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ABSTRACT An n-allele model is developed for the FMR1
locus, which causes the fragile X syndrome, where n is the
number of triplet repeats in the first exon. Frequencies in the
general population and in index families are used to generate
an n to n + 8 transition matrix that predicts specific risks in
satisfactory agreement with observation. However, until se-
quencing distinguishes between stable and unstable alleles
with the same value ofn, it is premature to inferwhether allelic
frequencies at the FMRI locus are at equilibrium or, as some
have suggested, are evolving toward higher frequencies of the
pathogenic allele.

The fragile X syndrome [Fra(X)] of mental retardation is the
commonest disease of progressive amplification, inf which an
increasing insert leads to failure of gene expression. A four-
allele model accounts for major features of Fra(X) (including
gene frequencies, mutation rates, and genetic risks) in terms of
triplet repeats in the FMR1 locus (1). TheN allele seldom has
more than 40 repeats and is stable except for rare mutation to
allele S, which has more than 40 repeats and converts to an
unstable allele Z at the rate of about 0.01 per generation. The
Z allele converts at the rate of 74% in the female germ line to
the "full mutation" allele L characterized by methylation, late
replication, loss of expression of the FMRI gene, and the
Fra(X) phenotype. This conversion of the maternal X chro-
mosome may occur in the early zygote, and L alleles are
somatically unstable (2, 3). TheZ allele typically has more than
60 repeats, while the L allele usually has more than 200 (Fig.
1). Poor distinction between Z "premutations" with a high risk
for Fra(X) offspring and "intermediate" S alleles with infin-
itesimal risk is troublesome in clinical genetics. Although
(CGG), sequences are more unstable than less monotonous
repeats of the same length (4-6), too little sequencing has yet
been done to model these qualitative effects. We are con-
cerned here with frequencies and quasicontinuous effects of
repeat length.

MATERIALS AND METHODS
From data on fragment lengths in normal populations we
estimate frequencies of large values of n, assuming a mono-
tonic discrete distribution. Risks for unstable transmission are
assumed to have a logistic distribution dependent on fragment
size. Parameters were estimated by maximum likelihood (ML),
using Newton-Raphson iteration with exact derivatives. Be-
cause of evidence that the conventional molecular standard
underestimates length of (CGG)n by one repeat and that the
mode of n is 30, we added 1 to each value of n in samples with
the mode at 29 (7).

RESULTS
Frequencies in the General Population. A sample of T

chromosomes from the general population is expected to have
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Table 1. Definitions and estimated frequencies (1)
Mean gene

Allele Type Methylation Instability frequency (Q)
N Normal 0 0 0.9745
S Intermediate 0 + 0.0247
Z Premutation 0 + + 0.0005
L Full mutation + + + + 0.0003
Q = (qm + 2 qf)/3, where qm and qf are frequencies in males and

females.

a frequency Qs = u/k for allele S, where the mutation rate
from N to S has been estimated as u = 24.7 x 10-5 per
generation and the mutation rate from S to Z is k - 0.01 per
generation (1). Therefore Qs is about 0.025. The frequency of
alleles Z and L is much smaller and may be lowered by
exclusion of retarded individuals and their close relatives
(Table 1).
The tail of the distribution of the control sample shows a

gradual decline in frequency with many empty cells (Table 2).
To obtain a reasonable representation of the tail we must fit
a theoretical distribution f(m), where m = n - nO + 1 for m
= 1, ... oo. Here n is the number of repeats and no, no + 1,.
are the repeat numbers in the tail, without implying any
relation between no and the thresholds for alleles S and Z.
Since the sample sizeM in the tail is small, analysis is confined
to distributions with only a single parameter q. Denoting the
observed frequency byg(m) and lg(m) = M, the tth Newton-
Raphson iteration is

U gE (m) alnf(m)]
m

K= >g(m)[--nfM] [1]

q(t) = q(t-l) + U/K1(t-1)

At convergence the likelihood ratio V2 is 21g(m) ln[g(m)/
Mf(m)]. The large proportion of cells with small expectations
makes the degrees of freedom approximately equal to one less
than the number of values of m preceding the terminal vector
with g(m) = 0. Given r estimates of q, a pooled value is
obtained by taking q = EqK/IK, and heterogeneity is tested
by Xr-12 = .U2/K -(U)2/yK
We considered two discrete frequency distributionsf(m) for

tails (m = 1, 2, ... 00; 0 < q < 1), the logarithmic and the
truncate geometric.

