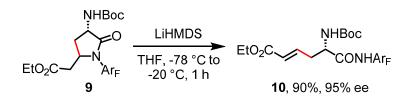
G. Synthesis of *N*-Boc-Protected Unnatural Amino Acid Derivatives *via* C(sp³)–H Olefination

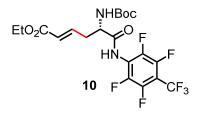

Substrate 1 (0.1 mmol, 43.4 mg), Pd(OAc)₂ (0.01 mmol, 2.3 mg), L10 (0.02 mmol, 4.3 mg), and Ag₂CO₃ (0.15 mmol, 41.4 mg) were weighed out open to air and placed in a microwave tube (5 mL) with a magnetic stir bar. Ethyl acrylate (0.33 mmol, 35 μ L), TFA (0.01 mmol, 1 μ L), and toluene (0.5 mL) were added. The reaction vessel was sealed and the mixture was first stirred at room temperature for 10 min and then heated to 100 °C for 20 hours with vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature. The solvents were removed under reduced pressure and the resulting mixture was purified by a silica gel-packed flash chromatography column using toluene/Et₂O (5/1) as the eluent.


Ethyl 2-((4S)-5-oxo-4-phthalimido-1-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)pyrrolidin-2-yl)acetate (8)

Analysis of crude reaction mixture by ¹H NMR showed a 2.2:1 average diastereomer ratio. After purification, **8** was obtained as a white solid (49.6 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.85 (m, 2H), 7.79-7.75 (m, 2H), 5.36-5.20 (m, 1H), 4.80-4.60 (m, 1H), 4.13-4.04 (m, 2H), 3.06-2.93 (m, 1H), 2.77-2.63 (m, 2H), 2.60-2.41 (m, 1H), 1.25-1.19 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 169.2, 169.1, 168.9, 167.1, 167.0, 134.4, 131.6,

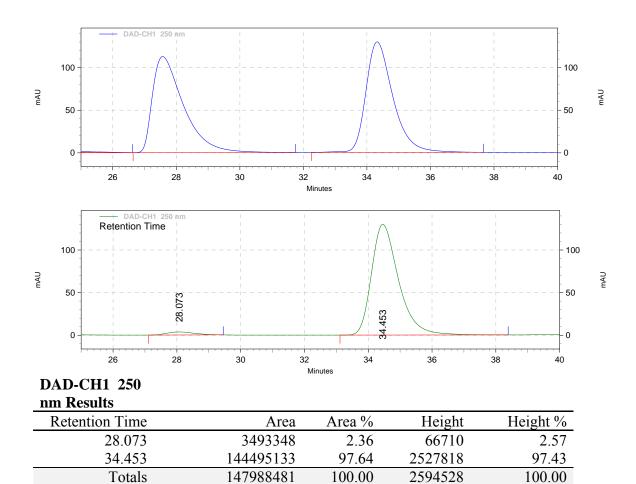
123.7, 61.2, 54.1, 53.2, 48.6, 47.7, 39.2, 38.6, 31.2, 30.3, 13.91, 13.89; HRMS (ESI-TOF) Calcd for C₂₃H₁₆F₇N₂O₅ [M+H]⁺: 533.0942; found: 533.0941.

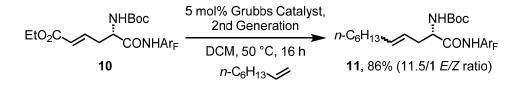

Substrate 8 (0.5 mmol, 266 mg) was weighed and placed in a round-bottom flask (25 mL) with a magnetic stir bar. DCM (1.5 mL), EtOH (1.5 mL), and ethylenediamine (2.5 mmol, 0.17 mL) were added. The reaction vessel was capped and the mixture was heated to 40 °C for 3 hours with vigorous stirring. Upon completion, the solvents were removed under reduced pressure. CuCl₂ (1.25 mmol, 168 mg) and deionized water (15 mL) were added into the resulting mixture. The aqueous solution was extracted with EtOAc (3×20 mL). The organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was dissolved in DCM (1.5 mL) without purification, and di*-t*-butyl dicarbonate (1.5 mmol, 0.35 mL) was added in the solution. The solvent was removed after one-hour reaction, and the mixture was purified by a silica gel-packed flash chromatography column using hexane/EtOAc (4/1 to 3/1) as the eluent.


Ethyl 2-((4S)-4-((*t*-butoxycarbonyl)amino)-5-oxo-1-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)pyrrolidin-2-yl)acetate (9)

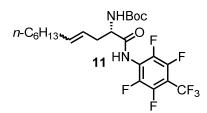
After purification, **9** was obtained as a white solid (181 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 5.27-5.16 (m, 1H), 4.62-4.44 (m, 2H), 4.08-4.00 (m, 2H), 3.15-3.07 and 2.72-

2.66 (m, 1H), 2.63-2.60 (m, 1H), 2.57-2.43 and 2.00-1.92 (m, 2H), 1.471-1.465 (m, 9H), 1.22-1.17 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.9, 169.6, 169.1, 155.6, 155.5, 80.5, 80.4, 61.24, 61.22, 54.2, 53.4, 51.7, 50.1, 38.8, 38.5, 35.1, 34.2, 28.2, 13.9; HRMS (ESI-TOF) Calcd for C₂₀H₂₂F₇N₂O₅ [M+H]⁺: 503.1411; found: 503.1415.

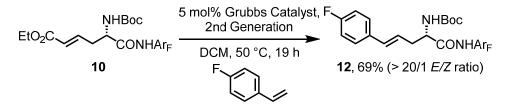

To a dried Schlenk tube (50 mL) equipped with a magnetic stir bar were added lactam **9** (50.2 mg, 0.1mmol) and 1 mL of anhydrous THF. After cooling to -78 °C, LiHMDS (0.5 M in 2-methyltetrahydrofuran, 0.5 mL, 0.5 mmol) was added dropwise within 5 minutes. The mixture was warmed up to -20 °C naturally in one hour. The reaction was then quenched with saturated NH₄Cl/AcOH (v/v = 20/1) at -78 °C and exacted with EtOAc (3×6 mL). The combined organic layer was washed with brine and dried over anhydrous MgSO₄, filtrated and concentrated. The crude product was purified by a silica gel-packed flash chromatography column using DCM/EtOAc (10/1) as the eluent.



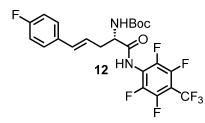
Ethyl (S,E)-5-((*t*-butoxycarbonyl)amino)-6-oxo-6-((2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)amino)hex-2-enoate (10)


After purification, **10** was obtained as a white solid (45.2 mg, 90%, 95% ee). The ee value was determined by HPLC analysis on a Chiralpak AD-H column (20% isopropanol/hexanes, 0.2 mL/min) with $t_r = 28.1$ min (minor), 34.5 min (major). ¹H NMR (400 MHz, CDCl₃) δ 8.92 (br s, 1H), 6.97-6.89 (m, 1H), 5.98 (d, J = 16.0 Hz, 1H), 5.25-

5.12 (m, 1H), 4.56-4.44 (m, 1H), 4.20 (q, J = 7.2 Hz, 2H), 2.86-2.79 (m, 1H), 2.76-2.68 (m, 1H), 1.47 (s, 9H), 1.29 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.1, 165.8, 156.5, 141.9, 125.5, 81.8, 60.6, 53.3, 33.5, 28.2, 14.2; HRMS (ESI-TOF) Calcd for C₂₀H₂₁F₇N₂O₅Na [M+Na]⁺: 525.1231; found: 525.1231.

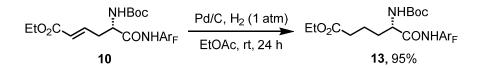


To a dried Schlenk tube (25 mL) were added Grubbs Catalyst, 2nd Generation (2.8 mg, 0.0035 mmol), amide **10** (35.1mg, 0.07 mmol), DCM (1.5 mL), and 1-octene (71.5 mg, d = 0.715 g/mL, 0.1 mL, 0.64 mmol). The mixture refluxed under N₂ atmosphere (oil bath, 50 °C) for 16 h. The mixture was filtered through a small pad of Celite. The solvents were removed under reduced pressure and the resulting mixture was purified by preparative TLC using hexane/EtOAc (5/1) as the eluent to afford product **11** as colorless oil (31.0 mg, 86%).

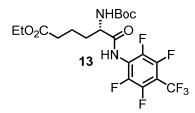


t-Butyl (S)-(1-oxo-1-((2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)amino)undec-4-en-2-yl)carbamate (11)

¹H NMR (400 MHz, CDCl₃) δ 8.85 (br s, 1H), 5.96-5.89 and 5.66-5.59 (m, 1H), 5.51-5.34 (m, 1H), 5.22-5.04 (m, 1H), 4.38 (br s, 1H), 2.74-2.49 (m, 2H), 2.09-1.97 (m, 2H), 1.46 (s, 9H), 1.35-1.27 (m, 8H), 0.88 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.9, 156.5, 136.4, 123.2, 81.3, 54.1, 34.5, 32.5, 31.7, 29.2, 28.8, 28.2, 22.6, 14.1; HRMS (ESI-TOF) Calcd for C₂₃H₃₀F₇N₂O₃ [M+H]⁺: 515.2139; found: 515.2137.

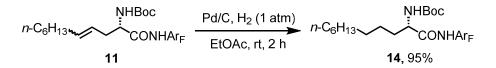


The reaction of Grubbs Catalyst, 2nd Generation (2.8 mg, 0.0035 mmol), amide **10** (35.3 mg, 0.07 mmol), DCM (1.5 mL), and 4-fluorostyrene (153.6 mg, d = 1.024 g/mL, 0.15 mL, 0.80 mmol) afforded **12** as a white solid (25.3 mg, 69%).

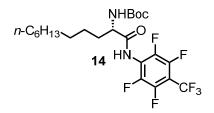


t-Butyl (S,E)-(5-(4-fluorophenyl)-1-oxo-1-((2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)amino)pent-4-en-2-yl)carbamate (12)

¹H NMR (600 MHz, CDCl₃) δ 8.87 (br s, 1H), 7.34-7.29 (m, 2H), 7.02-6.97 (m, 2H), 6.50 (d, *J* = 15.6 Hz, 1H), 6.11 (dt, *J*₁ = 7.2 Hz, *J*₂ = 15.6 Hz, 1H), 5.19 (d, *J* = 7.8 Hz, 1H), 4.51 (br s, 1H), 2.79-2.72 (m, 2H), 1.43 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 169.7, 162.4 (d, *J*_{FC} = 245.7 Hz), 156.5, 133.5, 132.7, 127.8 (d, *J*_{FC} = 8.0 Hz), 123.1, 115.5 (d, *J*_{FC} = 21.5 Hz), 81.6, 54.1, 34.8, 28.2; HRMS (ESI-TOF) Calcd for C₂₃H₂₀F₈N₂O₃Na [M+Na]⁺: 547.1238; found: 547.1234.

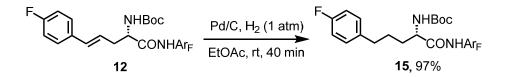


To a round-bottom flask (25 mL) was added Pd/C (10 wt. % loading on carbon, 5.0 mg), amide **10** (35.2 mg, 0.07 mmol), and EtOAc (1 mL). The reaction tube was evacuated and back-filled with H_2 (3 times, balloon). After stirring at room temperature for 24 hours, the mixture was filtered through a small pad of Celite. The solvents were removed under reduced pressure and the resulting mixture was purified by preparative TLC using hexane/EtOAc (3/1) as the eluent to afford **13** as colorless oil (33.4 mg, 95%).

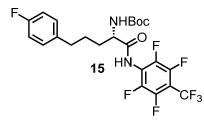


Ethyl (S)-5-((*t*-butoxycarbonyl)amino)-6-oxo-6-((2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)amino)hexanoate (13)

¹H NMR (400 MHz, CDCl₃) δ 8.96 (br s, 1H), 5.24 (br s, 1H), 4.33 (br s, 1H), 4.15 (q, J = 7.2 Hz, 2H), 2.48-2.35 (m, 2H), 2.04-1.93 (m, 1H), 1.87-1.76 (m, 3H), 1.47 (s, 9H), 1.27 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 173.5, 170.0, 156.6, 81.3, 60.7, 54.1, 33.4, 30.4, 28.2, 20.7, 14.2; HRMS (ESI-TOF) Calcd for C₂₀H₂₄F₇N₂O₅ [M+H]⁺: 505.1568; found: 505.1567.

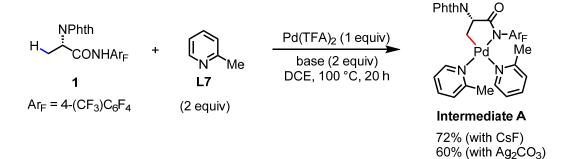


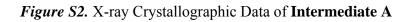
The reaction of Pd/C (10 wt. % loading on carbon, 5.0 mg), amide **11** (31.0 mg), and EtOAc (1 mL) afforded **14** as colorless oil (29.5 mg, 95%).

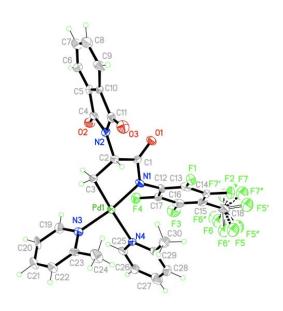


t-Butyl (S)-(1-oxo-1-((2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)amino)undecan-2yl)carbamate (14)

¹H NMR (600 MHz, CDCl₃) δ 9.00 (br s, 1H), 5.22-5.20 (m, 1H), 4.38-4.37 (m, 1H), 1.95-1.89 (m, 1H), 1.75-1.66 (m, 1H), 1.45-1.40 (m, 11H), 1.34-1.26 (m, 12H), 0.88 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.6, 156.6, 81.2, 54.6, 31.8, 31.5, 29.44, 29.38, 29.2, 28.2, 25.6, 22.7, 14.1; HRMS (ESI-TOF) Calcd for $C_{23}H_{31}F_7N_2O_3Na$ [M+Na]⁺: 539.2115; found: 539.2111.


The reaction of Pd/C (10 wt. % loading on carbon, 5.0 mg), amide **12** (25.3 mg), and EtOAc (1 mL) afforded **15** as colorless oil (24.6 mg, 97%).


t-Butyl (S)-(5-(4-fluorophenyl)-1-oxo-1-((2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)amino)pentan-2-yl)carbamate (15)


¹H NMR (600 MHz, CDCl₃) δ 8.88 (br s, 1H), 7.13-7.10 (m, 2H), 6.98-6.94 (m, 2H), 5.14-5.12 (m, 1H), 4.36 (br s, 1H), 2.69-2.59 (m, 2H), 2.00-1.94 (m, 1H), 1.76-1.70 (m, 3H), 1.44 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 170.2, 161.3 (d, $J_{FC} = 242.3$ Hz), 156.6, 136.9 (d, $J_{FC} = 3.5$ Hz), 129.6 (d, $J_{FC} = 7.7$ Hz), 115.2 (d, $J_{FC} = 21.0$ Hz), 81.4, 54.4, 34.5, 30.6, 28.2, 27.5; HRMS (ESI-TOF) Calcd for C₂₃H₂₂F₈N₂O₃Na [M+Na]⁺: 549.1395; found: 549.1394.

