Supplemental Information

2

1

- 3 A coronin-1C/RCC2 complex guides mesenchymal migration by trafficking Rac1
- 4 and controlling GEF exposure

5

- 6 Rosalind C. Williamson, Christopher A. M. Cowell, Christina L. Hammond, Dylan
- 7 Bergen, James Roper, Yi Feng, Thomas C. S. Rendall, Paul R. Race and Mark D.
- 8 Bass

9

10 Fig. S1. RCC2 and Coro1C are Rac1 regulators

- 11 (A) Syndecan-4-stimulated Rac1 activation in RCC2 knockdown MEFs. Experiment
- uses an alternative oligo sequence to that shown in Fig. 1A. n=3.
- 13 (B) Pairwise comparison of syndecan-4-stimulated Rac1 activation at 0 and 10
- minutes stimulation, in control and RCC2-knockdown MEFs (oligo #1), the complete
- 15 timecourses are shown in Fig. 1A. n = 7.
- 16 (C) Comparison of Rac1 activation in unstimulated control MEFs and MEFs
- overexpressing GFP-RCC2. n = 4.
- 18 (D) Distribution of Rac1, RhoGDI and RCC2 between soluble (CCT2) and total
- 19 membrane (β_1 -integrin) fractions using a Qproteome kit. n=7.
- 20 (E) Scores for in silico docking experiments between RCC2/Coro1C and GDP/GTP-
- 21 loaded Rac1.
- 22 (F) Binding interface between RCC2 and GTP-Rac1 from *in silico* docking
- 23 experiments, demonstrating that interactions are confined to the Switch 1 loop of
- 24 GTP-Rac1.
- 25 (G-H) Coro1C can be divided into functional subdomains. (E) Arp3 can be pulled-
- down from lysate with GST-Coro1C-tail. (F) GFP-Coro1C full length and propeller
- domain cosediment with filamentous actin. n=4.
- 28 (I) RCC2 coprecipitated from 293T lysates with GFP-Coro1C linker region (residues
- 29 351-435), but not the coiled-coil domain (residues 436-474). Further subdivision of
- 30 the linker into N- and C-terminal parts (residues 351-397 and 393-435 respectively)
- 31 also caused loss of binding. n=4.
- 32 (J) Knockdown of Coro1C had no effect on Rac1 activity in unstimulated MEFs. n=8.
- 33 (K) Syndecan-4-stimulated Rac1 activation in Coro1C knockdown MEFs.
- Experiment uses an alternative oligo sequence to that shown in Fig. 3I. n=4.

35 Error bars indicate s.e.m.

36

37 Fig. S2. Coro1C and RCC2 regulate Rac1 localization

- 38 (A) Control, RCC2-knockdown, Coro1C-knockdown, RCC2/Rac1-knockdown, or
- 39 Coro1C/Rac1-knockdown MEFs were spread on fibronectin in the presence of serum.
- 40 Cells were fixed and stained with phalloidin and immunostained for endogenous
- 41 Rac1. Rac1 accumulated in actin-rich lamella (arrowheads) of RCC2-knockdown
- 42 MEFs and lateral membrane (arrows) of Coro1C-knockdown MEFs. Images are
- representative of 100 cells on 4 separate occasions.
- 44 (B) GFP-Rac1 accumulation in protrusions of RCC2-knockdown MEFs and along the
- sides of Coro1C-knockdown MEFs spread on fibronectin in the presence of serum.
- 46 Intensity profiles were measured across protrusions (red) and lateral membrane
- 47 (green). 13 profiles, randomly selected from 100 cells from 4 separate experiments
- are displayed.