Logarithmic: [ln(lq)] m

Truncate geometric: q-1(1 -q).

Abbreviations: Fra(X), fragile X syndrome; ML, maximum likelihood.
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FIG. 1. Relation between alleles and phenotypes (1, 8).

Both fit well, but extrapolation to large alleles is risky (Table
3). Either density may be used to infer other properties of the
FMR1 locus, estimating the distribution of n in the general
population as

g(n)/T for n < no

fan) =Mf(m)/T for n 2 n0,

where g(n), T, and M are taken from the Wessex sample for
which no = 35 (8).

Transition Probabilities. We wish to estimate the matrix
Tn(n+,) of transition from n to n + 8, with sequence effects
neglected for lack of detailed information. Tn(n+,) is square,
asymmetric, and row stochastic (IjTn(n(+a) = 1 for all n). We
assume that only two risk categories need be considered, from
Z alleles in females (Zf) and the remainder (Zf) that includes
N and S alleles in both sexes and Z alleles in males. For each
category the possible outcomes Ei are grouped into four classes
(i = 1, ...4) corresponding to 8 = 0, 8 < 0, 0 < 8 < 200 -

n, and 8 2 200 - n. The last event includes expansions of Zf
and Zf alleles to premutations with more than 199 repeats
which are assigned to n + 8 = 200 as well as expansions to the
full mutation which occur only in Zf and are assigned to n +
8 = 201 with T201(2ol) = 1. Rare instances of 8 s - n are
assigned to n + 8 = 1. Therefore Tn(n+,) is of order 201 and
each element (for n < 200) is of the form

P(Eiln) = P(ZfIn)P(EIjZf, n) + [1 - P(ZfIn)IP(EIjZf, n). [3]

To estimate these elements we take

P(ZfIn) = P(ZfIZ)P(ZLf, n), [4]

where P(ZfIZ) is the proportion ofZ alleles in females, or 6/(9
- y) = 0.73 (ref. 1, Table 2), and P(Zif n) is the probability
that an allele with n repeats drawn randomly from a female is
Z. These probabilities reflect transmission of Z alleles from
fathers exclusively to daughters. In the next sections we derive
and estimate conditional probabilities.

Meiotic Instability. Fra(X) families are enriched for con-
version ofZ to L. To allow for this we delete probands and let
l(n) be the residual number of full mutations among t(n)
transmissions from Z carrier females to nonprobands (Table
4). Then the frequency of conversion of Z to L is a sigmoid
function that will be approximated by

z(n) = E[l(n)/t(n)] = 1/(1 + ea - b[ln(n)]) [5]

Pooling the three Fra(X) samples, the ML estimates are a =

65.155 ± 6.782 and b = 14.955 1.558 with X2 = 18.17,
whereas the linear logistic gave x2 = 23.51.
One study (9) recorded the number of unstable transmis-

sions u(n) among observed transmissions t(n) in the normal
population. We assume that this can be approximated in both
sexes by

s(n) = E[u(n)/t(n)] = 1/(1 + eWXn). [6]

Table 2. Analysis of large numbers of repeats in control chromosomes

S. L. Sherman
(personal

Macpherson Reiss Brown communica-
et al. (8) et al. (9) et al. (10) tion) Fu et al. (11)