H. Synthesis and Reactivity of Palladacycle Intermediates in C(sp³)–H Arylation

In a sealable tube (20 mL), amide **1** (43.4 mg, 0.10 mmol), Pd(TFA)₂ (33.2 mg, 0.10 mmol), 2-picoline (18.6 mg, 0.2 mmol), and CsF (30.4 mg, 0.20 mmol) were dissolved in DCE (2 mL). The reaction mixture was then tightly capped and stirred for 10 minutes at room temperature, and then heated up to 100 °C with vigorous stirring for 20 hours. The reaction mixture was then cooled to room temperature, and filtered through a small pad of Celite. The residue was purified by preparative TLC using hexane/EtOAc (1/2) as the eluent to afford **Intermediate A** as a yellow solid (52.0 mg, 72%). HRMS (ESI-TOF) Calcd for $C_{30}H_{22}F_7N_4O_3Pd [M+H]^+$: 725.0609; found: 725.0621. **Intermediate A** was recrystallized in DCM/hexane, and the structure was determined by X-ray diffraction.

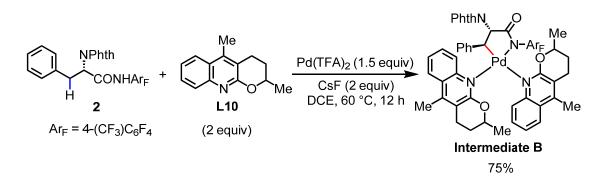
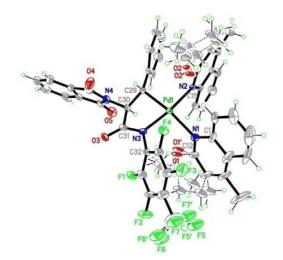
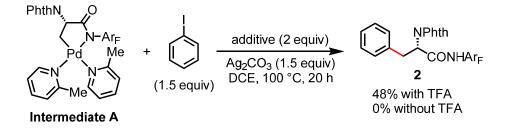


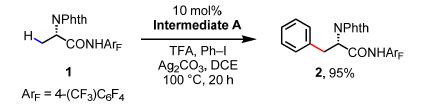
Table S5: Crystal Data and Structure Refinement for Intermediate A


CCDC-985676			
Identification code	tion code Intermediate A		
Empirical formula	$C_{31}H_{23}Cl_2F_7N_4O_3Pd$		
Molecular formula	$C_{30}H_{21}F_7N_4O_3Pd$, CH_2Cl_2		
Formula weight	809.83		
Temperature	200(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P1		
Unit cell dimensions	a = 10.9436(12) Å	$\alpha = 110.701(3)^{\circ}$.	
	b = 12.9351(14) Å	$\beta = 108.032(3)^{\circ}$.	
	c = 13.8591(16) Å	$\gamma = 103.155(3)^{\circ}$.	
Volume	1614.9(3) Å ³		
Z	2		
Density (calculated)	1.665 Mg/m ³		

Absorption coefficient	0.820 mm ⁻¹
F(000)	808
Crystal size	$0.28\times0.12\times0.10\ mm^3$
Crystal color, habit	COLORLESS BLOCK
Theta range for data collection	1.74 to 26.43°.
Index ranges	-13<=h<=13, -16<=k<=16, -17<=l<=16
Reflections collected	14965
Independent reflections	9256 [R(int) = 0.0366]
Completeness to theta = 25.00°	99.9 %
Absorption correction	multi-scan / sadabs
Absorption correction Max. and min. transmission	multi-scan / sadabs 0.9225 and 0.8029
-	
Max. and min. transmission	0.9225 and 0.8029
Max. and min. transmission Refinement method	0.9225 and 0.8029 Full-matrix least-squares on F ²
Max. and min. transmission Refinement method Data / restraints / parameters	0.9225 and 0.8029 Full-matrix least-squares on F ² 9256 / 94 / 876
Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ²	0.9225 and 0.8029 Full-matrix least-squares on F ² 9256 / 94 / 876 1.038
Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)]	0.9225 and 0.8029 Full-matrix least-squares on F ² 9256 / 94 / 876 1.038 R1 = 0.0417, wR2 = 0.0927

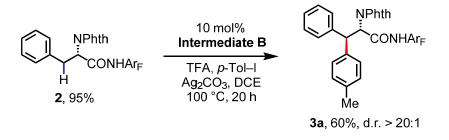
In a sealable tube (20 mL), amide **1** (43.4 mg, 0.10 mmol), Pd(TFA)₂ (49.8 mg, 0.15 mmol), L10 (42.6 mg, 0.20 mmol), and CsF (30.4 mg, 0.20 mmol) were dissolved in DCE (2 mL). The reaction mixture was then tightly capped and stirred for 10 minutes at room temperature, and then heated up to 60 °C with vigorous stirring for 12 hours. The reaction mixture was then cooled to room temperature, and filtered through a small pad of Celite. The residue was purified by preparative TLC using hexane/EtOAc (1/2) as the eluent to afford **Intermediate B** as a yellow solid (78.0 mg, 75%). HRMS (ESI-TOF) Calcd for $C_{52}H_{42}F_7N_4O_5Pd$ [M+H]⁺: 1041.2073; found: 1041.2070. **Intermediate B** was recrystallized in DCM/hexane, and the structure was determined by X-ray diffraction.


Figure S3. X-ray Crystallographic Data of Intermediate B

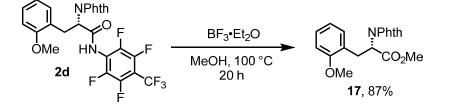

CCDC-985677			
Identification code	ntification code Intermediate B		
Empirical formula	$C_{52.50}H_{42}ClF_7N_4O_5Pd$		
Molecular formula	$C_{52}H_{41}F_7N_4O_5Pd$, 0.5(CH	C ₅₂ H ₄₁ F ₇ N ₄ O ₅ Pd, 0.5(CH ₂ Cl ₂)	
Formula weight	1083.75		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C2		
Unit cell dimensions	a = 34.9648(19) Å	$\alpha = 90^{\circ}$.	
	b = 15.3694(7) Å	$\beta = 125.823(3)^{\circ}$.	
	c = 23.2457(13) Å	$\gamma = 90^{\circ}$.	
Volume	10128.8(9) Å ³		
Z	8		
Density (calculated)	1.421 Mg/m ³		
Absorption coefficient	0.495 mm ⁻¹		
F(000)	4408		
Crystal size	$0.20\times0.16\times0.12~mm^3$		
Crystal color, habit	orange / block		
Theta range for data collection	1.76 to 26.45°.		
Index ranges	-43<=h<=35, -19<=k<=1	9, 0<=l<=28	
Reflections collected	20613		
Independent reflections	20613 [R(int) = 0.0000]		
Completeness to theta = 25.00°	99.9 %		
Absorption correction	multi-scan / sadabs		
Max. and min. transmission	0.9430 and 0.9075		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	20613 / 82 / 1227		

Goodness-of-fit on F ²	1.049
Final R indices [I>2sigma(I)]	R1 = 0.0459, wR2 = 0.1080
R indices (all data)	R1 = 0.0652, wR2 = 0.1137
Absolute structure parameter	0.043(18)

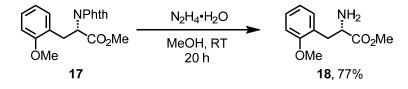
Largest diff. peak and hole 0.522 and -0.652 e.Å⁻³



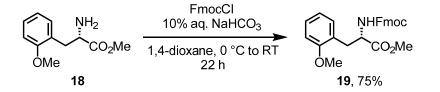
Intermediate A (0.1 mmol, 72.4 mg), and Ag₂CO₃ (0.15 mmol, 41.4 mg) were weighed out open to air and placed in a sealable tube (50 mL) with a magnetic stir bar. Iodobenzene (30.6 mg, 0.15 mmol), TFA (0.2 mmol, 22.8 mg), and DCE (2 mL) were added. The reaction vessel was sealed and the mixture was first stirred at room temperature for 10 min and then heated to 100 °C for 20 hours with vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature. The solvents were removed under reduced pressure and the resulting mixture was purified by a silica gel-packed flash chromatography column using hexane/EtOAc mixtures (3/1) as the eluent to afford **2** (24.6 mg, 48%).

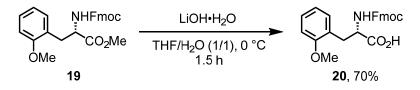

Substrate 1 (0.1 mmol, 43.4 mg), **Intermediate A** (0.01 mmol, 7.2 mg), and Ag_2CO_3 (0.15 mmol, 41.4 mg) were weighed out open to air and placed in a microwave tube (5 mL) with

a magnetic stir bar. Iodobenzene (30.6 mg, 0.15 mmol), TFA (0.02 mmol, 2 μ L), and DCE (0.5 mL) were added. The reaction vessel was sealed and the mixture was first stirred at room temperature for 10 min and then heated to 100 °C for 20 hours with vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature. The solvents were removed under reduced pressure and the resulting mixture was purified by a silica gelpacked flash chromatography column using toluene/EtOAc mixtures (30/1) as the eluent to afford **2** (53.1 mg, 95% based on **1** and **Intermediate A**).



Substrate **2** (0.1 mmol, 51.0 mg), **Intermediate B** (0.01 mmol, 10.4 mg), 4-iodotoluene (0.3 mmol, 65.4 mg), and Ag₂CO₃ (0.2 mmol, 55.0 mg) were weighed out open to air and placed in a microwave tube (5 mL) with a magnetic stir bar. TFA (0.02 mmol, 2 μ L) and DCE (0.5 mL) were added. The reaction vessel was sealed and the mixture was first stirred at room temperature for 10 min and then heated to 100 °C for 20 hours with vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature. The solvents were removed under reduced pressure and the resulting mixture was purified by a silica gel-packed flash chromatography column using toluene/EtOAc mixtures (30/1) as the eluent to afford **3a** (39.8 mg, 60% based on **2** and **Intermediate B**). Analysis of crude reaction mixture by ¹H NMR showed a > 20:1 diastereomer ratio.

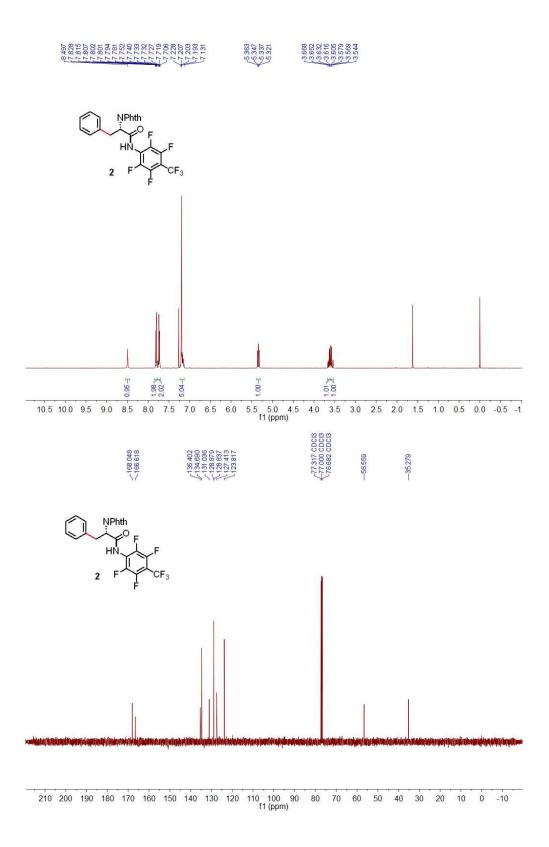

I. Synthesis of N-Fmoc-Protected Unnatural Amino Acid

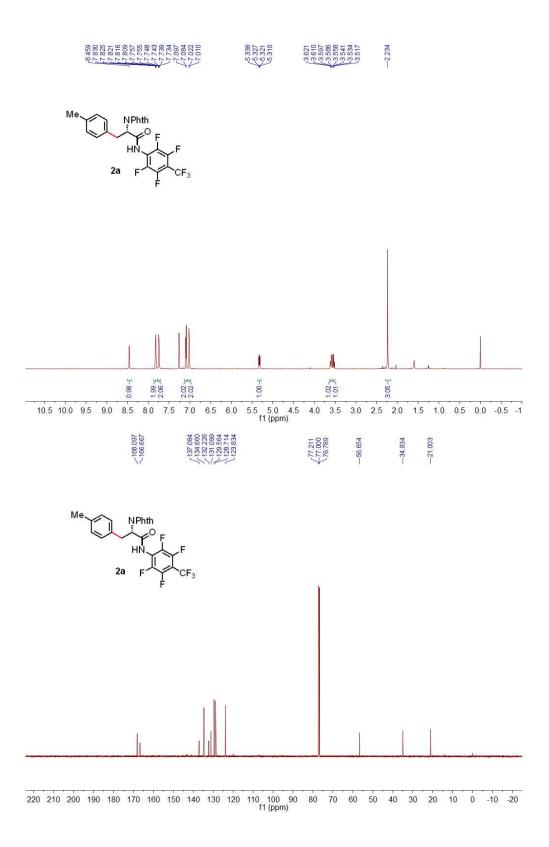

A sealable pressure flask was charged with MeOH (99 mL) and the amide **2d** (6.46 mmol, 3.49 g). BF₃·Et₂O (6 equiv) was added dropwise via syringe, and the reaction vessel sealed. The mixture was heated to 100 °C for 20 h, and then cooled to room temperature. Triethylamine (6 equiv) was then carefully added via syringe, and stirred for 10 min. The solvent was removed *in vacuo*, and the residue purified by column chromatography using hexane/EtOAc (5/1) as the eluent to afford the desired product **17** (87%, 1.91 g). ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.74 (m, 2H), 7.67-7.66 (m, 2H), 7.12-7.09 (m, 1H), 6.99-6.98 (m, 1H), 6.76-6.75 (m, 1H), 6.70-6.67 (m, 1H), 5.39-5.36 (m, 1H), 3.78 (s, 3H), 3.76 (s, 3H), 3.66-3.63 (m, 1H), 3.44-3.40 (m, 1H).

