Supplement to Tree-Structured Infinite Sparse Factor Model

XianXing Zhang

Electrical & Computer Engineering Department, Duke University, Durham, NC, USA xianxing.zhang@duke.edu

David B. Dunson

Department of Statistical Sciences, Duke University, Durham, NC, USA dunson@stat.duke.edu

Lawrence Carin

Electrical & Computer Engineering Department, Duke University, Durham, NC, USA lcarin@duke.edu

1 Proof of Theorem 1

To prove Ω_b converges a.s. for any $b \in \mathcal{T}$ we need to show that matrix $\Delta_b = \sum_{n \in b^i} d_n d_n^T$ converges a.s. for each element $\sum_{n \in b^i} d_n d_{is}$, $1 \le r, s \le P$.

Lemma 1. *(Lévy's theorem) Suppose* $\{X_n\}_{n\geq 1}$ *is an independent sequence of random variables,* $\sum_{n=1}^{\infty} X_n$ converges a.s. iff $\sum_{n=1}^{\infty} X_n$ converges *i.p.* $\sum_{n=1}^{\infty} X_n$ *converges a.s.* iff $\sum_{n=1}^{\infty} X_n$ *converges i.p.*

Lemma 2. *(Cauchy criterion)* $\{X_n\}_{n\geq 1}$ *converges i.p. iff* $X_{n+k} - X_k \to 0$ *i.p. as* $n, k \to \infty$

Since each branch b is modeled as a factor model, for all loadings on b we denote $m_{k,p} = \sum_{l=k}^{\infty} d_{pl}^2$. By Cauchy-Schwartz inequality: $\left(\sum_{l=k}^{\infty} d_{rl} d_{ls}\right)^2 \leq \sum_{l=k}^{\infty} d_{rl}^2 \sum_{l=k}^{\infty} d_{ls}^2 \leq \max_{1 \leq p \leq P} m_{k,p}^2$. Combining this result with Lemma 1,2, to prove Theorem 1 it's sufficient to show that $\lim_{k\to\infty} p(\max_{1\leq p\leq P} m_{k,p} < \epsilon) = 1$:

$$
p(\max_{1 \le p \le P} m_{k,p} < \epsilon) = E\{p(\max_{1 \le p \le P} m_{k,p} < \epsilon | \gamma_p)\} = E\{p(m_{k,1} < \epsilon | \gamma_1)^P\}
$$
\n
$$
\ge E\{p(m_{k,1} < \epsilon | \gamma_p)\}^P = (1 - E\{p(m_{k,1} \ge \epsilon | \gamma_1)\})^P \ge \left(1 - E\left(\frac{E(m_{k,1} | \gamma_1)}{\epsilon}\right)\right)^P
$$

where the equality in the first line follows from the fact that $m_{k,p}$ are conditionally i.i.d given γ_p and the subsequent two inequalities use Jensen's and Chebyshev's inequality respectively. Now based on equation (3) in the paper: $E(E(m_{k,1}|\gamma_1)) = \sum_{l=k}^{\infty} 3ba^{l-1} = \frac{3b}{1-a}a^{k-1}$, where $b = E(\zeta_1^{-1}), a =$ $E(\zeta_2^{-1})$ < 1 if $c_2 > 2$. At last we arrive at the sufficiency equation and thus Theorem 1 is proved:

$$
\lim_{k \to \infty} p \Big(\max_{1 \le p \le P} m_{k,p} < \epsilon \Big) \ge \lim_{k \to \infty} \left(1 - \frac{3b}{(1-a)\epsilon} a^{k-1} \right)^P = 1
$$

2 Figure 1 and Figure 4