Statistic n g(n) n g(n) n g(n) n g(n) n g(n)
35 2 47 3 42 4 41 3 40 6
36 2 48 2 43 4 43 1 41 5
37 1 49 4 44 1 45 1 42 1
39 1 50 1 47 1 46 1 44 1
40 1 51 1 48 1 48 1 45 2
43 1 52 1 49 1 52 1 46 1
49 1 53 1 52 2 54 1 47 1
50 1 76 1 57 1 55 1

q for logarithmic 0.946 0.931 0.908 0.955 0.892
q for truncate geometric 0.833 0.803 0.759 0.853 0.731
x2 for logarithmic 14.71 16.08 15.57 18.51 13.54
x2 for truncate geometric 13.56 17.06 15.17 17.33 14.29
Degrees of freedom 15 29 10 16 15
Sample size (1) 188 1538 570 263 492
Tail size (M) 10 14 14 10 18
P(n > 60) for logarithmic 0.00190 0.00071 0.00068 0.00292 0.00044
P(n > 60) for truncate geometric 0.00046 0.00042 0.00017 0.00158 0.00005

1%.
1%.

--px
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Table 3. Comparison of tail distributions for control chromosomes
Truncate

Statistic df Logarithmic geometric
Total x2 85 78.41 77.41
x2 for pooled g(m) 29 34.69 29.89
Heterogeneity x2 4 7.88 8.42
4 - 0.934 0.804

r,K 375.1 1315.2
P(n > 60)* 0.00115 0.00045

*Weighted by m.

Table 4 gives w = 10.863 ± 3.891 andx = 0.177 ± 0.076 (Fig.
2).

Several studies have attempted to estimate the magnitude of
transitions in the normal population (3, 8-10, 11, 13). How-
ever, changes of only one or two repeats may be confounded
with errors of estimation and are least likely to be detected in
stable N alleles. We therefore excluded the sole observation
(14) from alleles with less than 41 repeats, where the bias
would be expected to be greatest (Table 5).

Excluding full mutations (Z -- L), a transition from n to
n + 8 for 8 # 0 and d = 181 can be decomposed into two
probabilities. On the assumption that half of transitions are to
smaller sizes when d = 1, but the frequency becomes negligible
as d increases, the first probability will be approximated by

P(8< Old * 0) = 1/(1 + e(d-l)).
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FIG. 2. Instability of repeat number.

[7]

The data of Table 5 give ,B = 0.295 ± 0.138. The conditional
frequency of negative transitions is estimated to be 0.4 at d =

3 and 0.1 at d = 9. The second probability distribution is P(djd
> 0). The variance is too great for a Poisson distribution (Table
5), and so we assume a truncate geometric or

P(dld 0, n) = pd-l(l - p), [8]

where p = 1/(1 + es-In). From Table 5 we estimate s = 1.296
± 0.875, t = 0.060 + 0.012. In principle, separate estimates
should be made for each sex, but the numbers and differences
in Table 5 are too small to warrant this at present.
We need one further pair of estimates, for P(ZLt; n) = f(u,

v). Observations h(n) on the distribution k(n) of Z alleles in
mothers of Fra(X) probands are informative but propagate
errors inf(n) and z(n). We therefore combinedf(n) in Wessex
(Table 2) with k(n) in Table 6, taking

k(n) = f(n)P(Z f, n)z(n)/1f(n)P(ZLf, n) [9]

and imposing constraints on Q, and y as a trinomial
pseudosample of size N with likelihood NQ2YsIQz(1-Y)tN(1-Qz),
where r = 1f(n)P(Z[f, n)z(n), s = 1f(n)P(Zjf n)[1 - z(n)], and
t = Yf(n)[l - P(ZV n)]. We took N = 106, Q. = 0.0005, and
y = 0.74. The function P(Z[f; n) = 1/(1 + eu-vn) gave the same

likelihood with the truncate geometric and logarithmic distri-
butions for f(n), but with different estimates. Replacement of
n by n2 or ln(n) did not alter the likelihood. We therefore
retained the linear estimates, which were q = 0.944, u = 27.356,
v = 0.355 for the logarithmic and q = 0.901, u = 24.787, v =

0.306 for the truncate geometric distribution (Fig. 3). Although
these and previous estimates are not exact, we shall use them
as parameters for lack of better alternatives. A direct estimate
of P(Zlf n) can be made when the sequences that determine
the Z alleles have been defined.