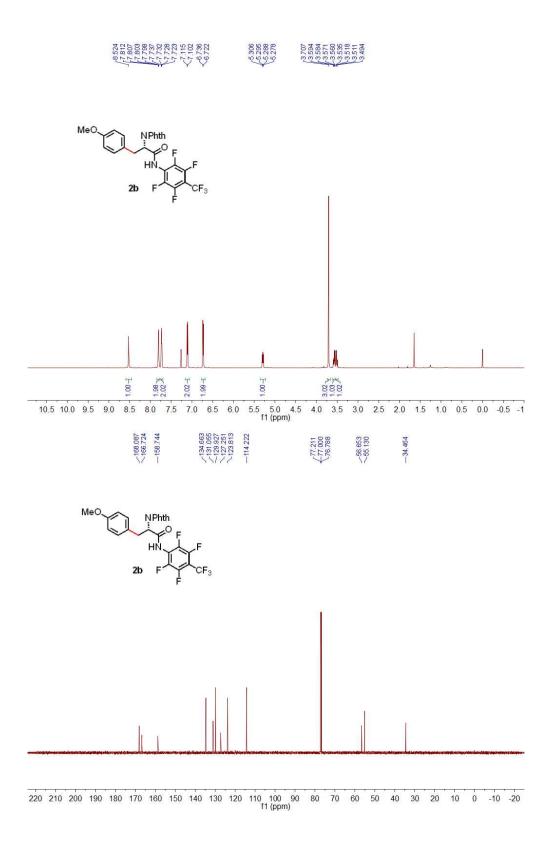
N-Phthalimido-protected amino ester **17** (4.60 mmol, 1.56 g) was dissolved in MeOH (88 mL), and N₂H₄·H₂O (4 equiv) was added. The reaction was stirred at room temperature for 20 h, after which, the solvent was removed *in vacuo*. Saturated aqueous NaHCO₃ was added, and the solution extracted with EtOAc (3×50 mL). The organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography using hexane/EtOAc (1/1) as the eluent to afford the desired product **18** (77%, 0.74 g) (*30*). ¹H NMR (500 MHz, CDCl₃) δ 7.24-7.21 (m, 1H), 7.13-7.11 (m, 1H), 6.91-6.85 (m, 2H), 3.83-3.79 (m, 4H), 3.70 (s, 3H), 3.12 (dd, *J*₁ = 5.6 Hz, *J*₂ = 13.3 Hz, 1H), 2.85 (dd, *J*₁ = 8.2 Hz, *J*₂ = 13.3 Hz, 1H), 1.64 (br s, 2H).

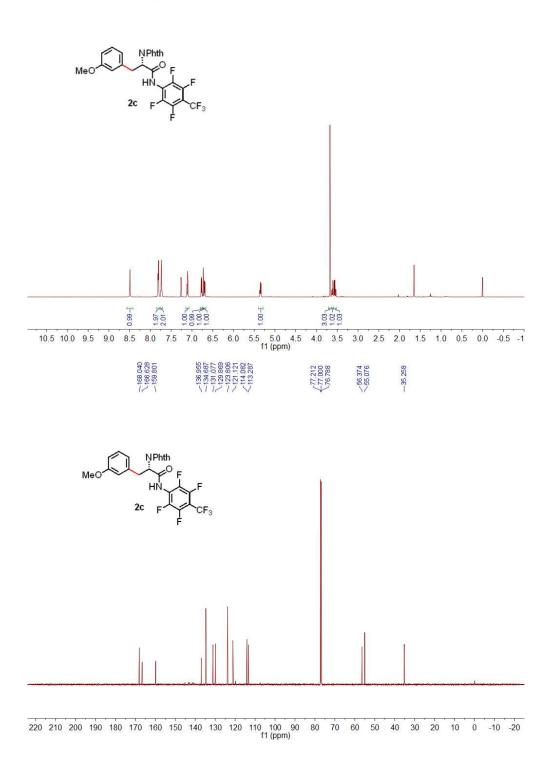
Amino ester **18** (3.54 mmol, 0.74 g) was taken up in 1,4-dioxane (18 mL), and 10% aqueous NaHCO₃ (11 mL) was added. The mixture was cooled to 0 °C and FmocCl (3.54 mmol, 1 equiv) was added. The ice bath was allowed to warm to room temperature overnight, after which H₂O and EtOAc were added to the reaction mixture. The aqueous layer was then extracted with EtOAc (3 × 50 mL) and the combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography using hexane/EtOAc (5/1) as the eluent to afford the desired product **19** (75%, 1.15 g). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.6 Hz, 2H), 7.56-7.51 (m, 2H), 7.41-7.37 (m, 2H), 7.31-7.22 (m, 3H), 7.10-7.08 (m, 1H), 6.92-6.86 (m, 2H), 5.61 (d, *J* = 7.8 Hz, 1H), 4.61-4.56 (m, 1H), 4.32 (d, *J* = 6.7 Hz, 2H), 4.18 (t, *J* = 7.1 Hz, 1H), 3.82 (s, 3H), 3.73 (s, 3H), 3.17-3.08 (m, 2H).

Methyl ester **19** (2.55 mmol, 1.10 g) was dissolved in THF (18 mL). The solution was cooled to 0 °C, and a cold solution of LiOH·H₂O (5.10 mmol, 2 equiv) in H₂O (18 mL) were added. The reaction was maintained at 0 °C and monitored by TLC. After consumption of starting material, the reaction was acidified with HCl (2 N) and extracted with EtOAc (4 × 50 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography using hexane/EtOAc/MeOH (3/2/0.1) as the eluent to afford the desired product **20** (70%, 0.74 g). Spectral data agree with literature (*31*). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.6 Hz, 2H), 7.54-7.49 (m, 2H), 7.41-7.37 (m, 2H), 7.31-7.24 (m, 3H), 7.14 (d, *J* = 7.2 Hz, 1H),

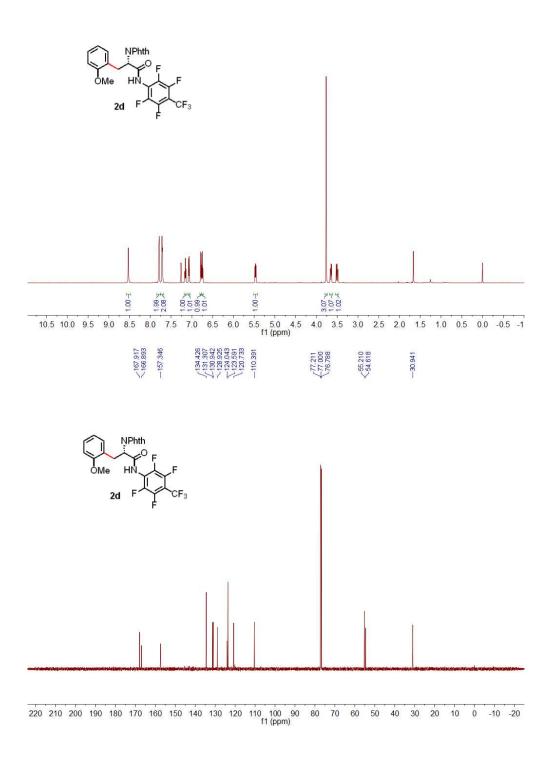

6.93-6.87 (m, 2H), 5.68 (d, *J* = 7.3 Hz, 1H), 4.60-4.54 (m, 1H), 4.34 (d, *J* = 7.0 Hz, 2H), 4.18 (t, *J* = 7.1 Hz, 1H), 3.80 (s, 3H), 3.23-3.13 (m, 2H).

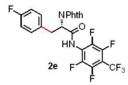

J. Intramolecular Isotope Effect and Ligand Acceleration

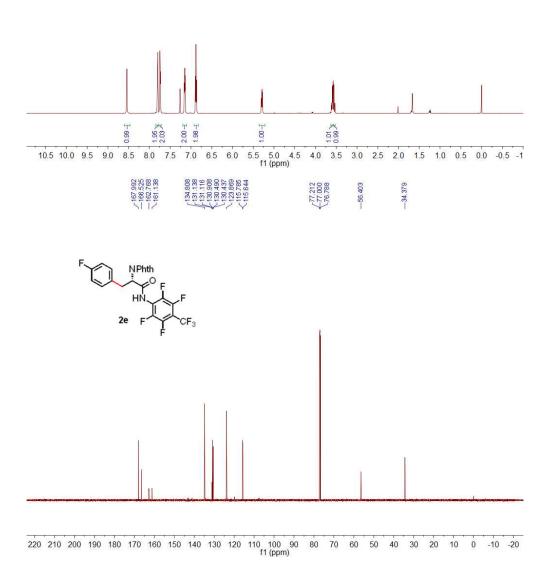

General Procedure: Substrate **21** (0.1 mmol, 30.6 mg), $Pd(TFA)_2$ (0.01 mmol, 3.3 mg), and Ag_2CO_3 (0.15 mmol, 41.4 mg) were weighed out open to air and placed in a microwave tube (5 mL) with a magnetic stir bar. 4-Iodotoluene (0.15 mmol, 32.7 mg), ligand (0.02 mmol), TFA (0.02 mmol, 2 µL), and DCE (0.5 mL) were added. The reaction vessel was sealed. The reaction mixture was first stirred at room temperature for 10 min and then heated to 100 °C under vigorous stirring. After a certain amount of time, the reaction mixture was cooled to room temperature. The solvents were removed under reduced pressure. All conversions were determined by analysis of the crude ¹H NMR (CDCl₃) spectrum using CH₂Br₂ as the internal standard. The ratio of the arylated products was determined by ¹H NMR (CDCl₃) spectrum after the reaction mixture was purified by a silica gel-packed flash chromatography column using hexane/EtOAc (5/1) as the eluent.


Me ⁻	CD ₃ CONHAr _F	Pd(TFA) ₂ (10 ligand (20 m TFA (20 m <i>p</i> -Tol–I (1.5 Ag ₂ CO ₃ (1.5 DCE, 100 °C	nol%) ol%) equiv) equiv)	CD ₃ I CONHAr _F + <i>J</i> 22	D-Tol D D 22'
	Entry	Ligand	Time (h)	Conversion (%) [*]	Ratio (22/22') *
	1	_	10	13	6.0
	2	L7	10	45	8.1
	3	L7	24	80	8.1
	4	L10	5	100	10.7

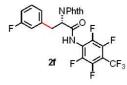
*Conversions and ratios are the averaged results of three reproducible experiments.

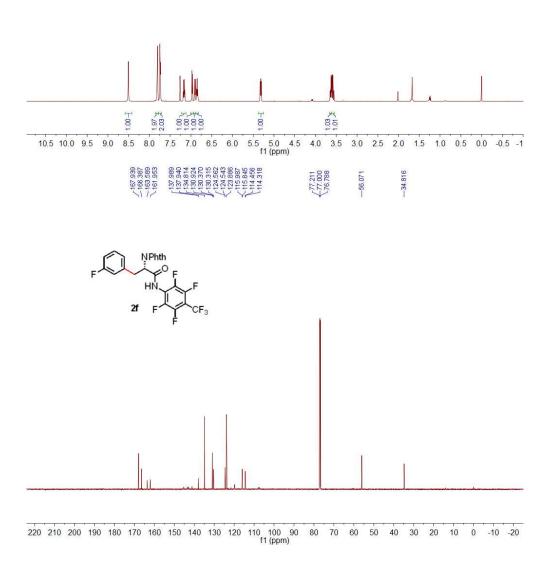


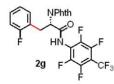


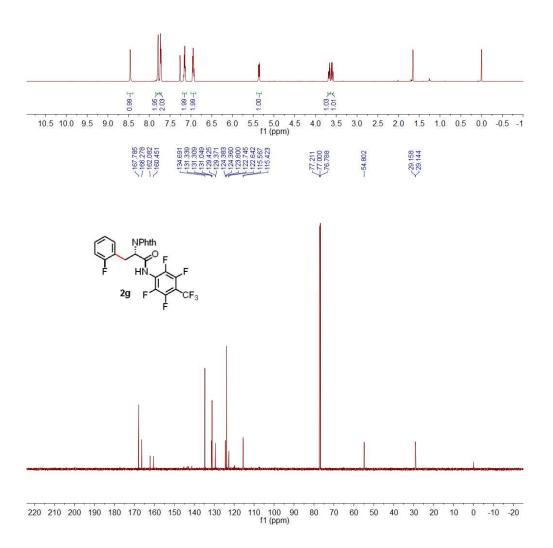


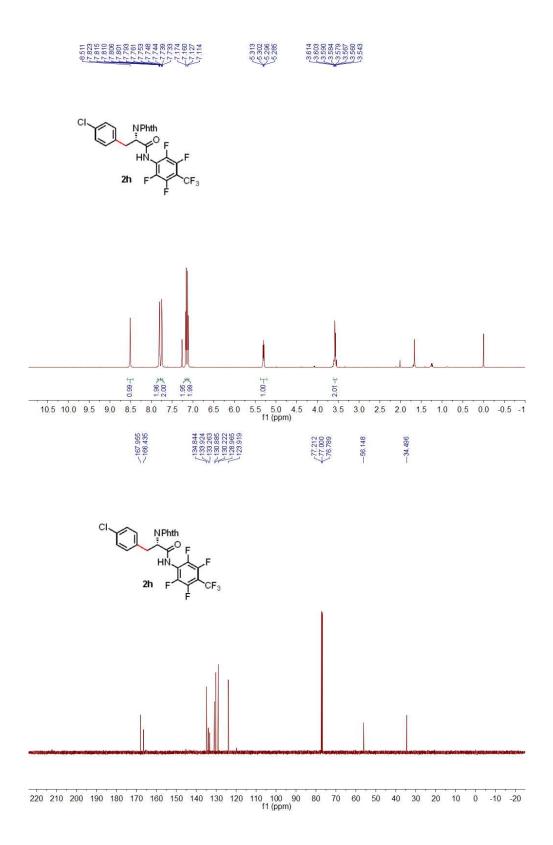
名 5:23 名 5:23 名 5:25 名 5:25 名 5:25 名 5:25 名 5:25 名 5:25 2:25