49

50 Fig. S3. Competition between Coro1C and RCC2 cause Rac1 redistribution

- 51 (A) Rac1 was restored to the detergent-soluble fraction of Coro1C-knockdown MEFs
- by exogenous expression of Coro1C, but not Coro1A. n=4.
- 53 (B) Knockdown of Coro1C has no affect on total Rac1 protein levels, lysates prepared
- with 0.1% SDS to ensure extraction of Rac1 from all membrane fractions. n=4.
- 55 (C) Immunofluorescent staining of endogenous Coro1C demonstrating localization to
- both actin-rich ruffles (arrowheads) and lateral membrane (arrows). Staining is
- ablated by knockdown of Coro1C. Images are representative of 100 cells on 3
- 58 separate occasions.
- 59 (D) Fibroblast expressing GFP-Coro1C following RCC2 knockdown, spread on
- 60 fibronectin with serum and fixed. Image representative of 50 cells on 2 separate
- 61 occasions.
- 62 (E) Protein distribution between soluble, total membrane, nuclear and cytoskeletal
- fractions. Coro1C is still found in soluble, total membrane and cytoskeletal fractions
- upon RCC2-knockdown. n=7.
- 65 (F) Fluorescent decay curves compare redistribution of photoactivated GFP-tagged
- Rac1 from lateral membrane between control and Coro1C-knockdown MEFs.
- 67 (G) Rate constants of fluorescent decay, comparing Coro1C-knockdown with control
- 68 MEFs, using alternative oligos to those presented in Fig. 5G. n=18.

- 69 (H) Rate constants of fluorescent decay, comparing dispersion of PAGFP-Rac1 from
- 70 protrusive membrane Coro1C-knockdown with control MEFs, including dispersion
- 71 from lateral membrane of control cells for comparison. n=18.
- 72 (I) Binding interface between Coro1C and GDP-Rac1 from *in silico* docking
- experiments, demonstrating that interactions include Thr35 and Asp38, similar to the
- 74 RCC2/GDP-Rac1 complex.
- 75 (J) RCC2 coprecipitates with GFP-Coro1C and GFP-Coro1C-R31E with similar
- 76 efficiency, using a GFP-Trap from 293T cells. n=3
- 77 (K) Wild type and R31E Coro1C cosediment with freshly polymerized filamentous
- actin at 150,000xg, whereas the previously charactized actin-binding mutant of
- 79 Coro1C, R28D/2xKE, does not.
- 80 (L-M) Competition between RCC2 and Coro1C for binding to Rac1. Pull down
- assays from lysates of control, RCC2-knockdown or Coro1C-knockdown cells using
- 82 GST or GDP-loaded GST Rac1 as bait. n=6
- 83 (N-O) Knockdown of both RCC2 and Coro1C results in a morphology that resembles
- 84 RCC2 knockdown. Cells form multiple lamellae (arrowheads) on fibronectin, to
- which both immunostained endogenous Rac1 and GFP-Rac1 localize. Images are
- reproduced, in part, in Fig. S2B. n=70.
- Error bars indicate s.e.m. Significance was tested by T-test, ** p<0.005. Bar = 10 μ m.

88

- 89 Fig. S4. RCC2 and Coro1C regulate migration
- 90 (A) MEFs spread on CDM with serum, fixed and stained for cortactin and
- 91 fibronectin. Images representative of 100 cells on 2 separate occasions. Bar = $10 \mu m$.
- 92 (B) Fluorescent decay curves compare redistribution of photoactivated GFP-tagged
- 93 Rac1 from lateral membrane between control and Coro1C-knockdown MEFs plated
- 94 on CDM. n=18.
- 95 (C) Schematic of how the angle of each step of a migration path was assessed to
- 96 calculate curvature of path.
- 97 (D) Cell outlines illustrating a migration sequence, red>yellow>green>cyan>blue to
- show that control cells are processive, while RCC2-depleted cells shunt. Individual
- 99 frames derived from Movies S8-9.
- (E) Lysates of control, RCC2, and Coro1C knockdown and rescued MEFs, used in
- Fig. 7C-F) were blotted for RCC2 to confirm knockdown and rescue.