Tests of Predictions. The three samples in Table 2 with no
> 40 support 41 as the lower limit of S alleles. They give 25/943
= 0.0265 as the pooled estimate of Q, + Qz, in close agreement
with the preliminary estimate of 0.0252 in Table 1. An
alternative expression is 2n=°41 f(n), which also agrees well
(Table 7). There is enforced agreement with Zf(n)P(Z[f, n) =

Q, = 0.0005. The estimate of Yf(n)P(Zf, n)z(n)/Qz = y = 0.74
is nearly but not perfectly satisfied.

Unconstrained predictions are of greater weight. The con-
version rate from N to S is

40 200

u = f(n) Tn(n+,)IQN
n=l n+8=41

[10]

Table 4. Instability of meiotic transmissions

Control chromosomes Fra(X) families Fra(X) families Fra(X) families [S. L. Sherman
[Reiss et al. (9)] [Heitz et aL (12)] [Fu et aL (11)] (personal communication)]

Total Unstable Total Full mutation Total Full mutation Total Full mutation
n t(n) u(n) n t(n) 1(n) n t(n) l(n) n t(n) I(n)

19 12 0 70 20 2 67 5 0 60 1 0
24 12 0 80 16 9 71 3 1 70 2 2
29 18 0 97 50 45 74 6 4 76 2 1
34 7 0 113 24 24 78 2 2 86 5 4
39 11 0 130 21 21 81 3 2 106 14 14
44 3 0 84 8 7
49 11 2 87 3 2
61 3 1 91 3 3

94 11 11

Medical Sciences: Moffis et aL
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Table 5. Transitions in unstable transmissions (S -- S', Z and
Z ->Z')

Ref. Sex n 8

9
10
11
11
11
11
11
11
11
11
11
11
11
11
10
11
11

f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f

49
52
53
55
55
55
55
55
60
67
67
67
67
67
68
71
71

+1
-5
+21
-2
+3
+4
+4
+6
-5
+7
+7
+14
+20
+44
+27
-4
+33

f(n) ASSUMED LOGARITHMIC
.99

Ref. Sex n 8

11
11
3
3
3

11
11
11
11
13
9
10
10
11
11
11
11

f
f
f
f
f
f
f
f
f
f
m
m
m
m
m
m
m

74
74
75
75
75
81
84
87
87
91
47
56
56
67
67
87
117

+40
+97
+13
+26
+96
+20
+10
+40
+107
+25
+6
+4
+12
+4
+17
+14
+47

and the conversion rate from S to Z is

200 200

k = I f(n)[1 - P(Z[, n)] E Tn(n+})P(Z[f, n)/Q,. [11]
n=41 n+6=41

Our problem is to estimate Tn(n+,) from these data. If the
geometric distribution could be trusted for 8 = 0 we would
have P(8 = OIZ, n) = 1 - p. However, this extrapolation from
the truncate distribution is questionable and violates our
estimate of P(6 = O|n) by Eq. 6. We therefore take

P(8 = OlZf, n) [1 - s(n)](1 - )pf)
(1 -pf)P(Zfln) + (1 -p.)P(Zfln)

and [12]

P(S=012f,n) =

[1 - s(n)](1 -pm)P(S = OjZf, n) = (1 pf)P(Zdn)+ (1lPm)P(Zfln) '

which satisfy P(S = Oln) = 1 - s(n).
To conserve our estimate of z(n) we take

P(6 . 200 - nIZf, n)

- z(n) + [s(n) - z(n)] , p(8> Old 0 O)P(dld # 0, n)
d=200
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Table 6. Distribution h(n) in progeny-tested Zf alleles

Heitz
et al. (12)

n h(n)
70
80
97
113
130
140
156

4
20
68
35
18
2
1

S. L. Sherman
(personal

communica-
tion)

n h(n)
70
76
86
106

2
1
4
14

ALLELE REPEAT SIZE n
FIG. 3. Predictions of the model.