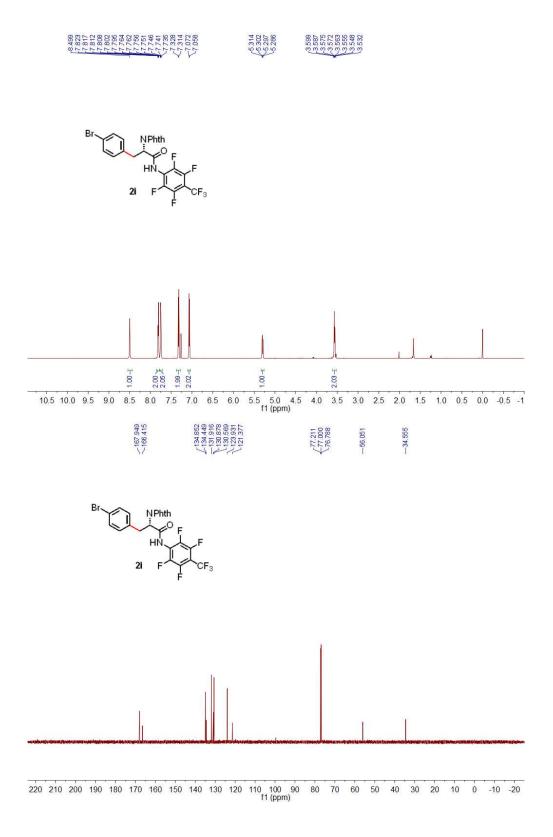


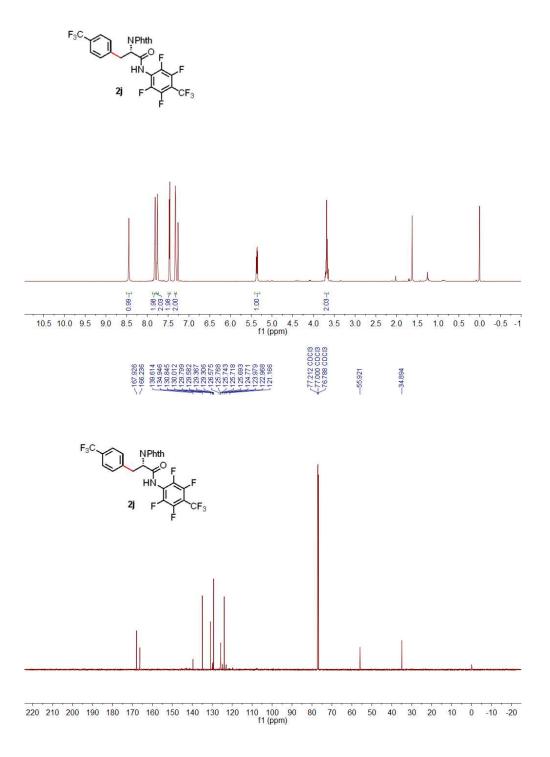


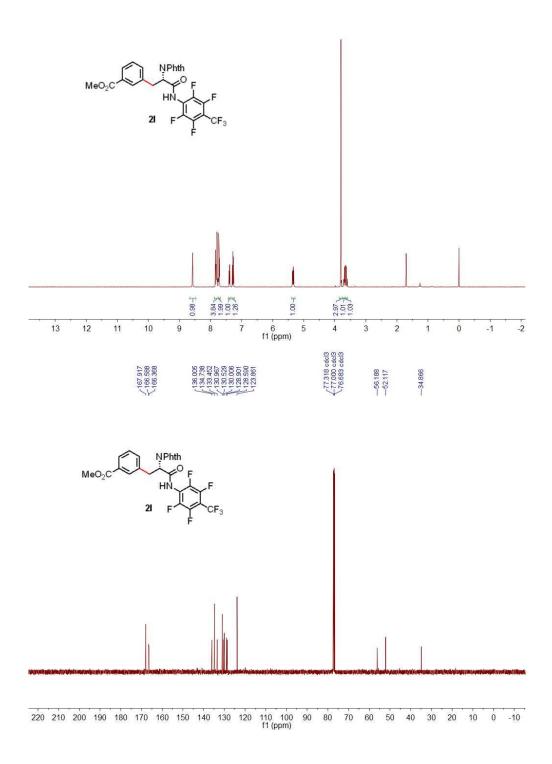


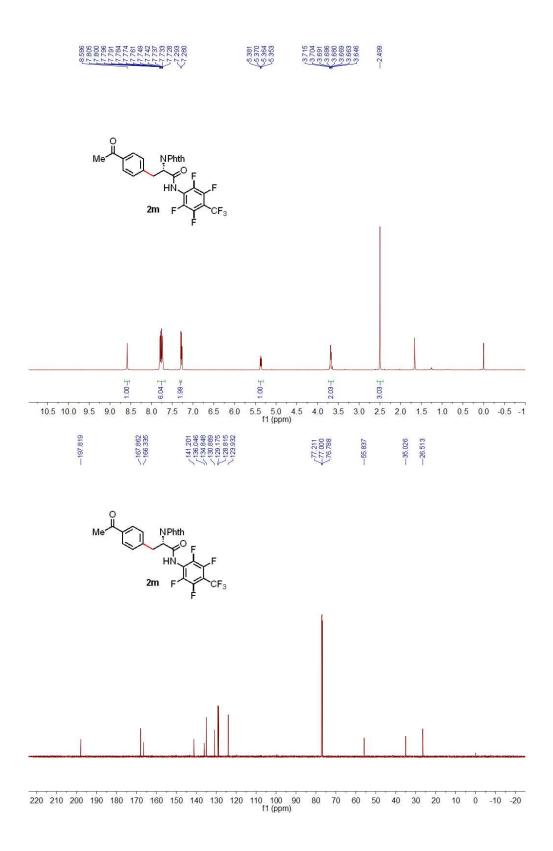


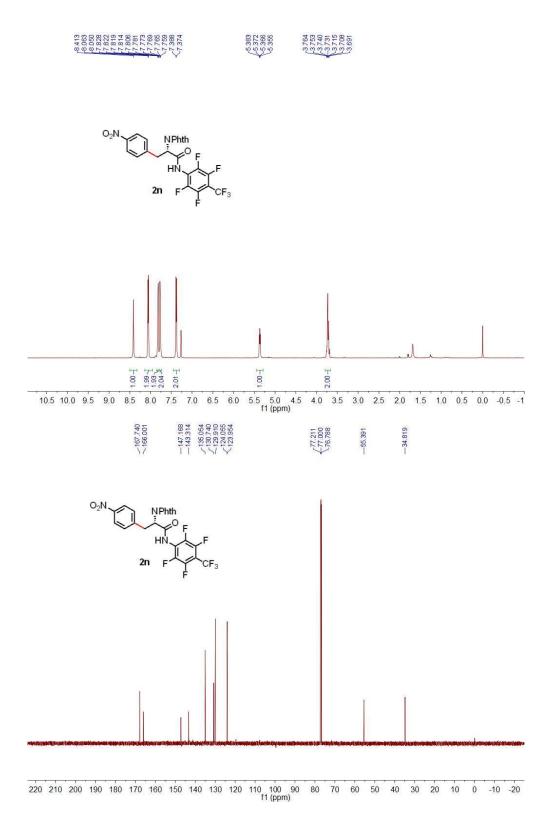

第14日の10年1月1日、10年1月1月1日、10年1月1月1日、10年1月1月1日、10年1月1月1日、10年1月1月1日、10年1月1月1日、10年1月1月1日、10年1月1月1日、10年