102	(F) Lateral views of control, Corol C or RCC2 morphants, at 4 dpf.
103	(G) Confocal stacks at 32 hours post fertilisation of the neural crest reporter line: Tg(-
104	4.9sox10:EGFP)ba2 (Wada et al, 2005). Images are all of left-facing zebrafish heads,
105	anterior to top. 1=neural crest stream from which 1st arch skeletal elements will be
106	derived, 2= neural crest stream from which 2 nd arch skeletal elements are derived, 1/2
107	indicates failed separation of these two streams. Fish were staged as 32 hpf by
108	reference to migration of sox10:GFP labelled pigment precursors in the trunk. Ctrl are
109	control morpholino injected (n=70), Mo only= Coro1C morpholino injected only (at
110	2ng per embryo)(n=41), Mo+mut RNA = Coro1C morpholino (2ng) in addition to
111	200 pg truncated Coro1C RNA (n=37), Mo+wt RNA= Coro1C morpholino (2ng) in
112	addition to 200 pg full-length Coro1C RNA (n=30). All embryos were injected
113	directly into the first cell at the 1-cell stage of development.
114	Error bars indicate s.e.m. Significance was tested by T-test, ** p<0.005.
115	
116	Movie 1. RCC2 and Coro1C regulate Rac1 localization and membrane
117	protrusion. Control, RCC2 or Coro1C knockdown MEFs were transfected with
118	GFP-Rac1 and filmed on a confocal microscope for 3.5 hours at 1 frame every 3
119	minutes. Red dots indicate protrusion between consecutive frames. Movie frames
120	reproduced in Fig. 4B.
121	
122	Movie 2. Localization of Rac1 activation is perturbed in RCC2 or Coro1C
123	knockdown MEFs. Rac1 activity distribution was detected using a Raichu-Rac
124	FRET probe in cells spread on 50K before addition of H/0 (white flash). A non-
125	activatable mutant probe (Y40C) was used as a control to confirm that changes in
126	FRET signal are caused by changes in Rac1 activity, not relocalization. Movie
127	captured at 1 frame every 2 minutes, for 11 minutes prior to, and up to 49 minutes
128	after stimulation. Images are false-colored for FRET intensity. Movie frames
129	reproduced in Fig. 4C.
130	
131	Movie 3. Release of photoactivated GFP-tagged Rac1 from the membrane is
132	delayed in the absence of Coro1C expression. PAGFP was photoactivated in a
133	$1.5x1.5~\mu m$ or $1.5x4.5~\mu m$ box at the lateral edge of cells spread on fibronectin and
134	release of Rac1 followed by decay of GFP fluorescence. Fixed cells (no diffusion),
135	control MEFs (large and small boxes), Coro1C-depleted MEFs (large and small

136	boxes) and Coro1C-depleted MEFs using a -CAAX mutant Rac1 (no association of
137	PAGFP-Rac1 with membrane) were analyzed. Images are false-colored for
138	fluorescence intensity. Images were captured at 2 images per second for 5 seconds
139	prior to, and 15 seconds after photoactivation, and displayed at 2 frames per second.
140	Movie frames reproduced in Fig. 5F.
141	
142	Movie 4. Retrafficking of Rac1 from lateral to protrusive membrane is reliant on
143	Coro1C. PAGFP-Rac1 was photoactivated in boxes at the lateral edge of control or
144	Coro1C KD cells spread on fibronectin, and arrival at protrusive membrane recorded.
145	Images are false-colored for fluorescence intensity. Images were captured at 1 image
146	per minute for 10 minutes following photoactivation and displayed a 1 frame per
147	second. Movie frames reproduced in Fig. 5H.
148	
149	Movie 5. Retrafficking of Coro1C from lateral to protrusive membrane. PAGFP-
150	Coro1C was photoactivated by 3 pulses within 1 minute at boxes on the lateral
151	membrane of cells spread on fibronectin, and arrival at protrusive membrane
152	recorded over 10 minutes at 1 image per minute for 10 minutes following
153	photoactivation. Movie frames reproduced in Fig. 5I.
154	
155	Movie 6. RCC2 and Coro1C expression are necessary for processive migration.
156	Control, RCC2 and Coro1C knockdown and Sdc4 -/- MEFs migrating through a cell-
157	derived matrix. Movie captured with a 5x lens at 1 image every 10 minutes for 10
158	hours, displayed at 5 frames per second, bar = $100 \mu m$.
159	
160	Movie 7. RCC2 and Coro1C expression are necessary for processive migration.
161	Control, RCC2 and Coro1C knockdown MEFs migrating through a cell-derived
162	matrix. Movie captured with a 40x lens at 1 image every 10 minutes for 10 hours,
163	displayed at 5 frames per second, bar = $10 \mu m$.
164	
165	Movie 8. Shunting migration of RCC2 knockdown MEFs is not due to a tail
166	retraction defect. β ₁ -integrin-GFP-expressing MEFs transfected with control oligos
167	were filmed migrating through a cell-derived matrix to allow the rearmost attachment
168	point to be seen. Movie captured at 1 frame every 10 minutes, displayed at 6 frames
169	per second.