Fu et al. (11)

n h(n)

67 1
71 2
74 5
78 3
81 3
84 8
87 3
91 4
94 8
101 4
111 2
114 1

P(S:- 200 - njZf, n)

-O+s(n) > P(8>Old # O)P(dld # O,n).
d=200

The first term in each of these expressions is the contribution
to Tn(2ol); the remainder is the contribution to Tn(200).
We constructed Tn( +,) from these results, tentatively taking

pf = pm = p as noted above. The estimates of k by Eq. 11 and
of u by Eq. 10 are in surprisingly good agreement with
prediction (Table 7), considering low precision of the transi-
tion matrix for small values of n, possible bias in Table 5 toward
reporting of large expansions, and arbitrary distinction be-
tweenN and S alleles. The cumulative distribution of n among
S alleles is

Proc. Natl Acad ScL USA 92 (1995)
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Table 7. Tests of predictions
Predicted value

Frequency Truncate
or rate Ref. 1 geometric Logarithmic
Q, + QZ 0.0252 0.0285 0.0138

QZ 0.0005 0.0005 0.0005
y 0.74 0.72 0.71
k 0.006-0.049 0.041 0.043
u 24.7 x 10-5 19.1 x 10-5 19.3 x 10-5

n

If (n)[1 - P(ZV, n)]

F(n|S) = . [13]

Zf (n)[1 - P(Z[, n)]
41

Although most S alleles have n less than 60, a fraction are
predicted to fall between 60 and 70, with a few larger values
(Fig. 3). This conclusion does not depend on the assumed tail
distribution f(n) and is consistent with considerable amplifi-
cation before conversion toZ in a proportion of cases (perhaps
by loss of TGG and AGG triplets), but a critical test depends
on large alleles not ascertained through Fra(X) probands. Such
alleles are rare and at present difficult to sequence.

DISCUSSION
Much of mathematical genetics is now concerned with genetic
epidemiology, often directed toward phenotypes determined
by multiple mendelian genes. Progressive amplification (to-
gether with mitochondrial inheritance, germinal mosaicism,
parental imprinting, and uniparental disomy) typifies a com-
plementary class of nonmendelian monogenic disorders. The
challenge to genetic epidemiology they currently provide will
not disappear with advances in molecular biology unless the
risk associated with each sequence is either 0 or 1, and even in
that unlikely event risk will have to be determined by obser-
vations in families. The number and location ofAGG andTGG
triplets within the CGG-rich exon 1 of FMR1 will contribute
to risk estimates by discriminating between S and Z alleles of
the same length. If risk categories (however defined) are
ordered from smallest to largest, the ordinal position can
replace n in the theory we have given here and the parameters
must be estimated again. Even if our understanding of tran-
sition probabilities were fundamentally altered, risks would
still be determined byf(n) and Tn(n,+). There is need for better
estimates of these functions in rigorously defined and larger
samples.
From these estimates the evolutionary dynamics of FMRI

alleles can be inferred, but there are several uncertainties.
L alleles are quickly eliminated and so constitute an absorbing
barrier in the Markov chain. Are small alleles also selected
against? The modal number of repeats is about 30 in primates
and 10 in other mammals, but individuals with few repeats are

rare (15). This may be related to failure of the CGG-binding
protein 1 to bind to sequences with fewer than six repeats (16).
Since the repeat sequence is transcribed (but not translated),
a possible effect on FMR1 expression cannot be dismissed.

Expression studies in individuals with extremely small values of
n will be awaited with interest.
A second uncertainty arises from evidence suggesting that

decuplet slippage may be favored for the N allele. In the
general population there are modes nearn = 20, 30, and 40 (8).
Only one increase of alleleN has been reported, from 30 to 39
repeats in an X chromosome received from the father (14).
Decuplet slippage would tend to stabilize the distribution of n.
An allele that has undergone one change may be at greater risk
for a subsequent one, requiring that n be generalized to include
sequence-specific risks. Until these problems are studied more
closely, the stability of this polymorphism is sub judice (5, 17,
18).
Models with 4 alleles (1) or 10 alleles (19) have now been

generalized to n alleles with acceptable fit to empirical data.
It remains to extend them to sequences and haplotypic asso-
ciations and to investigate evolutionary dynamics. Our ap-
proach is applicable to progressive amplification at other loci
and therefore (if data were available) to all repetitive se-
quences in nuclear DNA.
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