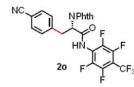


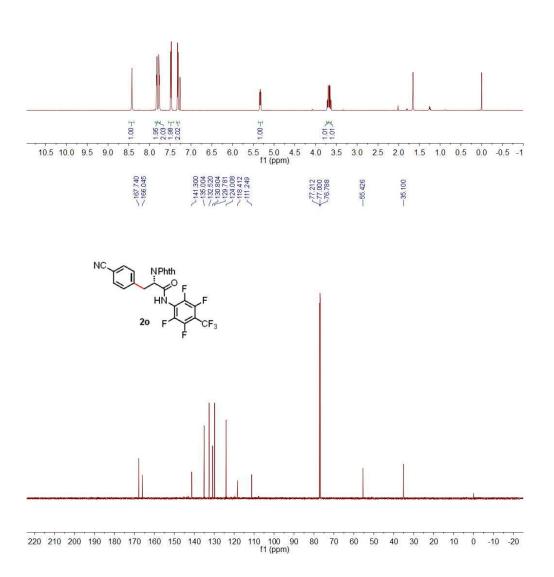


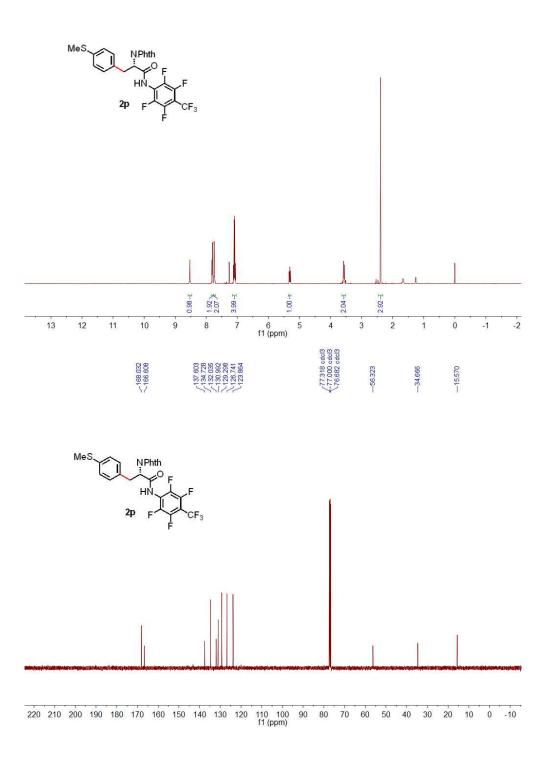


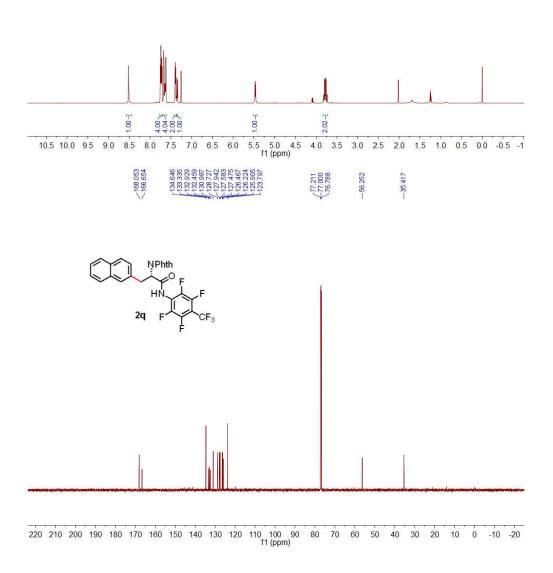

-8447 -8447 -8447 -8447 -8447 -178818

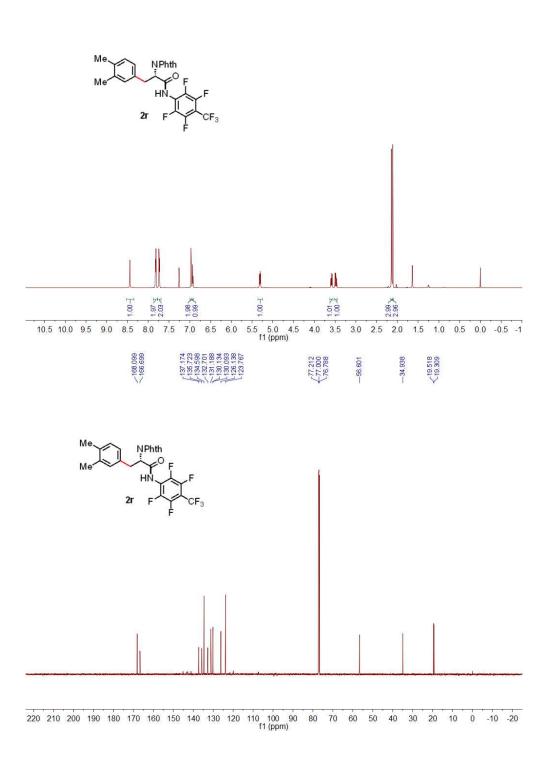


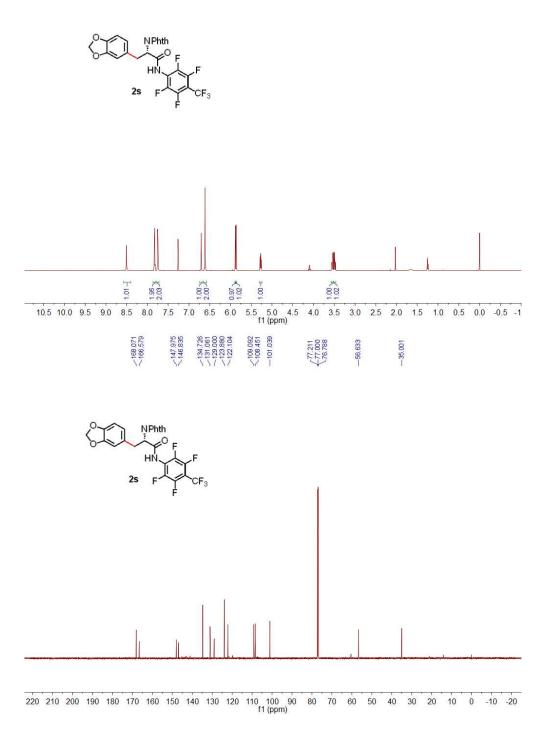


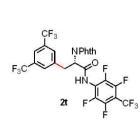

日本10年1月11日 10日1日 10日11日 10日

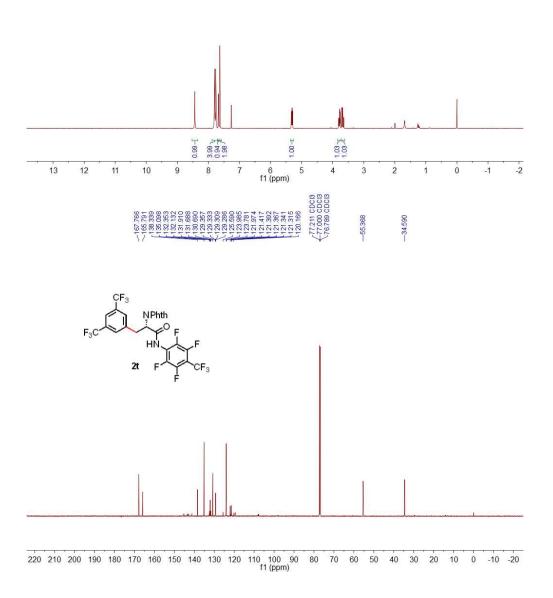


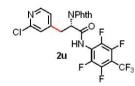


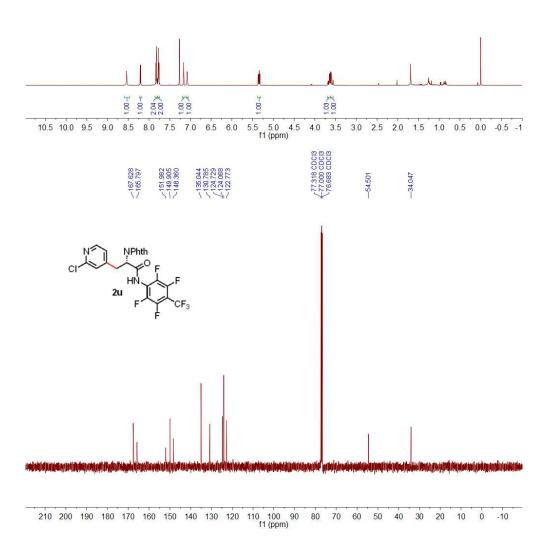


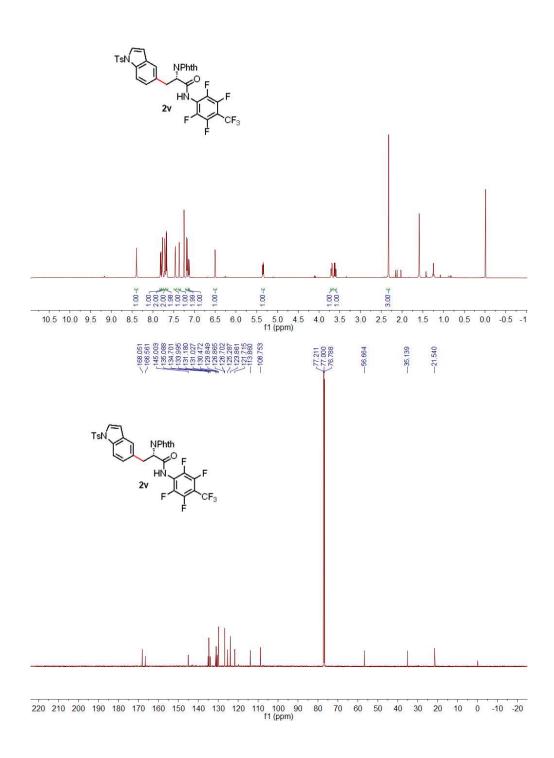


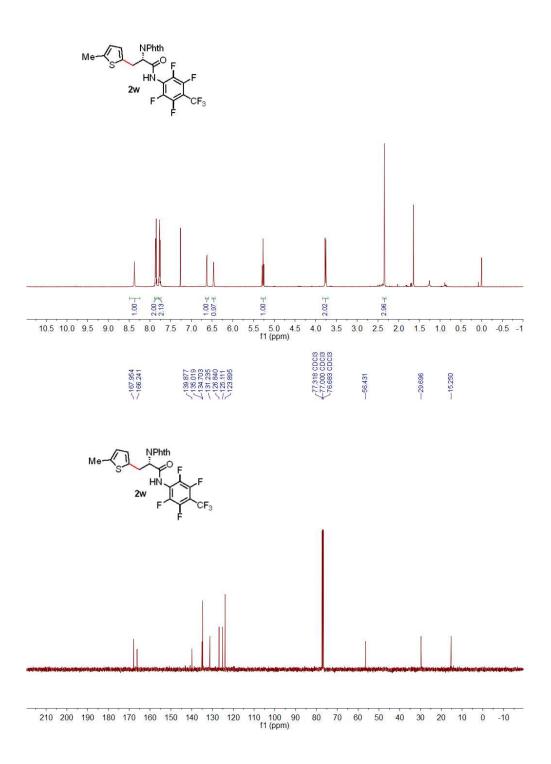


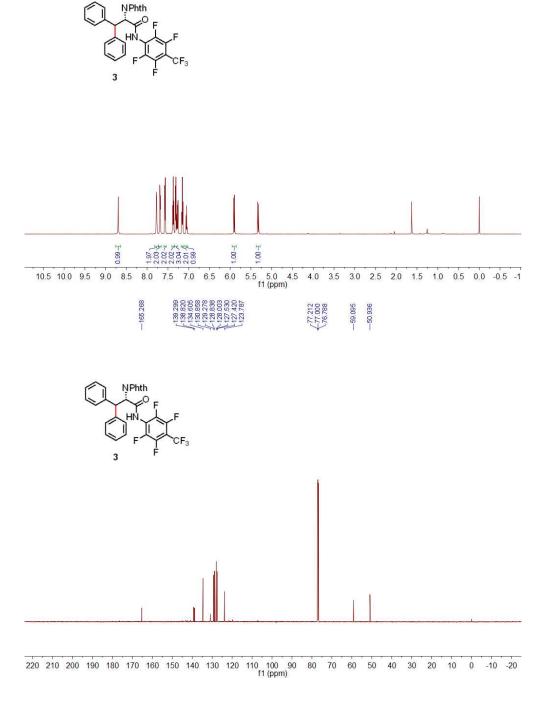


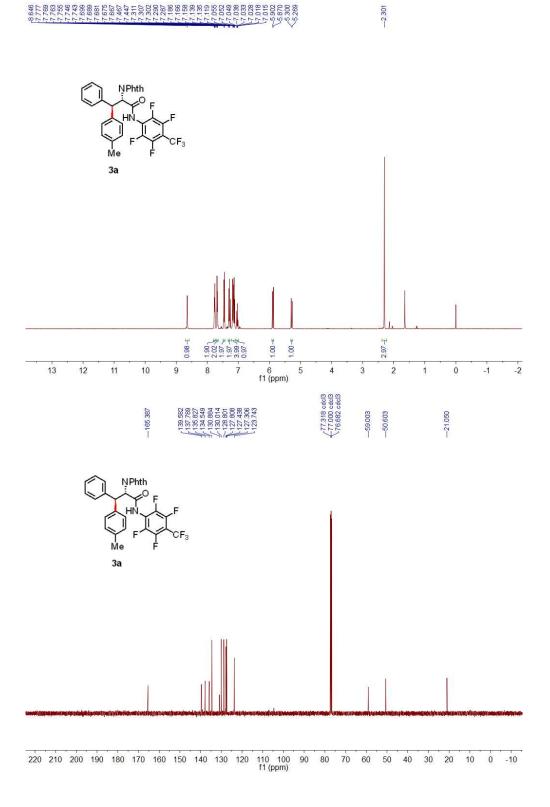


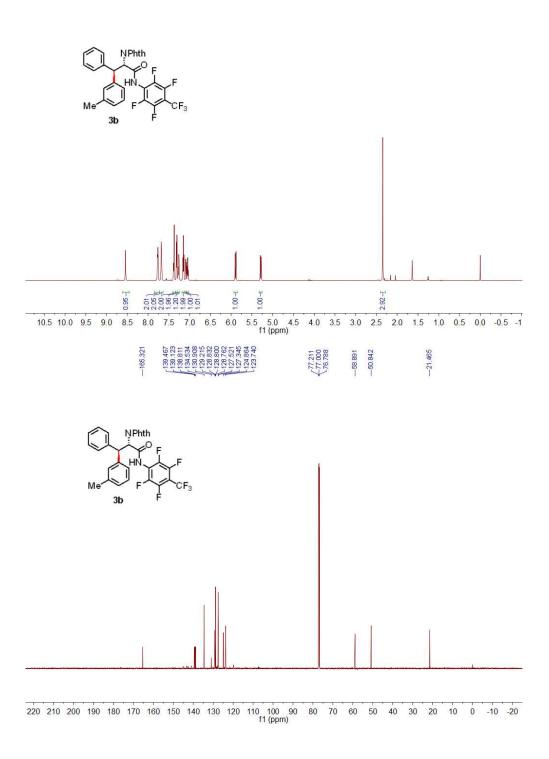


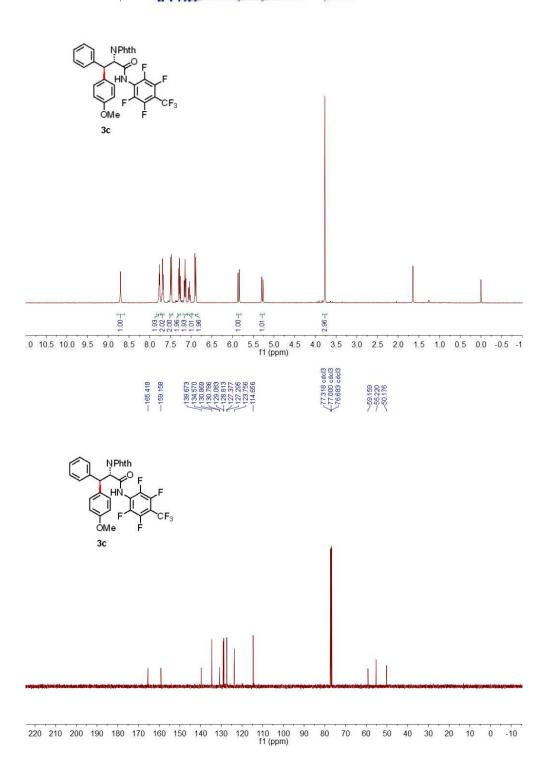


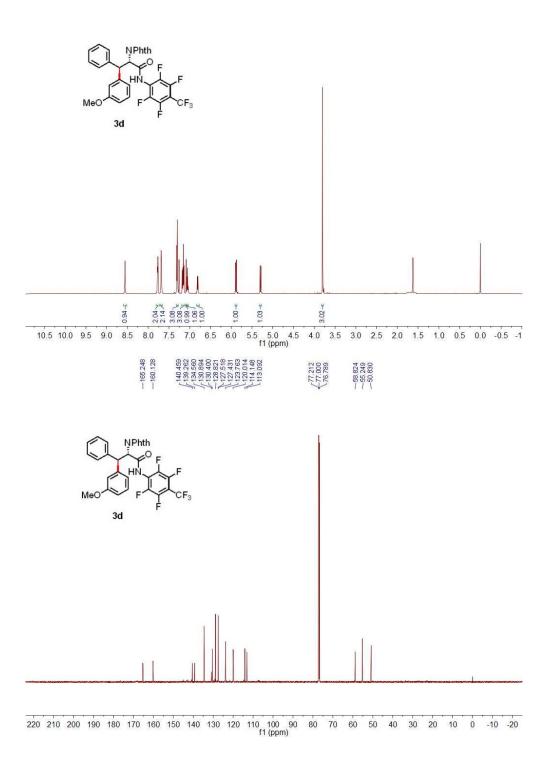


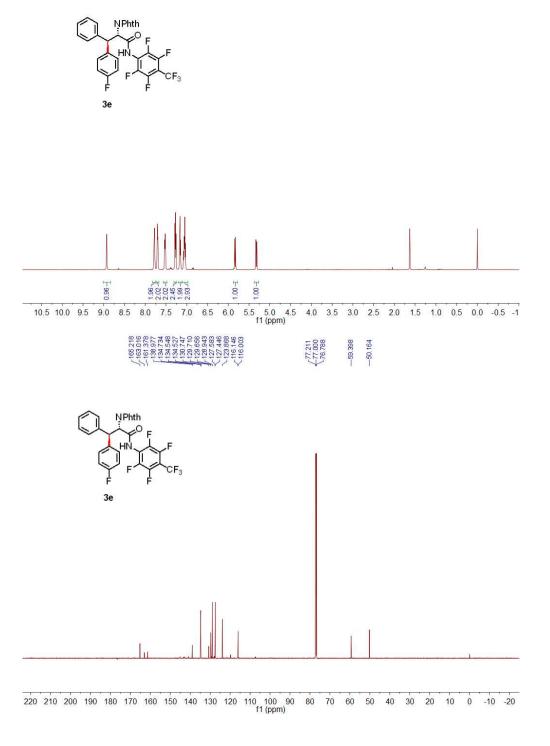


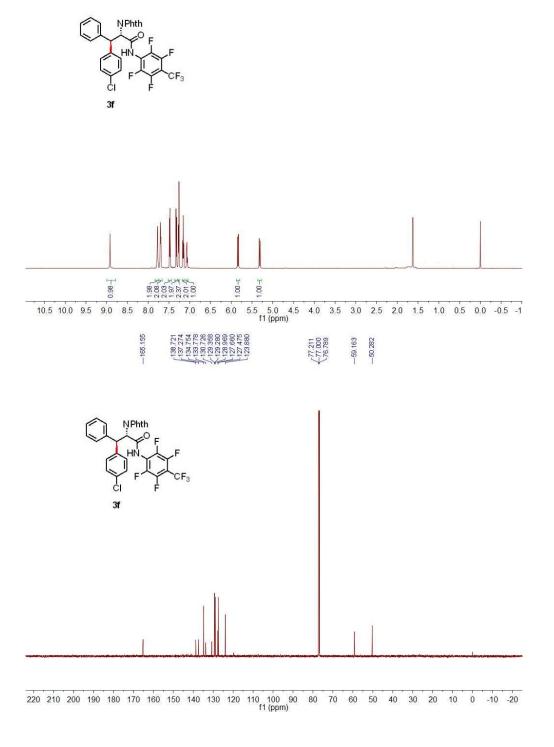


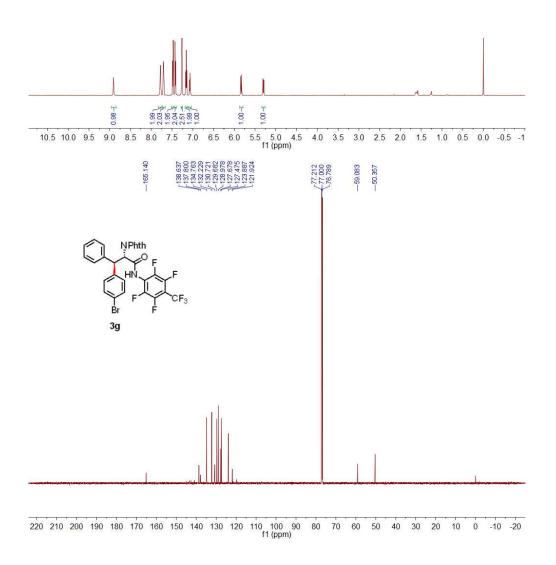


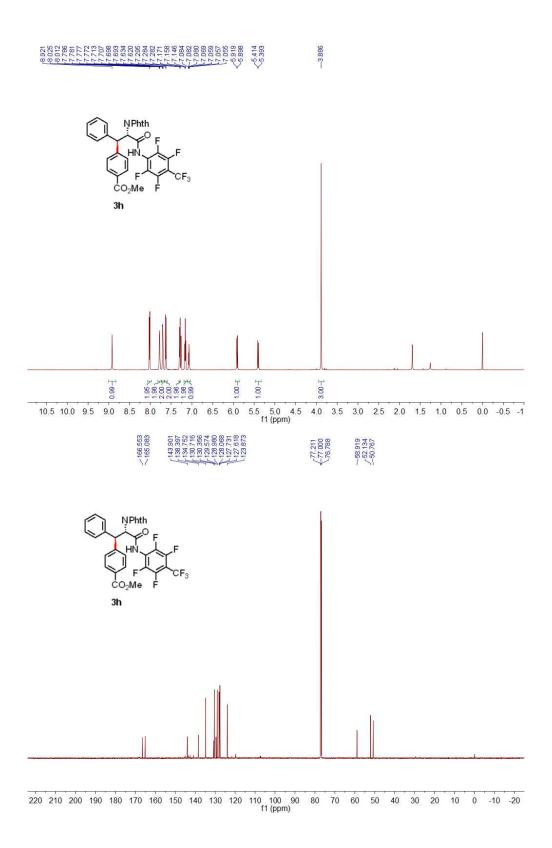

a 866

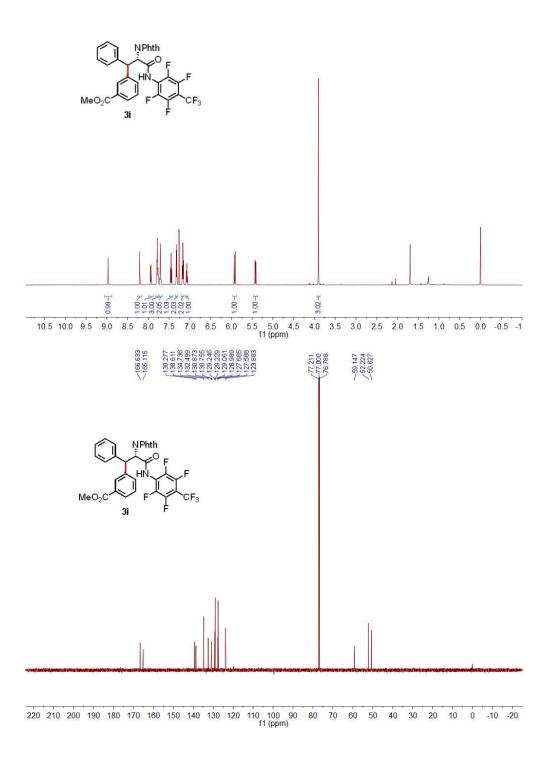


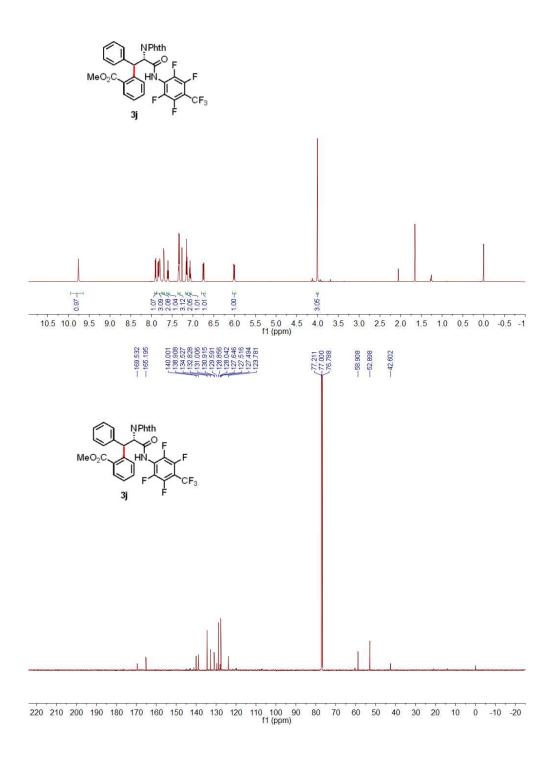


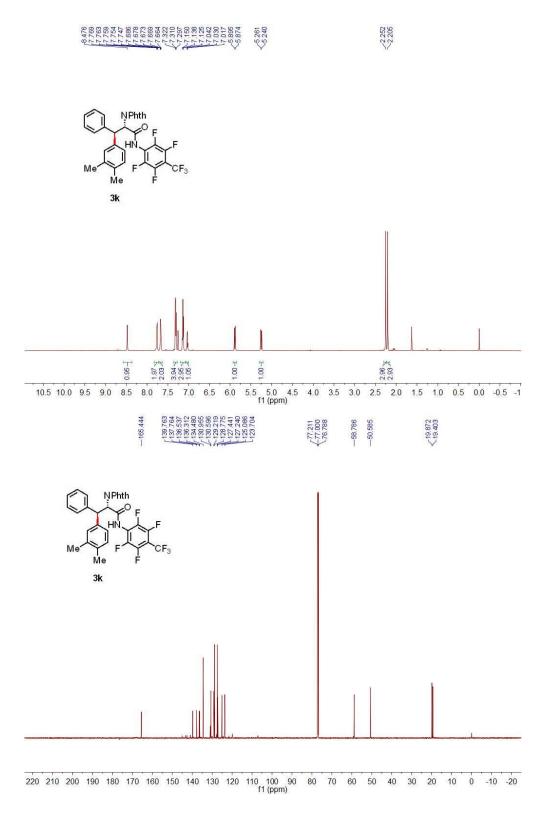


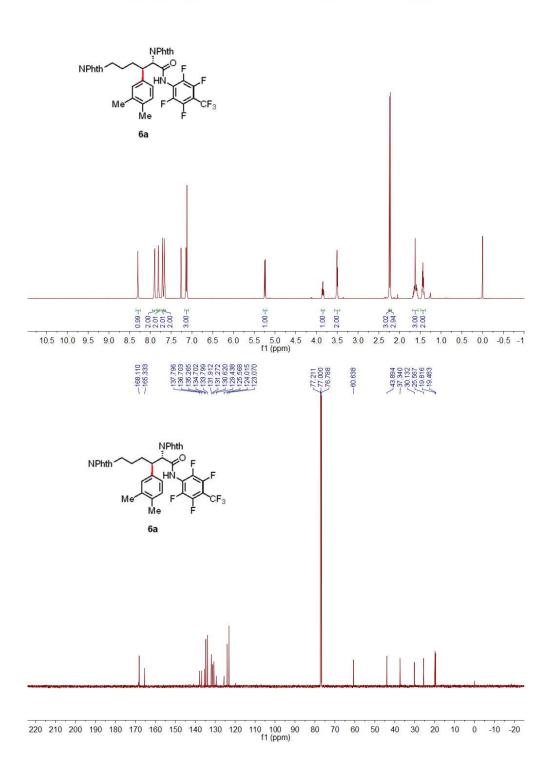


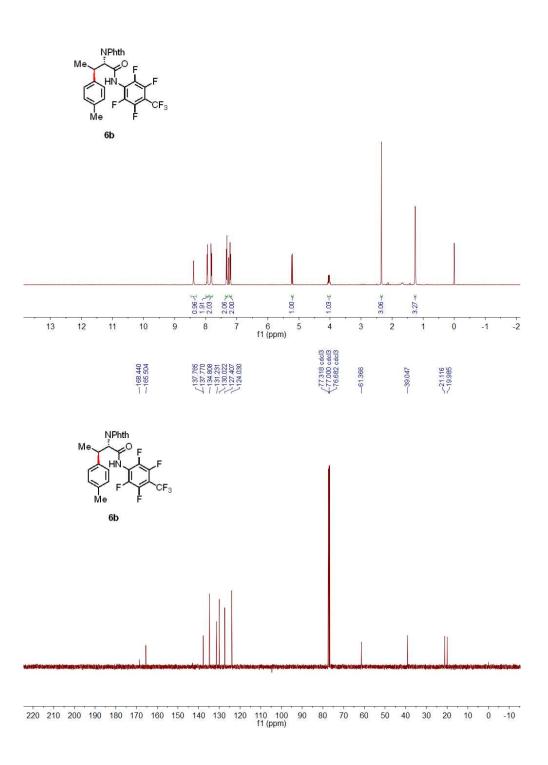


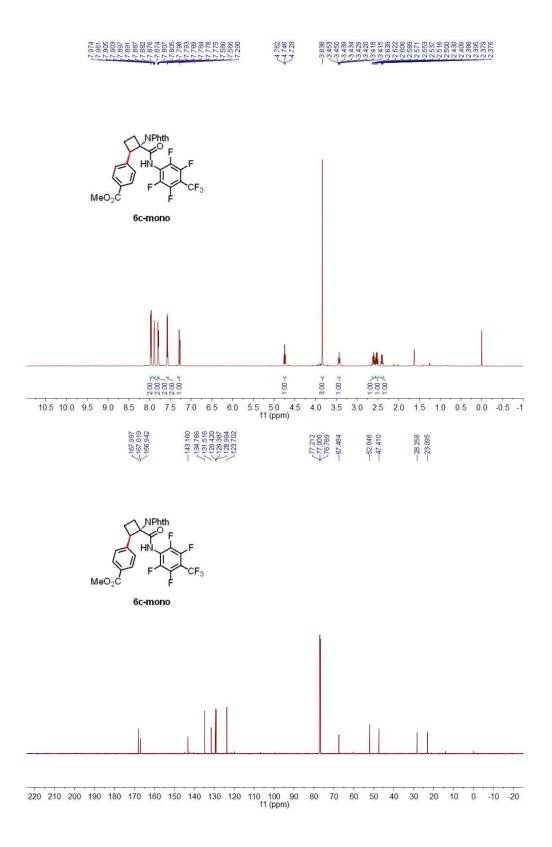


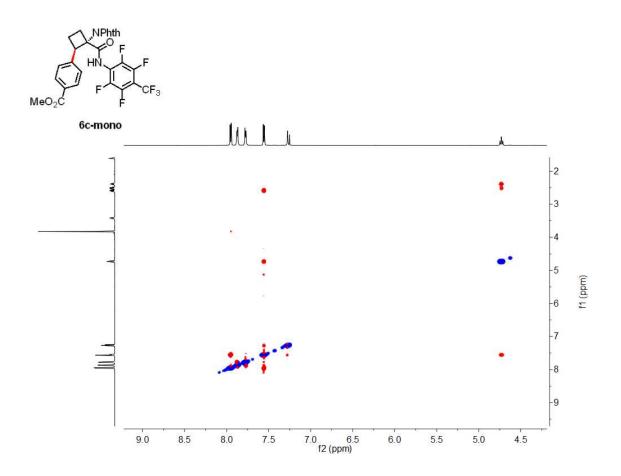

4 200

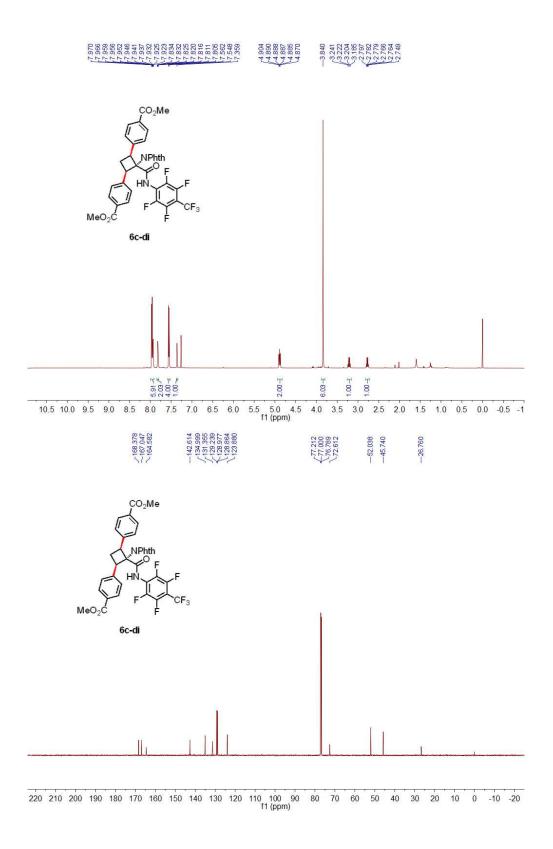


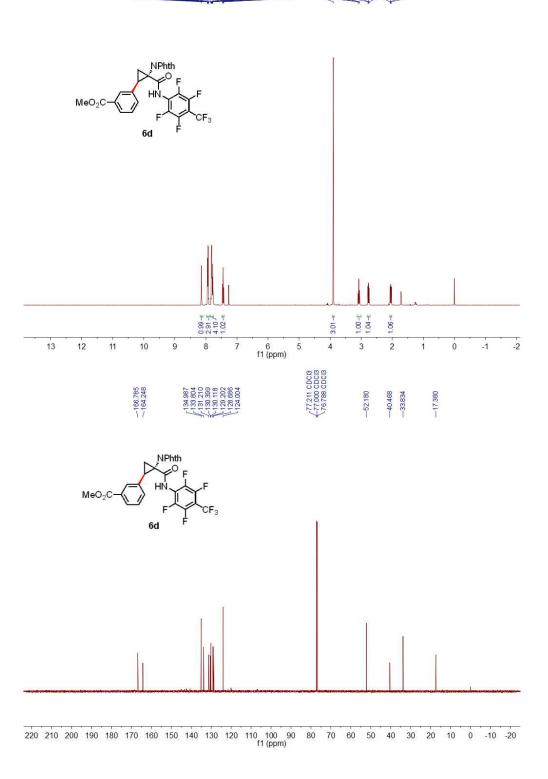


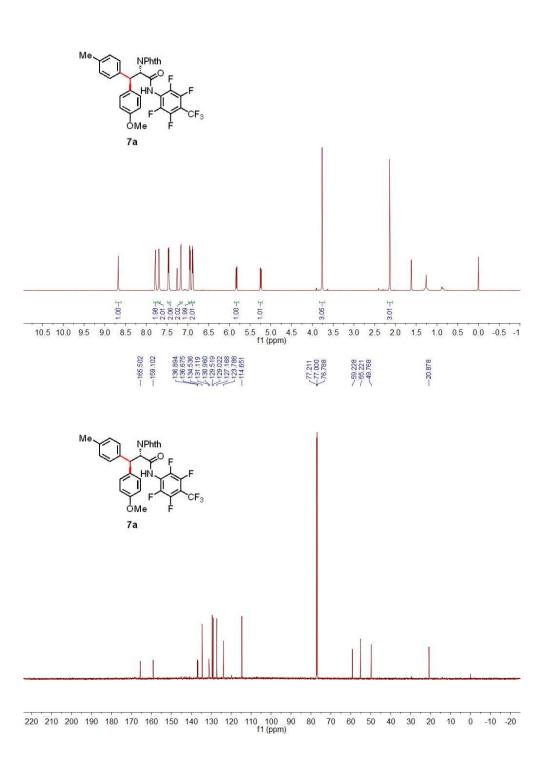


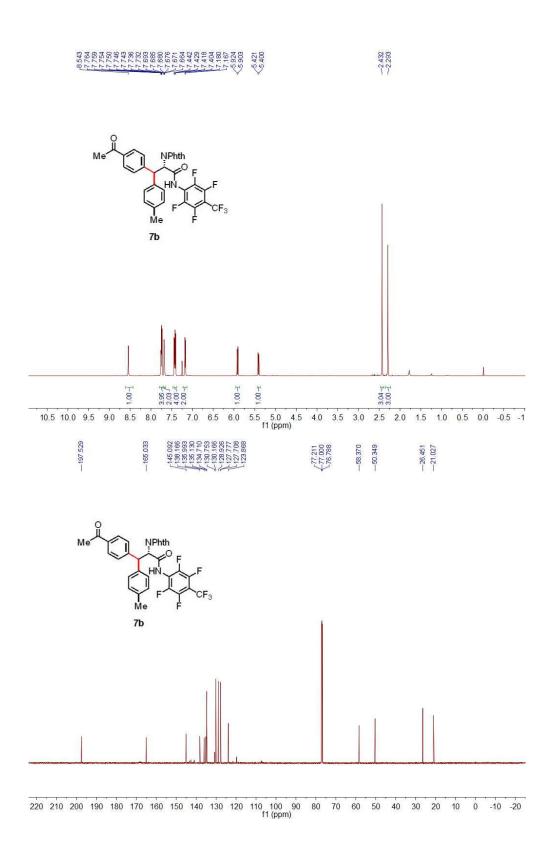


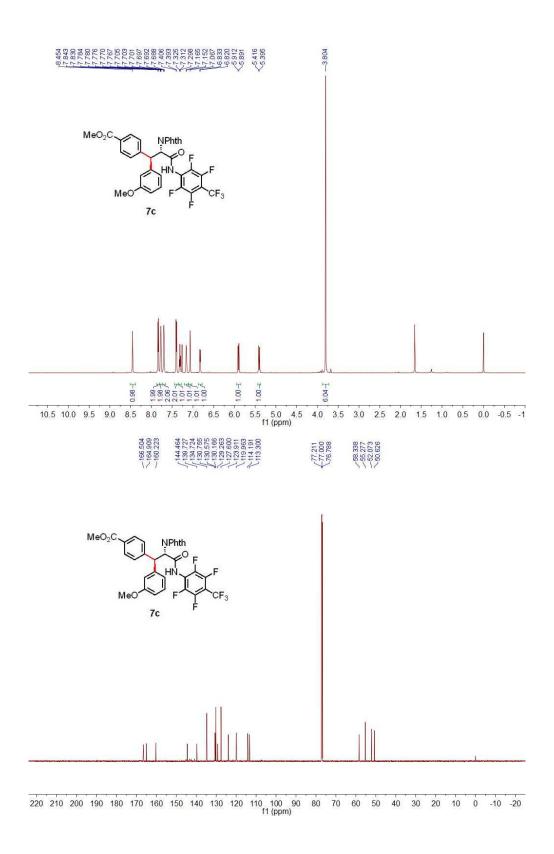


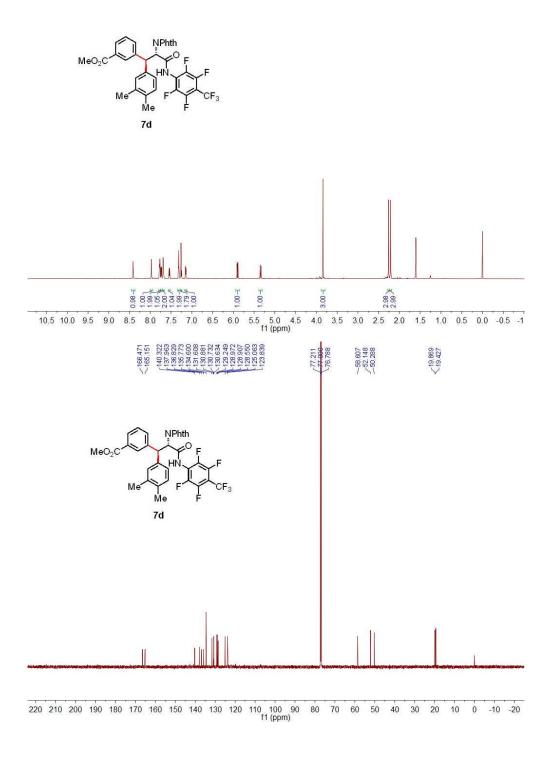

S107

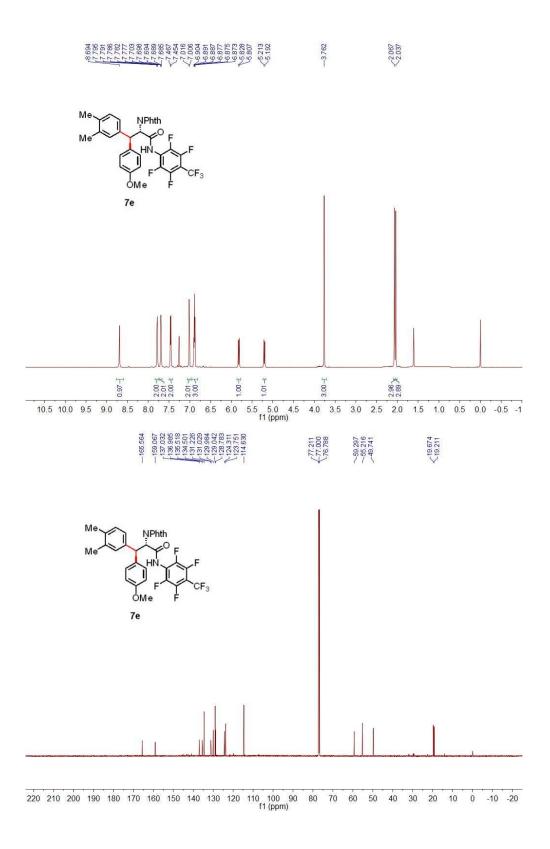


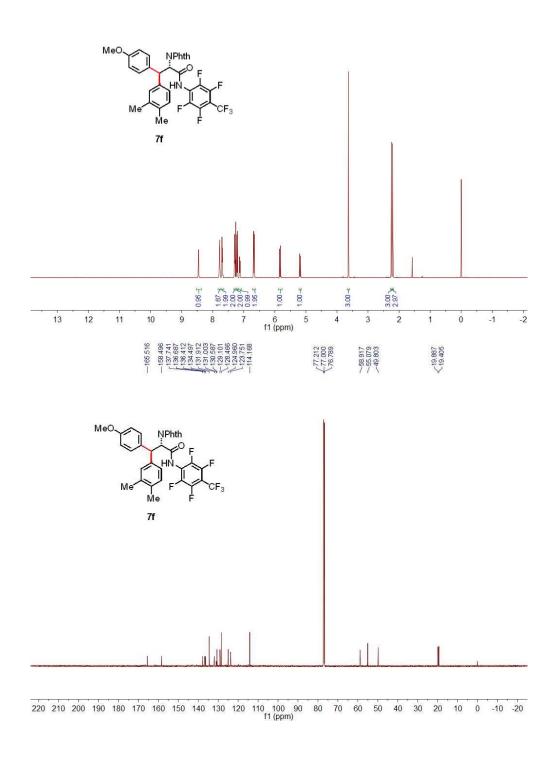


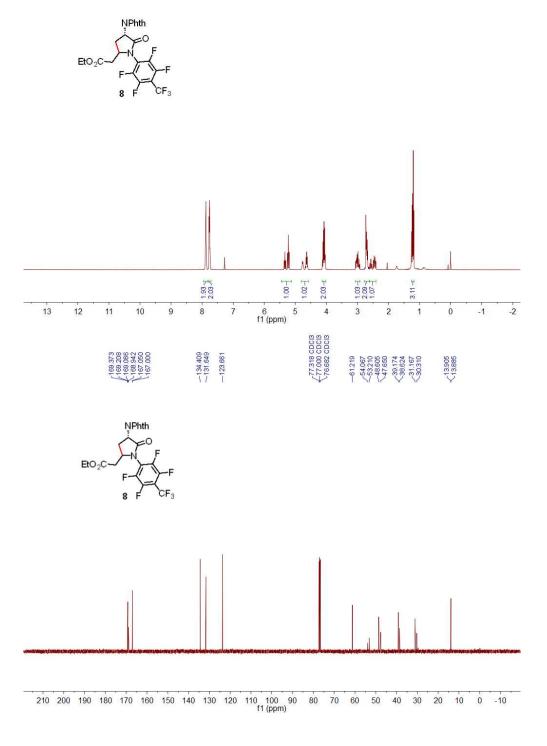


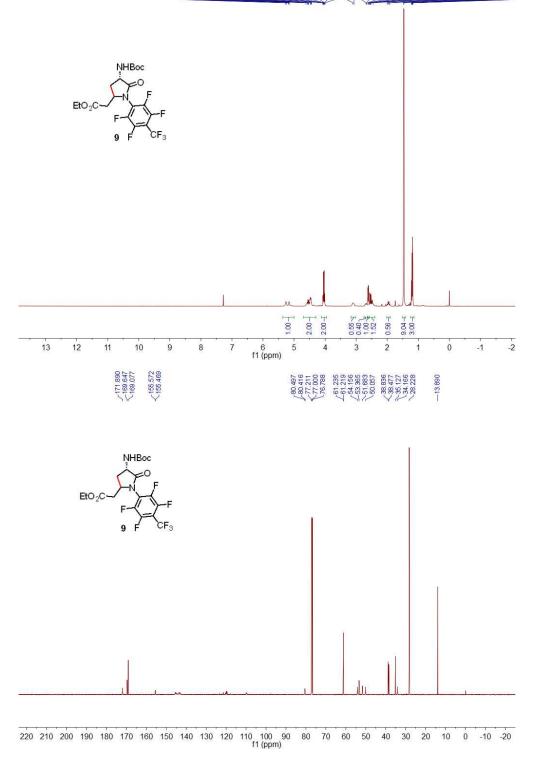


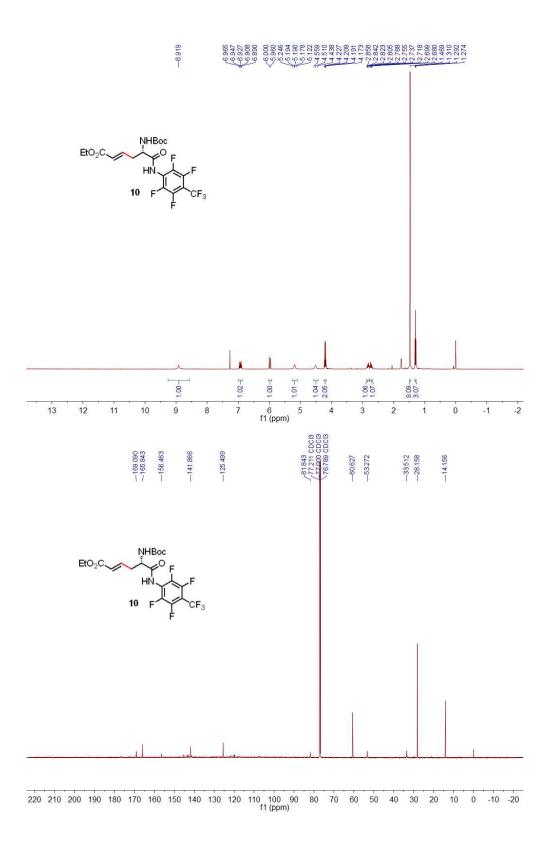


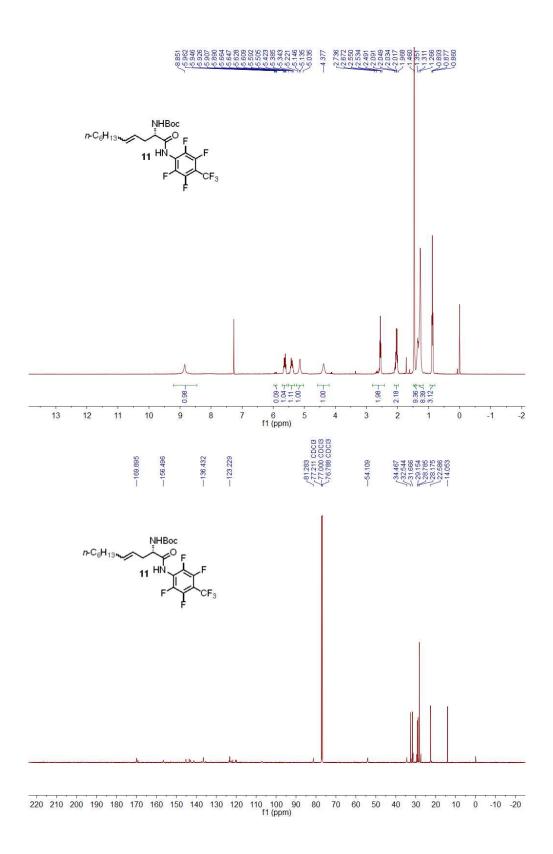


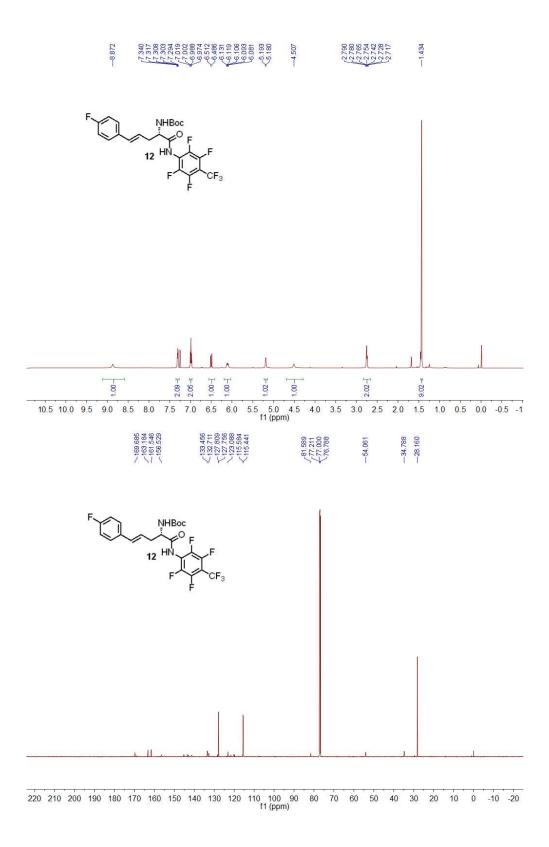


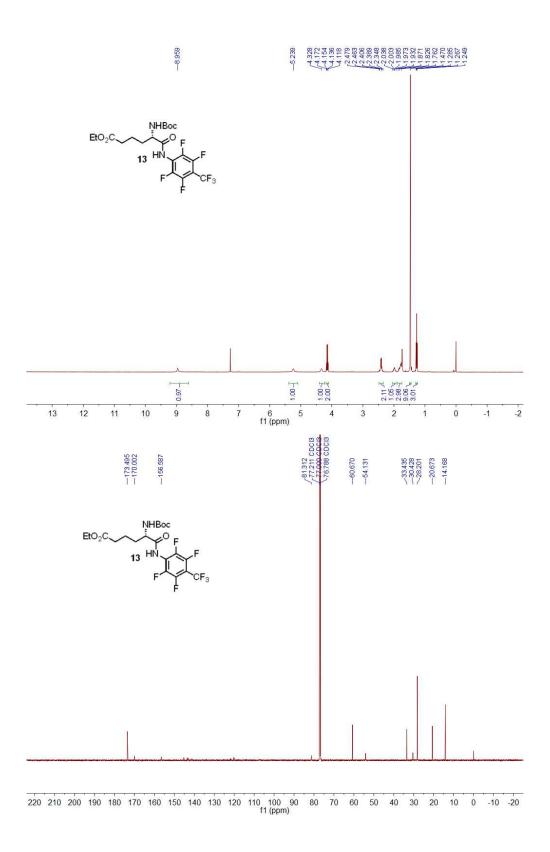


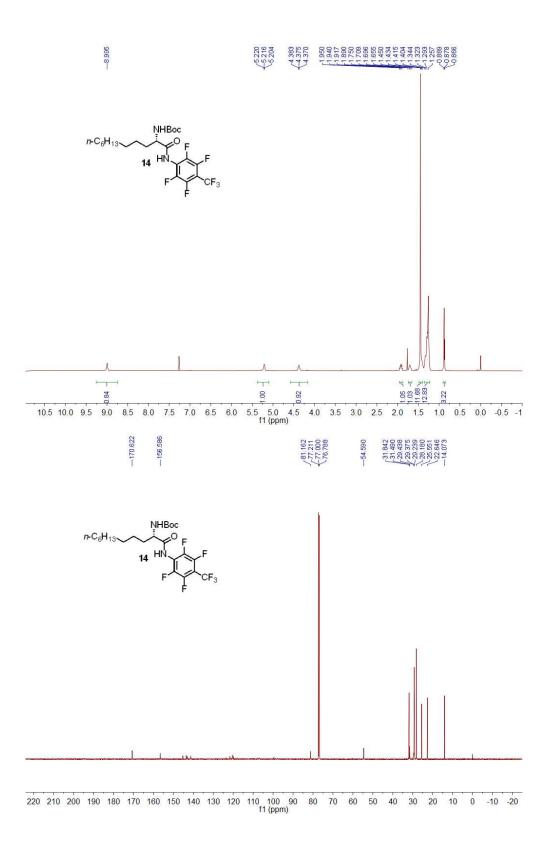


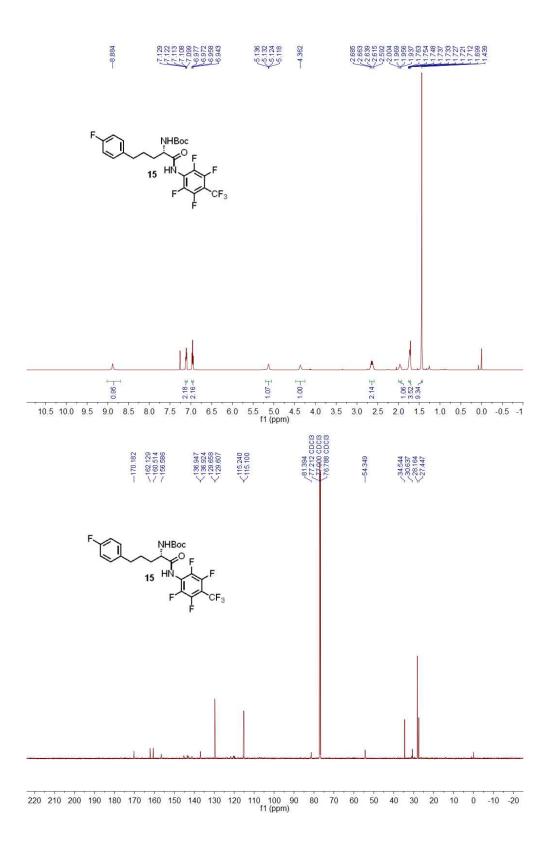


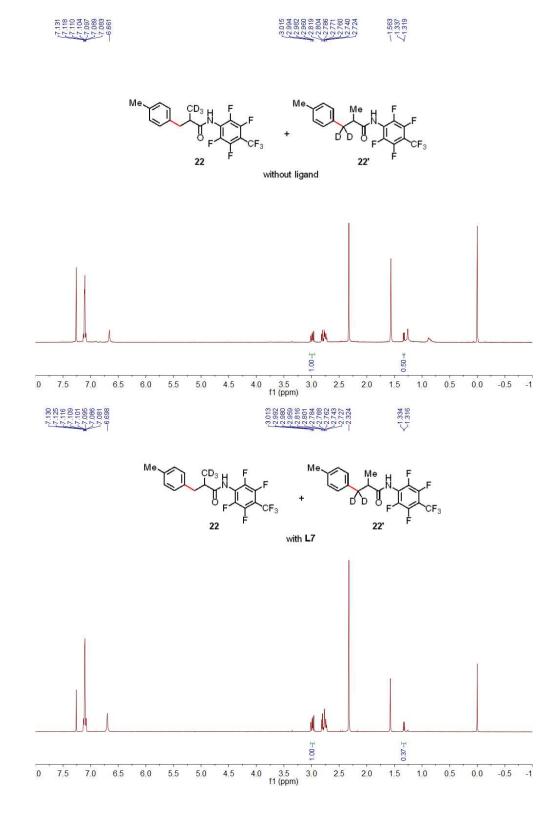


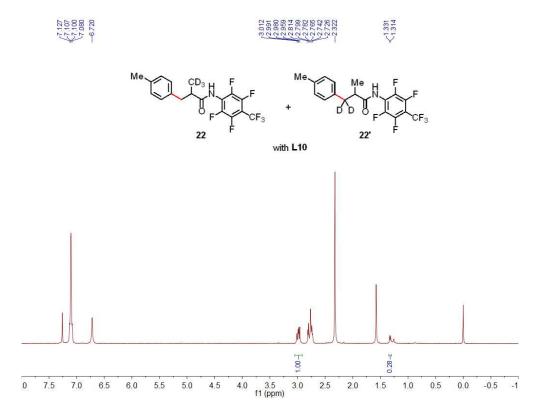












References and Notes