170	
171	Movie 9. Shunting migration of RCC2 knockdown MEFs is not due to a tail
172	retraction defect. β ₁ -integrin-GFP-expressing MEFs transfected with RCC2-targeted
173	antisense oligo were filmed migrating through a cell-derived matrix to allow the
174	rearmost attachment point to be seen. Movie captured at 1 frame every 10 minutes,
175	displayed at 6 frames per second.
176	
177	Movie 10. RCC2 and Coro1C expression are necessary for processive migration.
178	Control, RCC2 and Coro1C knockdown MEFs migrating along 5-µm fibronectin
179	stripes. Movie captured at 1 image every 10 minutes for 6.5 hours, displayed at 3
180	frames per second, bar = $50 \mu m$.

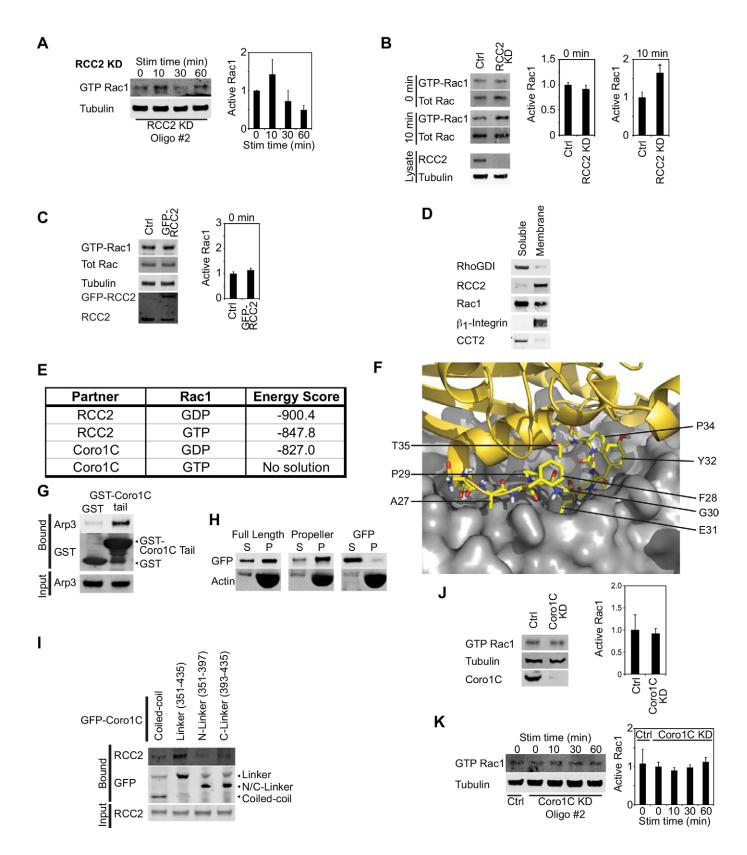
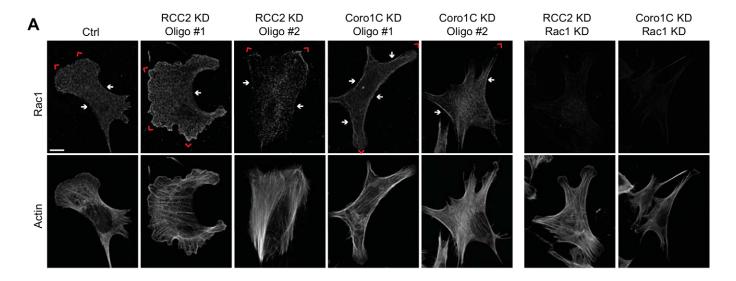



Figure S1.

