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Model verification
In order to show that the approach presented in Framework of Evolutionary Model works in general, we re-
veal that the transition matrix P f in the non-coding reading frames f ∈ {−1,±2,±3} and the correspond-
ing codon usage πf matches simulation results. Therefore we consider in reading frame +1 a sequence X
consisting of nG = 106 independent and identical distributed (IID) random codons c1, c2, . . . , cnG

, where
cj ∈ C61 is drawn according to the codon usage π+1(cj) of the original genome. X evolves to sequence
Y according the evolutionary channel given in +1 with parameters κ = 1.0, t = 1.0 and ω = 0.3. Given
the sequences X and Y we are now able to determine the transition matrix observed in each frame P f

Sim

as well as the codon usage πf
Sim per frame. From the codon usage, we immediately get the amino acid

distribution.
A measure to compare two probability mass functions pX(x), qX(x) ∀x : pX(x), q(x) > 0, is the

Kullback-Leibler divergence over all amino acids (plus stop) A∗, e.g., [1]

D(P ||Q) =
∑
x∈A∗

pX(x) log2
pX(x)

qX(x)
.

Further, we calculated the `2 norm (Euclidean distance) by

||P −Q||2 =

√ ∑
x∈A∗

(pX(x)− qX(x))2.

The distances of the amino acid distribution of the simulation compared with the calculations of the model
are given in Table S1. Additionally, the amino acid distributions of the simulation against a random amino
acid distributions (RND), where the probabilities of all amino acids are determined according to the GC
content of the organism are given.

Table S1. Kullback-Leibler divergence and Euclidean distance of the amino acid
distribution of the simulation with the calculations of the model.

Frame ||Sim−Model|| D(Sim||Model)
+1 7.6169 · 10−4 1.5623 · 10−5
+2 9.0041 · 10−4 2.7991 · 10−5
+3 1.2633 · 10−3 3.8891 · 10−5
−1 8.0160 · 10−4 2.1625 · 10−5
−2 8.4170 · 10−4 2.1848 · 10−5
−3 1.0425 · 10−3 2.6290 · 10−5
RND 8.1741 · 10−2 1.9047 · 10−1
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Selection pressure
As the comparison of synonymous and nonsynonymous substitution rates is used to quantify the natural
selection on proteins [2], several methods have been developed to determine ω, either by Maximum
Likelihood estimation [3] or by heuristic counting methods introduced in [4,5]. For the counting method,
there have been numerous improvements published e.g., [2, 6–11]. Unfortunately some methods produce
different estimation results, as they are not very robust towards the model assumptions. Typically,
the methods overestimate the number of synonymous substitutions and underestimate the number of
nonsynonymous substitutions [11].

We apply the method of Nei and Gojobori (NG) [6] to estimate the synonymous and nonsynonymous
rate ratio. For the model, we determined the joint probability that codon cx evolved to codon cy from
the stationary distribution and the transition matrix. Figures S1 and S2 show that our prediction models
exactly the behaviour of the simulated sequences. Note, the red line (estimation of frame +1 should be
linear with slope one. This deviation is due to a bias in the NG method, which is described, e.g. in [11].
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Figure S1. Selection pressure estimated with NG method of simulation and model prediction for
κ = 1.0, t = 1.0
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Figure S2. Selection pressure estimated with NG method of simulation and model prediction for
κ = 5.0, t = 5.0

The selection pressure determined from the rate matrix Q is presented in Figure S3. A comparison
with the predictions of the NG method in Figures S1 and S2 shows the same tendencies, but the method
calculating the rate ratio using the rate matrix is robust over different values of ω.
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(a) κ = 1.0, t = 1.0
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(b) κ = 1.0, t = 5.0
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(c) κ = 5.0, t = 1.0
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(d) κ = 5.0, t = 5.0

Figure S3. Selection pressure from modified rate matrix Qf
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Conditional entropy and mutual information
The conditional entropy and mutual information for different values of ω is shown in Figure S4.
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Figure S4. Estimation of conditional entropy and mutual information for κ = 1.0, t = 1.0

Robustness of results
Given the evolution matrix in the coding reading frame P+1

Y |X and some stationary distribution π+1, the
assumption of independent and identical distributed codons can be applied to determine transition matrix
in different reading frames. Here is the example of frame +2

P+2
Y |X(y12y

1
3y

2
1 |x12x13x21) =

∑
x1
1∈N

∑
y1
1∈N

π+1(x11x
1
2x

1
3) · P+1(y11y

1
2y

1
3 |x11x12x13)∑

x1
1∈N

π+1(x11x
1
2x

1
3)

·
∑

x2
2,x

2
3∈N

∑
y2
2 ,y

2
3∈N

π+1(x21x
2
2x

2
3) · P+1(y12y

2
2y

2
3 |x12x12x23)∑

x2
2,x

2
3∈N

π+1(x21x
2
2x

2
3)

.

Given the transition matrix P f
Y |X of a Markov chain the corresponding stationary distribution πf in

each reading frame can be easily determined.
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