- R. Giri, X. Chen, J.-Q. Yu, Palladium-catalyzed asymmetric iodination of unactivated C–H bonds under mild conditions. *Angew. Chem. Int. Ed.* 44, 2112–2115 (2005). <u>Medline</u> doi:10.1002/anie.200462884
- V. G. Zaitsev, D. Shabashov, O. Daugulis, Highly regioselective arylation of sp³ C–H bonds catalyzed by palladium acetate. *J. Am. Chem. Soc.* 127, 13154–13155 (2005). <u>Medline doi:10.1021/ja054549f</u>
- S.-Y. Zhang, Q. Li, G. He, W. A. Nack, G. Chen, Stereoselective synthesis of β-alkylated αamino acids via palladium-catalyzed alkylation of unactivated methylene C(sp³)–H bonds with primary alkyl halides. J. Am. Chem. Soc. 135, 12135–12141 (2013). <u>Medline</u> <u>doi:10.1021/ja406484v</u>
- 4. D.-H. Wang, M. Wasa, R. Giri, J.-Q. Yu, Pd(II)-catalyzed cross-coupling of sp³ C–H bonds with sp² and sp³ boronic acids using air as the oxidant. J. Am. Chem. Soc. 130, 7190–7191 (2008). Medline doi:10.1021/ja801355s
- 5. M. Wasa, K. M. Engle, J.-Q. Yu, Pd(0)/PR₃-catalyzed intermolecular arylation of sp³ C–H bonds. *J. Am. Chem. Soc.* **131**, 9886–9887 (2009). <u>Medline doi:10.1021/ja903573p</u>
- 6. B. V. S. Reddy, L. R. Reddy, E. J. Corey, Novel acetoxylation and C–C coupling reactions at unactivated positions in α-amino acid derivatives. *Org. Lett.* 8, 3391–3394 (2006). <u>Medline doi:10.1021/ol061389j</u>
- D. Tran, O. Daugulis, Nonnatural amino acid synthesis by using carbon-hydrogen bond functionalization methodology. *Angew. Chem. Int. Ed.* 51, 5188–5191 (2012). <u>Medline</u> <u>doi:10.1002/anie.201200731</u>
- 8. P. M. T. Ferreira, L. S. Monteiro, G. Pereira, Synthesis of substituted oxazoles from *N*-acyl-βhydroxyamino acid derivatives. *Eur. J. Org. Chem.* 2008, 4676–4683 (2008). doi:10.1002/ejoc.200800602
- 9. R. Noyori, H. Takaya, BINAP: An efficient chiral element for asymmetric catalysis. *Acc. Chem. Res.* 23, 345–350 (1990). doi:10.1021/ar00178a005
- W. Tang, X. Zhang, New chiral phosphorus ligands for enantioselective hydrogenation. *Chem. Rev.* 103, 3029–3070 (2003). <u>Medline doi:10.1021/cr020049i</u>
- 11. S. J. Roseblade, A. Pfaltz, Iridium-catalyzed asymmetric hydrogenation of olefins. *Acc. Chem. Res.* **40**, 1402–1411 (2007). <u>Medline doi:10.1021/ar700113g</u>