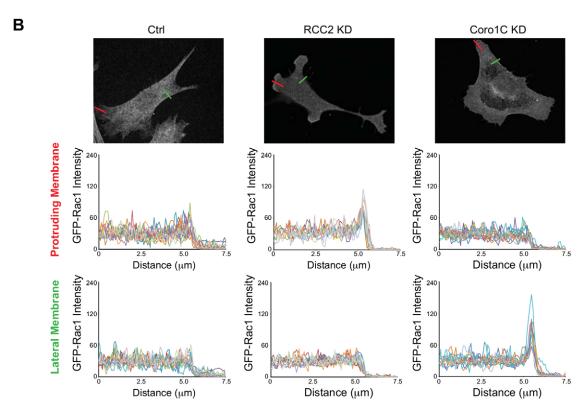


Figure S2.

Figure S3.

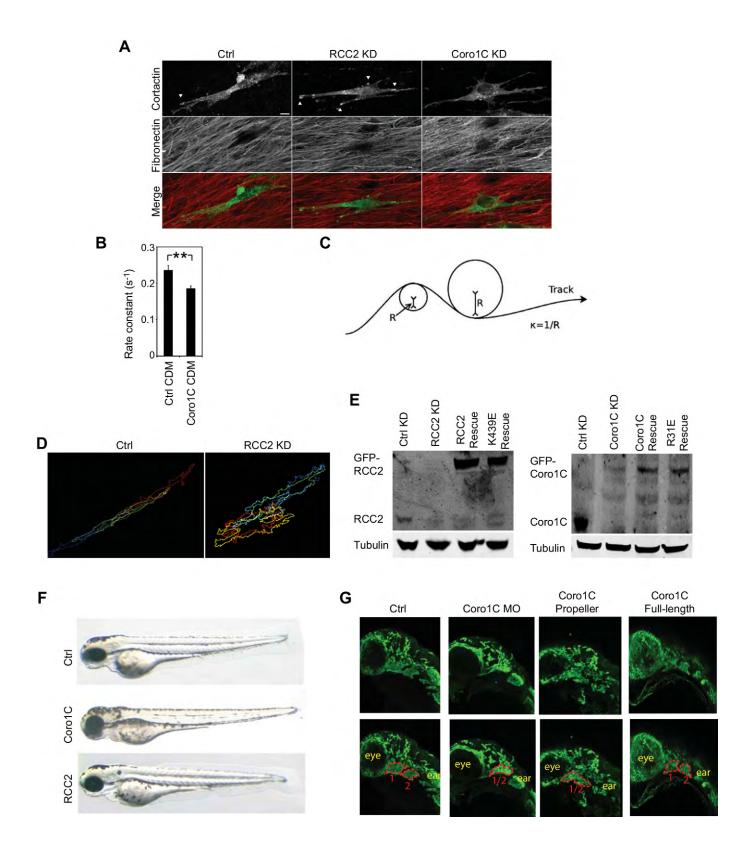
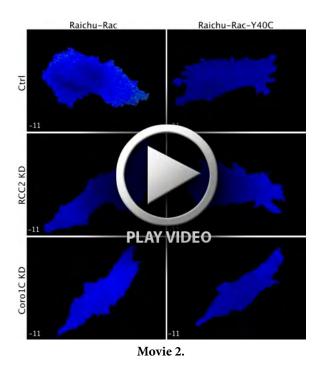
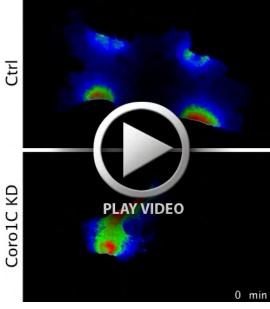



Figure S4.



Movie 1.

Movie 3.

Movie 4.

Movie 5.

Movie 6.

Movie 7.

Movie 8.

Movie 9.

Movie 10.