- N. Rodríguez, J. A. Romero-Revilla, M. Á. Fernández-Ibáñez, J. C. Carretero, Palladiumcatalyzed *N*-(2-pyridyl)sulfonyl-directed C(sp³)–H γ-arylation of amino acid derivatives. *Chem. Sci.* 4, 175–179 (2013). doi:10.1039/c2sc21162a
- R. Shang, L. Ilies, A. Matsumoto, E. Nakamura, β-Arylation of carboxamides via ironcatalyzed C(sp³)–H bond activation. *J. Am. Chem. Soc.* 135, 6030–6032 (2013). <u>Medline</u> <u>doi:10.1021/ja402806f</u>
- 14. E. M. Simmons, J. F. Hartwig, Catalytic functionalization of unactivated primary C–H bonds directed by an alcohol. *Nature* **483**, 70–73 (2012). <u>Medline doi:10.1038/nature10785</u>

- W. R. Gutekunst, P. S. Baran, Total synthesis and structural revision of the piperarborenines via sequential cyclobutane C–H arylation. J. Am. Chem. Soc. 133, 19076–19079 (2011). <u>Medline doi:10.1021/ja209205x</u>
- 16. N. Hasegawa, V. Charra, S. Inoue, Y. Fukumoto, N. Chatani, Highly regioselective carbonylation of unactivated C(sp³)–H bonds by ruthenium carbonyl. *J. Am. Chem. Soc.* 133, 8070–8073 (2011). <u>Medline doi:10.1021/ja2001709</u>
- 17. O. Baudoin, Transition metal-catalyzed arylation of unactivated C(sp³)–H bonds. *Chem. Soc. Rev.* 40, 4902–4911 (2011). <u>Medline doi:10.1039/c1cs15058h</u>
- T. W. Lyons, M. S. Sanford, Palladium-catalyzed ligand-directed C–H functionalization reactions. *Chem. Rev.* 110, 1147–1169 (2010). <u>Medline doi:10.1021/cr900184e</u>
- R. Jazzar, J. Hitce, A. Renaudat, J. Sofack-Kreutzer, O. Baudoin, Functionalization of organic molecules by transition-metal-catalyzed C(sp³)–H activation. *Chemistry* 16, 2654–2672 (2010). <u>Medline doi:10.1002/chem.200902374</u>
- 20. M. Wasa, K. M. Engle, J.-Q. Yu, Cross-coupling of C(sp³)–H bonds with organometallic reagents via Pd(II)/Pd(0) catalysis. *Isr. J. Chem.* **50**, 605–616 (2010). <u>Medline doi:10.1002/ijch.201000038</u>
- 21. M. Wasa, K. S. Chan, X. G. Zhang, J. He, M. Miura, J. Q. Yu, Ligand-enabled methylene C(sp³)–H bond activation with a Pd(II) catalyst. *J. Am. Chem. Soc.* 134, 18570–18572 (2012). <u>Medline doi:10.1021/ja309325e</u>
- D. Wildemann, F. Erdmann, B. H. Alvarez, G. Stoller, X. Z. Zhou, J. Fanghänel, M. Schutkowski, K. P. Lu, G. Fischer, Nanomolar inhibitors of the peptidyl prolyl cis/trans isomerase Pin1 from combinatorial peptide libraries. *J. Med. Chem.* 49, 2147–2150 (2006). <u>Medline doi:10.1021/jm060036n</u>
- 23. L. Wang, W. Lu, Preparation of unsymmetrical biaryls by Pd(II)-catalyzed cross-coupling of aryl iodides. *Org. Lett.* **11**, 1079–1082 (2009). <u>Medline doi:10.1021/ol802865c</u>
- 24. Small amounts of unreacted monoarylated products (15 to 25%) from the first step are also isolated as a by-product of this transformation.
- 25. M. J. Burk, J. G. Allen, W. F. Kiesman, Highly regio- and enantioselective catalytic hydrogenation of enamides in conjugated diene systems: Synthesis and application of γ,δ-unsaturated amino acids. J. Am. Chem. Soc. 120, 657–663 (1998). doi:10.1021/ja9731074
- 26. X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: Versatility and practicality. *Angew. Chem. Int. Ed.* 48, 5094–5115 (2009). <u>Medline doi:10.1002/anie.200806273</u>
- 27. Q. Zhang, Z. Zhang, Z. Yan, Q. Liu, T. Wang, A new efficient synthesis of pyranoquinolines from 1-acetyl *N*-aryl cyclopentanecarboxamides. *Org. Lett.* 9, 3651–3653 (2007). <u>Medline doi:10.1021/o1701536q</u>
- 28. H. V. Le, L. Fan, B. Ganem, A practical and inexpensive "convertible" isonitrile for use in multicomponent reactions. *Tetrahedron Lett.* 52, 2209–2211 (2011). doi:10.1016/j.tetlet.2010.11.156

- 29. Y. Fu, B. Xu, X. Zou, C. Ma, X. Yang, K. Mou, G. Fu, Y. Lü, P. Xu, Design and synthesis of a novel class of furan-based molecules as potential 20S proteasome inhibitors. *Bioorg. Med. Chem. Lett.* 17, 1102–1106 (2007). <u>Medline doi:10.1016/j.bmcl.2006.11.020</u>
- 30. D. Uraguchi, N. Kinoshita, T. Ooi, Catalytic asymmetric protonation of α-amino acid-derived ketene disilyl acetals using *P*-spiro diaminodioxaphosphonium barfates as chiral proton. *J. Am. Chem. Soc.* 132, 12240–12242 (2010). Medline doi:10.1021/ja105945z
- 31. A. G. Myers, J. L. Gleason, T. Yoon, A practical method for the synthesis of D- or L-α-amino acids by the alkylation of (+)- or (-)-pseudoephedrine glycinamide. J. Am. Chem. Soc. 117, 8488–8489 (1995). doi:10.1021/ja00137a034